Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44.550
Filter
1.
Sci Adv ; 10(23): eadn2955, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848364

ABSTRACT

The hierarchical chromatin organization begins with formation of nucleosomes, which fold into chromatin domains punctuated by boundaries and ultimately chromosomes. In a hierarchal organization, lower levels shape higher levels. However, the dependence of higher-order 3D chromatin organization on the nucleosome-level organization has not been studied in cells. We investigated the relationship between nucleosome-level organization and higher-order chromatin organization by perturbing nucleosomes across the genome by deleting Imitation SWItch (ISWI) and Chromodomain Helicase DNA-binding (CHD1) chromatin remodeling factors in budding yeast. We find that changes in nucleosome-level properties are accompanied by changes in 3D chromatin organization. Short-range chromatin contacts up to a few kilo-base pairs decrease, chromatin domains weaken, and boundary strength decreases. Boundary strength scales with accessibility and moderately with width of nucleosome-depleted region. Change in nucleosome positioning seems to alter the stiffness of chromatin, which can affect formation of chromatin contacts. Our results suggest a biomechanical "bottom-up" mechanism by which nucleosome distribution across genome shapes 3D chromatin organization.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin , Genome, Fungal , Nucleosomes , Saccharomyces cerevisiae , Nucleosomes/genetics , Nucleosomes/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Adenosine Triphosphatases
2.
Biochemistry (Mosc) ; 89(4): 601-625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831499

ABSTRACT

The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , Humans , Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Multiprotein Complexes/chemistry , DNA/metabolism , DNA/chemistry , Animals , Chromatids/metabolism
3.
BMC Vet Res ; 20(1): 242, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831422

ABSTRACT

BACKGROUND: ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS: This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS: The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.


Subject(s)
Adenosine Triphosphatases , Antioxidants , Gastrointestinal Microbiome , Jejunum , Animals , Jejunum/microbiology , Jejunum/enzymology , Antioxidants/metabolism , Gastrointestinal Microbiome/physiology , Adenosine Triphosphatases/metabolism , Sheep , Male , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism
4.
Biol Pharm Bull ; 47(6): 1172-1178, 2024.
Article in English | MEDLINE | ID: mdl-38880625

ABSTRACT

The increasing number of patients with depressive disorder is a serious socioeconomic problem worldwide. Although several therapeutic agents have been developed and used clinically, their effectiveness is insufficient and thus discovery of novel therapeutic targets is desired. Here, focusing on dysregulation of neuronal purinergic signaling in depressive-like behavior, we examined the expression profiles of ATP channels and ectonucleotidases in astrocytes of cerebral cortex and hippocampus of chronic social defeat stress (CSDS)-susceptible BALB/c mice. Mice were exposed to 10-d CSDS, and their astrocytes were obtained using a commercially available kit based on magnetic activated cell sorting technology. In astrocytes derived from cerebral cortex of CSDS-susceptible mice, the expression levels of mRNAs for connexin 43, P2X7 receptors and maxi anion channels were increased, those for connexin 43 and P2X7 receptors being inversely correlated with mouse sociability, and the expression of mRNAs for ecto-nucleoside triphosphate diphosphohydrase 2 and ecto-5'nucleotidase was decreased and increased, respectively. On the other hand, the alteration profiles of ATP channels and ectonucleotidases in hippocampal astrocytes of CSDS-susceptible mice were different from in the case of cortical astrocytes, and there was no significant correlation between expression levels of their mRNAs and mouse sociability. These findings imply that increased expression of ATP channels in cerebral cortex might be involved in the development of reduced sociability in CSDS-subjected BALB/c mice. Together with recent findings, it is suggested that ATP channels expressed by cortical astrocytes might be potential therapeutic targets for depressive disorder.


Subject(s)
Astrocytes , Cerebral Cortex , Hippocampus , Mice, Inbred BALB C , Social Defeat , Stress, Psychological , Animals , Astrocytes/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Stress, Psychological/metabolism , Male , Mice , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Connexin 43/metabolism , Connexin 43/genetics , 5'-Nucleotidase/metabolism , 5'-Nucleotidase/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
5.
Proc Natl Acad Sci U S A ; 121(24): e2316892121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833472

ABSTRACT

The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.


Subject(s)
Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/chemistry , Valosin Containing Protein/genetics , Allosteric Regulation , Humans , Protein Binding , Molecular Mimicry , Cryoelectron Microscopy , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Binding Sites , Allosteric Site , Models, Molecular , Protein Conformation
6.
Arch Microbiol ; 206(7): 299, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861015

ABSTRACT

Chaperonins from psychrophilic bacteria have been shown to exist as single-ring complexes. This deviation from the standard double-ring structure has been thought to be a beneficial adaptation to the cold environment. Here we show that Cpn60 from the psychrophile Pseudoalteromonas haloplanktis (Ph) maintains its double-ring structure also in the cold. A strongly reduced ATPase activity keeps the chaperonin in an energy-saving dormant state, until binding of client protein activates it. Ph Cpn60 in complex with co-chaperonin Ph Cpn10 efficiently assists in protein folding up to 55 °C. Moreover, we show that recombinant expression of Ph Cpn60 can provide its host Escherichia coli with improved viability under low temperature growth conditions. These properties of the Ph chaperonin may make it a valuable tool in the folding and stabilization of psychrophilic proteins.


Subject(s)
Bacterial Proteins , Cold Temperature , Escherichia coli , Protein Folding , Pseudoalteromonas , Pseudoalteromonas/genetics , Pseudoalteromonas/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Chaperonin 60/metabolism , Chaperonin 60/genetics , Chaperonin 60/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Chaperonins/metabolism , Chaperonins/genetics , Chaperonins/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics
7.
Plant Cell Rep ; 43(7): 174, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878164

ABSTRACT

KEY MESSAGE: Interactor of WOX2, CDC48A, is crucial for early embryo patterning and shoot meristem stem cell initiation, but is not required for WOX2 protein turnover or subcellular localization. During Arabidopsis embryo patterning, the WUSCHEL HOMEOBOX 2 (WOX2) transcription factor is a major regulator of protoderm and shoot stem cell initiation. Loss of WOX2 function results in aberrant protodermal cell divisions and, redundantly with its paralogs WOX1, WOX3, and WOX5, compromised shoot meristem formation. To elucidate the molecular basis for WOX2 function, we searched for protein interactors by IP-MS/MS from WOX2-overexpression roots displaying reprogramming toward shoot-like cell fates. Here, we report that WOX2 directly interacts with the type II AAA ATPase molecular chaperone CELL DIVISION CYCLE 48A (CDC48A). We confirmed this interaction with bimolecular fluorescence complementation and co-immunoprecipitation and found that both proteins co-localize in the nucleus. We show that CDC48A loss of function results in protoderm and shoot meristem stem cell initiation defects similar to WOX2 loss of function. We also provide evidence that CDC48A promotes WOX2 activity independently of proteolysis or the regulation of nuclear localization, common mechanisms of CDC48A function in other processes. Our results point to a new role of CDC48A in potentiating WOX2 function during early embryo patterning.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle Proteins , Gene Expression Regulation, Plant , Homeodomain Proteins , Meristem , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/embryology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Meristem/metabolism , Meristem/genetics , Meristem/embryology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Seeds/metabolism , Seeds/genetics , Seeds/growth & development , Plants, Genetically Modified , ATPases Associated with Diverse Cellular Activities , Transcription Factors
8.
Elife ; 132024 May 29.
Article in English | MEDLINE | ID: mdl-38809771

ABSTRACT

The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.


Subject(s)
Adenosine Triphosphatases , Histones , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/chemistry , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Chromatin Assembly and Disassembly , Protein Binding , Protein Multimerization
9.
Biotechnol Adv ; 73: 108377, 2024.
Article in English | MEDLINE | ID: mdl-38763231

ABSTRACT

Adenosine triphosphate (ATP) regeneration is a significant step in both living cells and in vitro biotransformation (ivBT). Rotary motor ATP synthases (ATPases), which regenerate ATP in living cells, have been widely assembled in biomimetic structures for in vitro ATP synthesis. In this review, we present a comprehensive overview of ATPases, including the working principle, orientation and distribution density properties of ATPases, as well as the assembly strategies and applications of ATPase-based ATP regeneration modules. The original sources of ATPases for in vitro ATP regeneration include chromatophores, chloroplasts, mitochondria, and inverted Escherichia coli (E. coli) vesicles, which are readily accessible but unstable. Although significant advances have been made in the assembly methods for ATPase-artificial membranes in recent decades, it remains challenging to replicate the high density and orientation of ATPases observed in vivo using in vitro assembly methods. The use of bioproton pumps or chemicals for constructing proton motive forces (PMF) enables the versatility and potential of ATPase-based ATP regeneration modules. Additionally, overall robustness can be achieved via membrane component selection, such as polymers offering great mechanical stability, or by constructing a solid supporting matrix through layer-by-layer assembly techniques. Finally, the prospects of ATPase-based ATP regeneration modules can be expected with the technological development of ATPases and artificial membranes.


Subject(s)
Adenosine Triphosphatases , Adenosine Triphosphate , Biotransformation , Adenosine Triphosphate/metabolism , Adenosine Triphosphatases/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics
10.
BMC Plant Biol ; 24(1): 484, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822228

ABSTRACT

Heavy-metal ATPases (HMAs) play a vital role in plants, helping to transport heavy metal ions across cell membranes.However, insufficient data exists concerning HMAs genes within the Arecaceae family.In this study, 12 AcHMA genes were identified within the genome of Areca catechu, grouped into two main clusters based on their phylogenetic relationships.Genomic distribution analysis reveals that the AcHMA genes were unevenly distributed across six chromosomes. We further analyzed their physicochemical properties, collinearity, and gene structure.Furthermore, RNA-seq data analysis exhibited varied expressions in different tissues of A. catechu and found that AcHMA1, AcHMA2, and AcHMA7 were highly expressed in roots, leaves, pericarp, and male/female flowers. A total of six AcHMA candidate genes were selected based on gene expression patterns, and their expression in the roots and leaves was determined using RT-qPCR under heavy metal stress. Results showed that the expression levels of AcHMA1 and AcHMA3 genes were significantly up-regulated under Cd2 + and Zn2 + stress. Similarly, in response to Cu2+, the AcHMA5 and AcHMA8 revealed the highest expression in roots and leaves, respectively. In conclusion, this study will offer a foundation for exploring the role of the HMAs gene family in dealing with heavy metal stress conditions in A. catechu.


Subject(s)
Adenosine Triphosphatases , Metals, Heavy , Metals, Heavy/toxicity , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Genes, Plant , Plant Leaves/genetics , Plant Roots/genetics , Plant Roots/metabolism
11.
J Nippon Med Sch ; 91(2): 140-145, 2024.
Article in English | MEDLINE | ID: mdl-38777780

ABSTRACT

Moyamoya disease (MMD) is a cerebrovascular disorder that is predominantly observed in women of East Asian descent, and is characterized by progressive stenosis of the internal carotid artery, beginning in early childhood, and a distinctive network of collateral vessels known as "moyamoya vessels" in the basal ganglia. Additionally, a prevalent genetic variant found in most MMD cases is the p.R4810K polymorphism of RNF213 on chromosome 17q25.3. Recent studies have revealed that RNF213 mutations are associated not only with MMD, but also with other systemic vascular disorders, including intracranial atherosclerosis and systemic vascular abnormalities such as pulmonary artery stenosis and coronary artery diseases. Therefore, the concept of "RNF213-related vasculopathy" has been proposed. This review focuses on polymorphisms in the RNF213 gene and describes a wide range of clinical and genetic phenotypes associated with RNF213-related vasculopathy. The RNF213 gene has been suggested to play an important role in the pathogenesis of vascular diseases and developing new therapies. Therefore, further research and knowledge sharing through collaboration between clinicians and researchers are required.


Subject(s)
Adenosine Triphosphatases , Moyamoya Disease , Mutation , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Moyamoya Disease/genetics , Adenosine Triphosphatases/genetics , Vascular Diseases/genetics , Female , Polymorphism, Genetic , Phenotype , Male
12.
Neurosurg Rev ; 47(1): 246, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811382

ABSTRACT

Moyamoya disease (MMD) is a chronic, progressive cerebrovascular occlusive disease. Ring finger protein 213 (RNF213) is a susceptibility gene of MMD. Previous studies have shown that the expression levels of angiogenic factors increase in MMD patients, but the relationship between the susceptibility gene RNF213 and these angiogenic mediators is still unclear. The aim of the present study was to investigate the pathogenesis of MMD by examining the effect of RNF213 gene knockdown on the expression of matrix metalloproteinase-9 (MMP-9) and basic fibroblast growth factor (bFGF) in rat bone marrow-derived mesenchymal stem cells (rBMSCs). Firstly, 40 patients with MMD and 40 age-matched normal individuals (as the control group) were enrolled in the present study to detect the levels of MMP-9 and bFGF in serum by ELISA. Secondly, Sprague-Dawley male rat BMSCs were isolated and cultured using the whole bone marrow adhesion method, and subsequent phenotypic analysis was performed by flow cytometry. Alizarin red and oil red O staining methods were used to identify osteogenic and adipogenic differentiation, respectively. Finally, third generation rBMSCs were transfected with lentivirus recombinant plasmid to knockout expression of the RNF213 gene. After successful transfection was confirmed by reverse transcription-quantitative PCR and fluorescence imaging, the expression levels of bFGF and MMP-9 mRNA in rBMSCs and the levels of bFGF and MMP-9 protein in the supernatant of the culture medium were detected on the 7th and 14th days after transfection. There was no significant difference in the relative expression level of bFGF among the three groups on the 7th day. For the relative expression level of MMP-9, there were significant differences on the 7th day and 14th day. In addition, there was no statistically significant difference in the expression of bFGF in the supernatant of the RNF213 shRNA group culture medium, while there was a significant difference in the expression level of MMP-9. The knockdown of the RNF213 gene affects the expression of bFGF and MMP-9. However, further studies are needed to determine how they participate in the pathogenesis of MMD. The findings of the present study provide a theoretical basis for clarifying the pathogenesis and clinical treatment of MMD.


Subject(s)
Adenosine Triphosphatases , Fibroblast Growth Factor 2 , Matrix Metalloproteinase 9 , Mesenchymal Stem Cells , Moyamoya Disease , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases , Adult , Animals , Female , Humans , Male , Middle Aged , Rats , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Bone Marrow Cells , Cells, Cultured , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Gene Knockdown Techniques , Genetic Predisposition to Disease , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Mesenchymal Stem Cells/metabolism , Moyamoya Disease/genetics , Moyamoya Disease/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Up-Regulation
13.
Curr Opin Microbiol ; 79: 102485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723344

ABSTRACT

The ParA/MinD (A/D) family of ATPases spatially organize an array of genetic- and protein-based cellular cargos across the bacterial and archaeal domains of life. By far, the two best-studied members, and family namesake, are ParA and MinD, involved in bacterial DNA segregation and divisome positioning, respectively. ParA and MinD make protein waves on the nucleoid or membrane to segregate chromosomes and position the divisome. Less studied is the growing list of A/D ATPases widespread across bacteria and implicated in the subcellular organization of diverse protein-based complexes and organelles involved in myriad biological processes, from metabolism to pathogenesis. Here we describe mechanistic commonality, variation, and coordination among the most widespread family of positioning ATPases used in the subcellular organization of disparate cargos across bacteria and archaea.


Subject(s)
Adenosine Triphosphatases , Archaea , Bacteria , Bacterial Proteins , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Archaea/genetics , Archaea/enzymology , Archaea/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Chromosome Segregation
14.
J Cell Sci ; 137(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38766715

ABSTRACT

Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system.


Subject(s)
Green Fluorescent Proteins , HSP70 Heat-Shock Proteins , Protein Aggregates , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Proteolysis , Proteasome Endopeptidase Complex/metabolism , Heat-Shock Response/genetics , Protein Folding , Cell Cycle/genetics , Adenosine Triphosphatases
15.
J Med Chem ; 67(10): 8186-8200, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38733345

ABSTRACT

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.


Subject(s)
ATPases Associated with Diverse Cellular Activities , DNA-Binding Proteins , Histones , Lysine , Histones/metabolism , Histones/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Lysine/metabolism , Lysine/chemistry , Acetylation , Protein Processing, Post-Translational , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Protein Binding , Protein Domains , Models, Molecular , Binding Sites
16.
DNA Repair (Amst) ; 139: 103691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744091

ABSTRACT

The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.


Subject(s)
DNA Repair , Saccharomyces cerevisiae Proteins , Valosin Containing Protein , Valosin Containing Protein/metabolism , Humans , Saccharomyces cerevisiae Proteins/metabolism , DNA/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , DNA Damage , Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism , Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Animals , Intracellular Signaling Peptides and Proteins
17.
BMC Biol ; 22(1): 105, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702628

ABSTRACT

BACKGROUND: Histone H3K4 tri-methylation (H3K4me3) catalyzed by Set1/COMPASS, is a prominent epigenetic mark found in promoter-proximal regions of actively transcribed genes. H3K4me3 relies on prior monoubiquitination at the histone H2B (H2Bub) by Rad6 and Bre1. Swd2/Cps35, a Set1/COMPASS component, has been proposed as a key player in facilitating H2Bub-dependent H3K4me3. However, a more comprehensive investigation regarding the relationship among Rad6, Swd2, and Set1 is required to further understand the mechanisms and functions of the H3K4 methylation. RESULTS: We investigated the genome-wide occupancy patterns of Rad6, Swd2, and Set1 under various genetic conditions, aiming to clarify the roles of Set1 and Rad6 for occupancy of Swd2. Swd2 peaks appear on both the 5' region and 3' region of genes, which are overlapped with its tightly bound two complexes, Set1 and cleavage and polyadenylation factor (CPF), respectively. In the absence of Rad6/H2Bub, Set1 predominantly localized to the 5' region of genes, while Swd2 lost all the chromatin binding. However, in the absence of Set1, Swd2 occupancy near the 5' region was impaired and rather increased in the 3' region. CONCLUSIONS: This study highlights that the catalytic activity of Rad6 is essential for all the ways of Swd2's binding to the transcribed genes and Set1 redistributes the Swd2 to the 5' region for accomplishments of H3K4me3 in the genome-wide level.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Methylation , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 761-768, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818566

ABSTRACT

Structural maintenance of chromosomes (SMC), including cohesin, condensin and the SMC5/6 complex, are protein complexes which maintain the higher structure and dynamic stability of chromatin. Such circular complexes, with similar structures, play pivotal roles in chromatid cohesion, chromosomal condensation, DNA replication and repair, as well as gene transcription. Despite extensive research on the functions of the SMCs, our understanding of the SMC5/6 complex has remained limited compared with the other two complexes. This article has reviewed the architecture and crucial physiological roles of the SMCs, and explored the associated phenotypes resulting from mutations of the SMC components such as Cornelia de Lange syndrome (CdLS) and microcephaly, with an aim to provide insights into their functions in eukaryotic cells and implications for human diseases.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Humans , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/genetics , Cohesins , Multiprotein Complexes/genetics , DNA-Binding Proteins/genetics , Adenosine Triphosphatases/genetics , Animals , De Lange Syndrome/genetics , Mutation
19.
EMBO Rep ; 25(6): 2722-2742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773322

ABSTRACT

Alpha, beta, and gamma tubulins are essential building blocks for all eukaryotic cells. The functions of the non-canonical tubulins, delta, epsilon, and zeta, however, remain poorly understood and their requirement in mammalian development untested. Herein we have used a spermatogenesis model to define epsilon tubulin (TUBE1) function in mice. We show that TUBE1 is essential for the function of multiple complex microtubule arrays, including the meiotic spindle, axoneme and manchette and in its absence, there is a dramatic loss of germ cells and male sterility. Moreover, we provide evidence for the interplay between TUBE1 and katanin-mediated microtubule severing, and for the sub-specialization of individual katanin paralogs in the regulation of specific microtubule arrays.


Subject(s)
Katanin , Microtubules , Spermatogenesis , Tubulin , Animals , Male , Microtubules/metabolism , Tubulin/metabolism , Mice , Katanin/metabolism , Katanin/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Germ Cells/metabolism , Spindle Apparatus/metabolism , Spermatozoa/metabolism , Infertility, Male/metabolism , Infertility, Male/genetics , Mice, Knockout , Axoneme/metabolism
20.
Nat Genet ; 56(6): 1203-1212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816647

ABSTRACT

Catalytic activity of the imitation switch (ISWI) family of remodelers is critical for nucleosomal organization and DNA binding of certain transcription factors, including the insulator protein CTCF. Here we define the contribution of individual subcomplexes by deriving a panel of isogenic mouse stem cell lines, each lacking one of six ISWI accessory subunits. Individual deletions of subunits of either CERF, RSF, ACF, WICH or NoRC subcomplexes only moderately affect the chromatin landscape, while removal of the NURF-specific subunit BPTF leads to a strong reduction in chromatin accessibility and SNF2H ATPase localization around CTCF sites. This affects adjacent nucleosome occupancy and CTCF binding. At a group of sites with reduced chromatin accessibility, CTCF binding persists but cohesin occupancy is reduced, resulting in decreased insulation. These results suggest that CTCF binding can be separated from its function as an insulator in nuclear organization and identify a specific role for NURF in mediating SNF2H localization and chromatin opening at bound CTCF sites.


Subject(s)
Adenosine Triphosphatases , CCCTC-Binding Factor , Chromatin , Repressor Proteins , Transcription Factors , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Chromatin/metabolism , Chromatin/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Protein Binding , Cell Line , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Nucleosomes/metabolism , Nucleosomes/genetics , Protein Subunits/metabolism , Protein Subunits/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Binding Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...