Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.223
Filter
1.
Int Immunopharmacol ; 128: 111557, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266451

ABSTRACT

BACKGROUND AND PURPOSE: Lung macrophages (LMs) are critically involved in respiratory diseases. The primary objective of the present study was to determine whether or not an adenosine analog (NECA) and prostaglandin E2 (PGE2) affected the interleukin (IL)-4- and IL-13-induced release of M2a chemokines (CCL13, CCL17, CCL18, and CCL22) by human LMs. EXPERIMENTAL APPROACH: Primary macrophages isolated from resected human lungs were incubated with NECA, PGE2, roflumilast, or vehicle and stimulated with IL-4 or IL-13 for 24 h. The levels of chemokines and PGE2 in the culture supernatants were measured using ELISAs and enzyme immunoassays. KEY RESULTS: Exposure to IL-4 (10 ng/mL) and IL-13 (50 ng/mL) was associated with greater M2a chemokine production but not PGE2 production. PGE2 (10 ng/mL) and NECA (10-6 M) induced the production of M2a chemokines to a lesser extent but significantly enhanced the IL-4/IL-13-induced production of these chemokines. At either a clinically relevant concentration (10-9 M) or at a concentration (10-7 M) that fully inhibited phosphodiesterase 4 (PDE4) activity, roflumilast did not increase the production of M2a chemokines and did not modulate their IL-13-induced production, regardless of the presence or absence of PGE2. CONCLUSIONS: NECA and PGE2 enhanced the IL-4/IL-13-induced production of M2a chemokines. The inhibition of PDE4 by roflumilast did not alter the production of these chemokines. These results contrast totally with the previously reported inhibitory effects of NECA, PGE2, and PDE4 inhibitors on the lipopolysaccharide-induced release of tumor necrosis factor alpha and M1 chemokines in human LMs.


Subject(s)
Adenosine , Aminopyridines , Benzamides , Dinoprostone , Humans , Dinoprostone/pharmacology , Adenosine/pharmacology , Interleukin-4/pharmacology , Interleukin-13/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Chemokines , Macrophages , Tumor Necrosis Factor-alpha/pharmacology , Chemokine CCL17 , Lung , Cells, Cultured , Cyclopropanes
2.
Purinergic Signal ; 20(2): 163-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37402944

ABSTRACT

Sustained pressure overload and fibrosis of the right ventricle (RV) are the leading causes of mortality in pulmonary arterial hypertension (PAH). Although the role of adenosine in PAH has been attributed to the control of pulmonary vascular tone, cardiac reserve, and inflammatory processes, the involvement of the nucleoside in RV remodelling remains poorly understood. Conflicting results exist on targeting the low-affinity adenosine A2B receptor (A2BAR) for the treatment of PAH mostly because it displays dual roles in acute vs. chronic lung diseases. Herein, we investigated the role of the A2BAR in the viability/proliferation and collagen production by cardiac fibroblasts (CFs) isolated from RVs of rats with monocrotaline (MCT)-induced PAH. CFs from MCT-treated rats display higher cell viability/proliferation capacity and overexpress A2BAR compared to the cells from healthy littermates. The enzymatically stable adenosine analogue, 5'-N-ethylcarboxamidoadenosine (NECA, 1-30 µM), concentration-dependently increased growth, and type I collagen production by CFs originated from control and PAH rats, but its effects were more prominent in cells from rats with PAH. Blockage of the A2BAR with PSB603 (100 nM), but not of the A2AAR with SCH442416 (100 nM), attenuated the proliferative effect of NECA in CFs from PAH rats. The A2AAR agonist, CGS21680 (3 and 10 nM), was virtually devoid of effect. Overall, data suggest that adenosine signalling via A2BAR may contribute to RV overgrowth secondary to PAH. Therefore, blockage of the A2AAR may be a valuable therapeutic alternative to mitigate cardiac remodelling and prevent right heart failure in PAH patients.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Humans , Rats , Adenosine-5'-(N-ethylcarboxamide) , Disease Models, Animal , Fibroblasts/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Receptor, Adenosine A2B/metabolism
3.
J Environ Manage ; 344: 118712, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37573694

ABSTRACT

In response to global warming, the International Maritime Organisation (IMO) set rules of 50% Greenhouse Gas (GHG) reduction by 2050, from 2008 levels. Signatory countries to the IMO's regulation require frequent assessment of the contribution of GHG emissions from shipping calling at their ports or trading in their territorial waters to ensure their compliance with the regulations. This demands a rapid and accurate method to assess shipping's contribution to GHG emissions. Current methodologies for estimating emissions from ships can be described on a scale between bottom-up and top-down methods. Top-down methods provide rapid estimates - primarily based on fuel sales reports - without considering individual vessel details. Therefore, they are less accurate and do not provide a breakdown of emissions by ship types or in specific regions. Bottom-up methodologies are detailed vessel-based estimates; however, they are data and time-demanding. The Ship Emissions Assessment method (SEA) (Topic et al., 2021) fills the gap between bottom-up and top-down methods by providing an innovative hybrid solution for rapid but accurate ship emission estimation. It uses publicly available, cost-effective data sets for emission estimates. The SEA method is capable of estimating ships' emissions in designated areas to understand regulations' effectiveness and provide emission quantification evidence. This research objective was to apply the SEA method to quantify CO2, SOX and NOX exhaust emissions from containerships for the three crucial containership ports: Trieste, Rijeka and Venice, in the North of the Adriatic Sea. The SEA methodology was applied to assess emissions and forecast efficiency in scenarios of different regulatory measures. A reduction in NOx emissions was estimated for the event of the implementation of NECA in all three ports. Results showed that 447.13 tonnes of NOx could be reduced each year in the North Adriatic Sea area around the ports of Rijeka, Trieste and Venice in the event that NECA regulations are stipulated.


Subject(s)
Air Pollutants , Greenhouse Gases , Air Pollutants/analysis , Adenosine-5'-(N-ethylcarboxamide) , Vehicle Emissions/analysis , Global Warming , Ships
4.
Adv Ther ; 40(9): 4032-4041, 2023 09.
Article in English | MEDLINE | ID: mdl-37432551

ABSTRACT

INTRODUCTION: This study was performed to evaluate the prognostic value of the neuroendocrine component in patients with extrahepatic cholangiocarcinoma (EHCC). METHODS: Cases with EHCC derived from the SEER database were retrospectively reviewed and analyzed. The clinicopathological features and long-term survival were compared between patients with neuroendocrine carcinoma (NECA) and those with pure adenocarcinoma (AC). RESULTS: A total of 3277 patients with EHCC were included (62 patients with NECA and 3215 patients with AC). T stage (P = 0.531) and M stage (P = 0.269) were comparable between the two groups. However, lymph node metastasis was more frequently detected in NECA (P = 0.022). NECA was correlated with more advanced tumor stage than pure AC (P < 0.0001). Inconsistent differentiation status was also observed between the two groups (P = 0.001). The proportion of patients who received surgery was significantly higher in the NECA group (80.6% vs 62.0%, P = 0.003) while chemotherapy was more frequently performed among patients with pure AC (45.7% vs 25.8%, P = 0.002). Comparable incidence of radiotherapy was acquired (P = 0.117). Patients with NECA shared a better overall survival than those with pure AC (P = 0.0141), even after matching (P = 0.0366). The results of univariate and multivariate analyses indicated that the neuroendocrine component was a protective factor as well as an independent prognostic factor for overall survival (HR < 1, P < 0.05). CONCLUSION: Patients with EHCC with a neuroendocrine component shared a better prognosis than those with pure AC, and NECA could serve as a favorable prognostic factor for overall survival. Considering various unprovided but potentially confounding factors, future more well-conducted research is required.


Subject(s)
Adenocarcinoma , Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Retrospective Studies , Adenosine-5'-(N-ethylcarboxamide) , Bile Duct Neoplasms/therapy , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/therapy , Cholangiocarcinoma/pathology , Prognosis , Bile Ducts, Intrahepatic/pathology
5.
J Korean Med Sci ; 38(23): e195, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37309700

ABSTRACT

BACKGROUND: In Korea, during the early phase of the coronavirus disease 2019 (COVID-19) pandemic, we responded to the uncertainty of treatments under various conditions, consistently playing catch up with the speed of evidence updates. Therefore, there was high demand for national-level evidence-based clinical practice guidelines for clinicians in a timely manner. We developed evidence-based and updated living recommendations for clinicians through a transparent development process and multidisciplinary expert collaboration. METHODS: The National Evidence-based Healthcare Collaborating Agency (NECA) and the Korean Academy of Medical Sciences (KAMS) collaborated to develop trustworthy Korean living guidelines. The NECA-supported methodological sections and 8 professional medical societies of the KAMS worked with clinical experts, and 31 clinicians were involved annually. We developed a total of 35 clinical questions, including medications, respiratory/critical care, pediatric care, emergency care, diagnostic tests, and radiological examinations. RESULTS: An evidence-based search for treatments began in March 2021 and monthly updates were performed. It was expanded to other areas, and the search interval was organized by a steering committee owing to priority changes. Evidence synthesis and recommendation review was performed by researchers, and living recommendations were updated within 3-4 months. CONCLUSION: We provided timely recommendations on living schemes and disseminated them to the public, policymakers and various stakeholders using webpages and social media. Although the output was successful, there were some limitations. The rigor of development issues, urgent timelines for public dissemination, education for new developers, and spread of several new COVID-19 variants have worked as barriers. Therefore, we must prepare systematic processes and funding for future pandemics.


Subject(s)
COVID-19 , Child , Humans , Adenosine-5'-(N-ethylcarboxamide) , Republic of Korea , SARS-CoV-2 , Practice Guidelines as Topic
6.
BMC Cardiovasc Disord ; 23(1): 154, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964482

ABSTRACT

PURPOSE: This study aimed to determine the effect and mechanism of action of adenosine 2 receptor (A2R) activation on myocardial ischemia reperfusion injury (MIRI) under diabetic conditions. METHODS: MIRI type 2 diabetic rats and H9C2 cardiomyocytes were treated with A2R agonist and then subjected to hypoxia for 6 h and reoxygenation for 18 h. Myocardial damage, and infarct size were determined by cardiac ultrasound. Indicators of cardiomyocyte injury, creatine kinase-MB and cardiac troponin I were detected by Enzyme Linked Immunosorbent Assay. Endoplasmic reticulum stress (ERS) was determined through measuring the expression levels of ERS related genes GRP78, p-IRE1/IRE1, and p-JNKJNK. The mechanism of A2R cardio protection in MIRI through regulating ERS induced autophagy was determined by investigating the ER resident protein IRE-1. The ER-stress inducer Tunicamycin, and the IRE-1 inhibitor STF in combination with the A2R agonist NECA were used, and the cellular responses were assessed through autophagy proteins expression Beclin-1, p62, LC3 and apoptosis. RESULTS: NECA improved left ventricular function post MIRI, limited myocardial infarct size, reduced myocardial damage, decreased cardiomyocytes apoptosis, and attenuated ERS induced autophagy through regulating the IRE-XBP1s-CHOP pathway. These actions resulted into overall protection of the myocardium against MIRI. CONCLUSION: In summary, A2R activation by NECA prior to ischemia attenuates apoptosis, reduces ERS induced autophagy and restores left ventricular function. This protective effect occurs through regulating the IRE1-XBPs-CHOP related mechanisms. NECA is thus a potential target for the treatment of MIRI in patient with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Myocardial Reperfusion Injury , Rats , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Adenosine-5'-(N-ethylcarboxamide)/metabolism , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Rats, Sprague-Dawley , Myocytes, Cardiac/metabolism , Apoptosis , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Autophagy
7.
Microvasc Res ; 148: 104498, 2023 07.
Article in English | MEDLINE | ID: mdl-36863509

ABSTRACT

Endothelial progenitor cells (EPCs) are stem cells mainly derived from bone marrow; from where they migrate to repair and regenerate damaged tissues. eEPCs have been classified into two sub-populations, early (eEPC) and late EPCs (lEPC), depending on maturation stages in vitro. In addition, eEPC release endocrine mediators, including small extracellular vesicles (sEVs), which in turn may enhance the eEPC-mediated wound healing properties. Nevertheless, adenosine contributes to angiogenesis by recruiting eEPC at the injury site. However, whether ARs may enhance the secretome of eEPC, including sEVs, is unknown. Therefore, we aimed to investigate whether AR activation increase the release of sEVs in eEPC, which in turn has paracrine effects on recipient endothelial cells. Results shown that 5'-N-ethylcarboxamidoadenosine (NECA), a non-selective agonist, increase both the protein levels of the vascular endothelial growth factor (VEGF), and the number of sEVs released to the conditioned medium (CM) in primary culture of eEPC. Importantly, CM and EVs harvested from NECA-stimulated eEPC promote in vitro angiogenesis, without changes in cell proliferation, in recipient ECV-304 endothelial cells. This constitutes the first evidence showing that adenosine enhances sEVs release from eEPC, which has pro-angiogenic capacity on recipient endothelial cells.


Subject(s)
Endothelial Progenitor Cells , Humans , Endothelial Progenitor Cells/metabolism , Adenosine/pharmacology , Adenosine/metabolism , Adenosine-5'-(N-ethylcarboxamide)/metabolism , Vascular Endothelial Growth Factor A/metabolism , Stem Cells/metabolism , Culture Media, Conditioned/metabolism
8.
Immunology ; 169(1): 42-56, 2023 05.
Article in English | MEDLINE | ID: mdl-36373432

ABSTRACT

Evidence suggests that the anti-inflammatory nucleoside adenosine can shape immune responses by shifting the regulatory (Treg )/helper (Th17) T-cell balance in favour of Treg . Since this observation is based on in vivo and in vitro studies mostly confined to murine models, we comprehensively analysed effects of adenosine on human T-cells. Proliferation, phenotype and cytokine production of stimulated T-cells were assessed by flow cytometry, multiplex assay and ELISA, gene expression profiling was determined by microarray. We found that the pan-adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) skews human CD3+ T-cell responses towards non-inflammatory Th17 cells. Addition of NECA during T-cell activation increased the development of IL-17+ cells with a CD4+ RORγt+ phenotype and enhanced CD161 and CD196 surface expression. Remarkably, these Th17 cells displayed non-inflammatory cytokine and gene expression profiles including reduced Th1/Th17 transdifferentiation, a stem cell-like molecular signature and induced surface expression of the adenosine-producing ectoenzymes CD39 and CD73. Thus, T-cells cultured under Th17-inducing conditions together with NECA were capable of suppressing responder T-cells. Finally, genome-wide gene expression profiling revealed metabolic quiescence previously associated with non-pathogenic Th17 cells in response to adenosine signalling. Our data suggest that adenosine induces non-inflammatory Th17 cells in human T-cell differentiation, potentially through regulation of metabolic pathways.


Subject(s)
Adenosine , Interleukin-17 , Humans , Animals , Mice , Adenosine/metabolism , Adenosine/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/metabolism , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Cell Differentiation , Th17 Cells , Cytokines/metabolism , T-Lymphocytes, Regulatory
9.
Sci Adv ; 8(51): eadd3709, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36563137

ABSTRACT

The human adenosine A2B receptor (A2BR) is a class A G protein-coupled receptor that is involved in several major physiological and pathological processes throughout the body. A2BR recognizes its ligands adenosine and NECA with relatively low affinity, but the detailed mechanism for its ligand recognition and signaling is still elusive. Here, we present two structures determined by cryo-electron microscopy of A2BR bound to its agonists NECA and BAY60-6583, each coupled to an engineered Gs protein. The structures reveal conserved orthosteric binding pockets with subtle differences, whereas the selectivity or specificity can mainly be attributed to regions extended from the orthosteric pocket. We also found that BAY60-6583 occupies a secondary pocket, where residues V2506.51 and N2737.36 were two key determinants for its selectivity against A2BR. This study offers a better understanding of ligand selectivity for the adenosine receptor family and provides a structural template for further development of A2BR ligands for related diseases.


Subject(s)
Adenosine , Receptor, Adenosine A2B , Humans , Adenosine/metabolism , Adenosine-5'-(N-ethylcarboxamide) , Cryoelectron Microscopy , Ligands , Receptor, Adenosine A2B/metabolism , GTP-Binding Proteins/metabolism
10.
J Med Chem ; 65(21): 14864-14890, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36270633

ABSTRACT

A series of benzyloxy and phenoxy derivatives of the adenosine receptor agonists N6-cyclopentyl adenosine (CPA) and N6-cyclopentyl 5'-N-ethylcarboxamidoadenosine (CP-NECA) were synthesized, and their potency and selectivity were assessed. We observed that the most potent were the compounds with a halogen in the meta position on the aromatic ring of the benzyloxy- or phenoxycyclopentyl substituent. In general, the NECA-based compounds displayed greater A1R selectivity than the adenosine-based compounds, with N6-2-(3-bromobenzyloxy)cyclopentyl-NECA and N6-2-(3-methoxyphenoxy)cyclopentyl-NECA showing ∼1500-fold improved A1R selectivity compared to NECA. In addition, we quantified the compounds' affinity and kinetics of binding at both human and rat A1R using a NanoBRET binding assay and found that the halogen substituent in the benzyloxy- or phenoxycyclopentyl moiety seems to confer high affinity for the A1R. Molecular modeling studies suggested a hydrophobic subpocket as contributing to the A1R selectivity displayed. We believe that the identified selective potent A1R agonists are valuable tool compounds for adenosine receptor research.


Subject(s)
Purinergic P1 Receptor Agonists , Receptors, Purinergic P1 , Animals , Humans , Rats , Adenosine/chemistry , Adenosine-5'-(N-ethylcarboxamide) , Halogens , Structure-Activity Relationship
11.
Biochim Biophys Acta Gen Subj ; 1866(12): 130242, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36084905

ABSTRACT

Stimulation of A2A receptors (A2A R) coupled to Gs/olf protein activates Adenylyl cyclase (AC) leading to the release of cAMP which activates the cAMP-dependent PKA phosphorylation. The possible role of A2A R in the modulation of free cytosolic Ca2+ concentration ([Ca2+]i) involving IP3, cAMP and PKA was investigated in HEK 293-A2A R. The levels of IP3 and cAMP were observed by enzyme immunoassay detection method and [Ca2+]i using Fluo-4 AM. Moreover, cAMP-dependent PKA was determined using the PKA Colorimetric Activity Kit. We observed that the cells pre-treated with A2A R agonist NECA showed increased levels of cAMP, PKA, IP3 and [Ca2+]i levels. However, the reverse effect was observed with A2A R antagonists (ZM241385 and caffeine). Blocking the Gαq/PLC/DAG/IP3 pathway with neomycin, a PLC inhibitor did not affect the modulation of IP3 and [Ca2+]i levels in HEK 293-A2A R cells. To investigate the Gαi/AC/cAMP/PKA, HEK 293-A2A R cells pre-treated with pertussis toxin followed by forskolin in the presence of A2A R agonist (NECA) showed no effect on cAMP levels. Further, Gαs/AC/cAMP/PKA pathway was investigated to elucidate the role of cAMP-dependent PKA in IP3 mediated [Ca2+]i modulation. In the HEK 293-A2A R cells pre-treated with PKA inhibitor KT5720 and treated with NECA led to inhibit the IP3 and [Ca2+]i levels. The study distinctly demonstrated that A2A R modulates IP3 levels to release the [Ca2+]i via cAMP-dependent PKA. The role of A2A R mediated Gαs pathway inducing IP3 mediated [Ca2+]i release may open new avenues in the therapy of neurodegenerative disorder.


Subject(s)
Adenylyl Cyclases , Cyclic AMP , Humans , Cyclic AMP/metabolism , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , HEK293 Cells , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/pharmacology , Signal Transduction
12.
Sci Rep ; 12(1): 15972, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153364

ABSTRACT

Recently, academic and industrial scientific communities involved in kinetics-based drug development have become immensely interested in predicting the drug target residence time. Screening drug candidates in terms of their computationally predicted residence times, which is a measure of drug efficacy in vivo, and simultaneously assessing computational binding affinities are becoming inevitable. Non-equilibrium molecular simulation approaches are proven to be useful in this purpose. Here, we have implemented an optimized approach of combining the data derived from steered molecular dynamics simulations and the Bell-Evans model to predict the absolute residence times of the antagonist ZMA241385 and agonist NECA that target the A2A adenosine receptor of the G-protein-coupled receptor (GPCR) protein family. We have predicted the absolute ligand residence times on the timescale of seconds. However, our predictions were many folds shorter than those determined experimentally. Additionally, we calculated the thermodynamics of ligand binding in terms of ligand binding energies and the per-residue contribution of the receptor. Subsequently, binding pocket hotspot residues that would be important for further computational mutagenesis studies were identified. In the experiment, similar sets of residues were found to be in significant contact with both ligands under study. Our results build a strong foundation for further improvement of our approach by rationalizing the kinetics of ligand unbinding with the thermodynamics of ligand binding.


Subject(s)
Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Adenosine-5'-(N-ethylcarboxamide) , Kinetics , Ligands , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Receptors, Purinergic P1/metabolism
13.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897852

ABSTRACT

The adenosine A2A receptor (A2AAR) is a class A G-protein-coupled receptor (GPCR). It is an immune checkpoint in the tumor micro-environment and has become an emerging target for cancer treatment. In this study, we aimed to explore the effects of cancer-patient-derived A2AAR mutations on ligand binding and receptor functions. The wild-type A2AAR and 15 mutants identified by Genomic Data Commons (GDC) in human cancers were expressed in HEK293T cells. Firstly, we found that the binding affinity for agonist NECA was decreased in six mutants but increased for the V275A mutant. Mutations A165V and A265V decreased the binding affinity for antagonist ZM241385. Secondly, we found that the potency of NECA (EC50) in an impedance-based cell-morphology assay was mostly correlated with the binding affinity for the different mutants. Moreover, S132L and H278N were found to shift the A2AAR towards the inactive state. Importantly, we found that ZM241385 could not inhibit the activation of V275A and P285L stimulated by NECA. Taken together, the cancer-associated mutations of A2AAR modulated ligand binding and receptor functions. This study provides fundamental insights into the structure-activity relationship of the A2AAR and provides insights for A2AAR-related personalized treatment in cancer.


Subject(s)
Adenosine , Neoplasms , Adenosine/pharmacology , Adenosine-5'-(N-ethylcarboxamide) , HEK293 Cells , Humans , Ligands , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Tumor Microenvironment
14.
J Med Chem ; 65(5): 4367-4386, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35212542

ABSTRACT

In recent years, the adenosine A2A receptor (A2AR) has shown exciting progress in the development of immunotherapies for the treatment of cancer. Herein, a 2-amino-7,9-dihydro-8H-purin-8-one compound (1) was identified as an A2AR antagonist hit through in-house library screening. Extensive structure-activity relationship (SAR) studies led to the discovery of 2-aminopteridin-7(8H)-one derivatives, which showed high potencies on A2AR in the cAMP assay. Compound 57 stood out with an IC50 value of 8.3 ± 0.4 nM against A2AR at the 5'-N-ethylcarboxamidoadenosine (NECA) level of 40 nM. The antagonistic effect of 57 was sustained even at a higher NECA concentration of 1 µM, which mimicked the adenosine level in the tumor microenvironment (TME). Importantly, 57 enhanced T cell activation in both the IL-2 production assay and the cancer-cell-killing model, thus demonstrating its potential as a lead for developing novel A2AR antagonists in cancer immunotherapy.


Subject(s)
Adenosine A2 Receptor Antagonists , Neoplasms , Adenosine/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine-5'-(N-ethylcarboxamide) , Immunotherapy , Neoplasms/drug therapy , Receptor, Adenosine A2A
15.
Biomed Res Int ; 2021: 9979768, 2021.
Article in English | MEDLINE | ID: mdl-34258288

ABSTRACT

MATERIALS AND METHODS: Rat L6 skeletal muscle cells were cultured in 25 cm2 flasks. These differentiated cells were treated, and then, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (probe-based) was used to measure the relative mRNA expression level for metabolic, inflammatory, and nuclear receptor genes including peroxisome proliferator-activated receptor gamma (PGC-1α), carnitine palmitoyl transferase 1 beta (CPT1B), long-chain acyl-CoA de hydrogenase (LCAD), acetyl-CoA carboxylase beta (ACCß), pyruvate dehydrogenase kinase 4 (PDK4), hexokinase II (HKII), phosphofructokinase (PFK), interleukin-6 (IL-6), and nuclear receptor subfamily 4, group A (NR4A) at different treatment conditions. RESULTS: Adenosine-5'-N-ethyluronamide (NECA), a stable adenosine analogue, significantly stimulate inflammatory mediator (IL-6) (p < 0.001) and nuclear receptors (NR4A) (p < 0.05) and significantly modulate metabolic (PFK, LCAD, PGC-1α, and CPT1B) gene expressions in skeletal muscle cells (p < 0.05, p < 0.05, p < 0.001, and p < 0.01, respectively). This present study shows that there is a noteworthy crosstalk between NECA and insulin at various metabolic levels including glycolysis (HKII), fatty acid oxidation (ACCß), and insulin sensitivity (PDK4). CONCLUSIONS: A novel crosstalk between adenosine analogue and insulin has been demonstrated for the first time; evidence has been gathered in vitro for the effects of NECA and insulin treatment on intracellular signaling pathways, in particular glycolysis and insulin sensitivity in skeletal muscle cells.


Subject(s)
Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Adenosine/analogs & derivatives , Insulin/metabolism , Muscle, Skeletal/cytology , Signal Transduction/drug effects , Acetyl-CoA Carboxylase/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Adenosine/metabolism , Animals , Carnitine O-Palmitoyltransferase/metabolism , Hexokinase/metabolism , Inflammation , Interleukin-6/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphofructokinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics
16.
Mol Hum Reprod ; 27(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-33993290

ABSTRACT

Extracellular ATP has been described to be involved in inflammatory cytokine production by human testicular peritubular cells (HTPCs). The ectonucleotidases ENTPD1 and NT5E degrade ATP and have been reported in rodent testicular peritubular cells. We hypothesized that if a similar situation exists in human testis, ATP metabolites may contribute to cytokine production. Indeed, ENTPD1 and NT5E were found in situ and in vitro in HTPCs. Malachite green assays confirmed enzyme activities in HTPCs. Pharmacological inhibition of ENTPD1 (by POM-1) significantly reduced pro-inflammatory cytokines evoked by ATP treatment, suggesting that metabolites of ATP, including adenosine, are likely involved. We focused on adenosine and detected three of the four known adenosine receptors in HTPCs. One, A2B, was also found in situ in peritubular cells of human testicular sections. The A2B agonist BAY60-6583 significantly elevated levels of IL6 and CXCL8, a result also obtained with adenosine and its analogue NECA. Results of siRNA-mediated A2B down-regulation support a role of this receptor. In mouse peritubular cells, in contrast to HTPCs, all four of the known adenosine receptors were detected; when challenged with adenosine, cytokine expression levels significantly increased. Organotypic short-term testis cultures yielded comparable results and indicate an overall pro-inflammatory action of adenosine in the mouse testis. If transferable to the in vivo situation, our results may implicate that interference with the generation of ATP metabolites or interference with adenosine receptors could reduce inflammatory events in the testis. These novel insights may provide new avenues for treatment of sterile inflammation in male subfertility and infertility.


Subject(s)
Adenosine/physiology , Testis/metabolism , 5'-Nucleotidase/metabolism , Adenosine/pharmacology , Adenosine Triphosphate/metabolism , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Adult , Aminopyridines/pharmacology , Animals , Apyrase/antagonists & inhibitors , Apyrase/physiology , Cells, Cultured , Cytokines/metabolism , GPI-Linked Proteins/metabolism , Humans , Infertility, Male/metabolism , Infertility, Male/therapy , Inflammation , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Receptor, Adenosine A2B/physiology , Receptors, Purinergic P1/analysis , Receptors, Purinergic P1/metabolism , Testis/cytology
17.
Int J Mol Sci ; 22(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802928

ABSTRACT

Blood platelets' adenosine receptors (AR) are considered to be a new target for the anti-platelet therapy. This idea is based on in vitro studies which show that signaling mediated by these receptors leads to a decreased platelet response to activating stimuli. In vivo evidence for the antithrombotic activity of AR agonists published to date were limited, however, to the usage of relatively high doses given in bolus. The present study was aimed at verifying if these substances used in lower doses in combination with inhibitors of P2Y12 could serve as components of dual anti-platelet therapy. We have found that a selective A2A agonist 2-hexynyl-5'-N-ethylcarboxamidoadenosine (HE-NECA) improved the anti-thrombotic properties of either cangrelor or prasugrel in the model of ferric chloride-induced experimental thrombosis in mice. Importantly, HE-NECA was effective not only when applied in bolus as other AR agonists in the up-to-date published studies, but also when given chronically. In vitro thrombus formation under flow conditions revealed that HE-NECA enhanced the ability of P2Y12 inhibitors to decrease fibrinogen content in thrombi, possibly resulting in their lower stability. Adenosine receptor agonists possess a certain hypotensive effect and an ability to increase the blood-brain barrier permeability. Therefore, the effects of anti-thrombotic doses of HE-NECA on blood pressure and the blood-brain barrier permeability in mice were tested. HE-NECA applied in bolus caused a significant hypotension in mice, but the effect was much lower when the substance was given in doses corresponding to that obtained by chronic administration. At the same time, no significant effect of HE-NECA was observed on the blood-brain barrier. We conclude that chronic administration of the A2A agonist can be considered a potential component of a dual antithrombotic therapy. However, due to the hypotensive effect of the substances, dosage and administration must be elaborated to minimize the side-effects. The total number of animals used in the experiments was 146.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Adenosine-5'-(N-ethylcarboxamide)/analogs & derivatives , Antithrombins/pharmacology , Fibrinogen/metabolism , Prasugrel Hydrochloride/pharmacology , Purinergic P1 Receptor Agonists/pharmacology , Thrombosis/metabolism , Adenosine Monophosphate/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Adult , Animals , Blood Pressure/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Chlorides , Diastole/drug effects , Female , Ferric Compounds , Humans , Laser-Doppler Flowmetry , Male , Mice, Inbred C57BL , Permeability/drug effects , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Systole/drug effects
18.
Biochem Biophys Res Commun ; 555: 19-25, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33812054

ABSTRACT

Adenosine is a purine nucleoside pivotal for homeostasis in cells and tissues. Stimulation of the adenosine receptors (AR) has been shown to regulate the nuclear orphan receptor 4A (NR4A1-3) family, resulting in attenuation of hyper-inflammatory responses in myeloid cells. The NR4A1-3 orphan receptors are early immediate response genes and transcriptional regulators of cell and tissue homeostasis. The signal transduction and transcriptional mechanism(s) of how AR-stimulation promotes NR4A expression in myeloid cells is unknown and is the focus of this study. We confirm that adenosine and the stable analogue, 5'-N-Ethylcarboxamidoadenosine (NECA), enhance NR4A1-3 expression in THP-1 cells. Pharmacological approaches identified that protein kinase D (PKD) mediates AR-stimulated NR4A expression in myeloid cells and reveals no involvement of PKA nor PKC. The role of NF-κB, a principal regulator of NR4A expression in myeloid cells, was examined as a possible transcriptional regulator downstream of PKD. Utilising BAY11-7082 and MG-132, inhibitors of the respective ubiquitin and proteasome pathways essential for NF-κB activation, suggested a prospective role for NF-κB, or more specifically signalling via IKKα/ß. However, biological interventional studies using overexpression of IκBα in myeloid cells and MEF cells lacking IKKα and IKKß (IKKα/ß-/-) revealed the NF-κB pathway is not utilised in mediating AR-stimulated NR4A expression. Thus, this study contributes mechanistic insight into how AR signalling modulates the expression of NR4A receptors, pivotal regulators of inflammatory responses in myeloid cells.


Subject(s)
Myeloid Cells/metabolism , Orphan Nuclear Receptors/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Kinase C/metabolism , Receptors, Purinergic P1/metabolism , Adenosine/administration & dosage , Adenosine/metabolism , Adenosine/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/administration & dosage , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , DNA-Binding Proteins/metabolism , Humans , NF-kappa B/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/metabolism , THP-1 Cells , Ubiquitin/metabolism
19.
Neuromolecular Med ; 22(4): 542-556, 2020 12.
Article in English | MEDLINE | ID: mdl-32926328

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss in memory as one of the cardinal features. 5-N-ethyl carboxamidoadenosine (NECA), an agonist of adenosine-2b receptor, exerts neuroprotective activity against several experimental conditions. Further, NECA activates mitogen-activated protein kinase (MAPK) and also attenuates mitochondrial toxicity in mammalian tissues other than brain. Moreover, there is no report on the role of A2b/MAPK-mediated signaling pathway in Aß-induced mitochondrial toxicity in the brain of the experimental animals. Therefore, the present study evaluated the neuroprotective activity of NECA with or without MAPK inhibitor against Aß-induced cognitive deficit and mitochondrial toxicity in the experimental rodents. Further, the effect of NECA with or without MAPK inhibitor was evaluated on Aß-induced mitochondrial toxicity in the memory-sensitive mice brain regions. Intracerebroventricular (ICV) injection of Aß 1-42 was injected to healthy male mice through Hamilton syringe via polyethylene tube to induce AD-like behavioral manifestations. NECA attenuated Aß-induced cognitive impairments in the rodents. In addition, NECA ameliorated Aß-induced Aß accumulation and cholinergic dysfunction in the selected memory-sensitive mouse HIP, PFC, and AMY. Further, NECA significantly attenuated Aß-induced mitochondrial toxicity in terms of decrease in the mitochondrial function, integrity, and bioenergetics in the brain regions of these animals. However, MAPKI diminished the therapeutic effects of NECA on behavioral, biochemical, and molecular observations in AD-like animals. Therefore, it can be speculated that NECA exhibits neuroprotective activity perhaps through MAPK activation in AD-like rodents. Moreover, A2b-mediated MAPK activation could be a promising target in the management of AD.


Subject(s)
Adenosine A2 Receptor Agonists/therapeutic use , Adenosine-5'-(N-ethylcarboxamide)/therapeutic use , Alzheimer Disease , Amyloid beta-Peptides/toxicity , Brain/drug effects , Cognition Disorders/drug therapy , Mitochondria/drug effects , Nootropic Agents/therapeutic use , Peptide Fragments/toxicity , Adenosine A2 Receptor Agonists/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Amyloid beta-Peptides/administration & dosage , Animals , Brain/metabolism , Cognition Disorders/metabolism , Disease Models, Animal , Donepezil/therapeutic use , Drug Evaluation, Preclinical , Humans , Imidazoles/pharmacology , Injections, Intraventricular , Male , Maze Learning , Mice , Mitochondria/physiology , Morris Water Maze Test , Nootropic Agents/pharmacology , Peptide Fragments/administration & dosage , Pyridines/pharmacology , Random Allocation , Specific Pathogen-Free Organisms
20.
Cells ; 9(5)2020 05 18.
Article in English | MEDLINE | ID: mdl-32443448

ABSTRACT

Glutamate cytotoxicity is implicated in neuronal death in different neurological disorders including stroke, traumatic brain injury, and neurodegenerative diseases. Adenosine is a nucleoside that plays an important role in modulating neuronal activity and its receptors have been identified as promising therapeutic targets for glutamate cytotoxicity. The purpose of this study is to elucidate the role of adenosine and its receptors on glutamate-induced injury in PC12 cells and to verify the protective effect of the novel A1 adenosine receptor positive allosteric modulator, TRR469. Flow cytometry experiments to detect apoptosis revealed that adenosine has a dual role in glutamate cytotoxicity, with A2A and A2B adenosine receptor (AR) activation exacerbating and A1 AR activation improving glutamate-induced cell injury. The overall effect of endogenous adenosine in PC12 cells resulted in a facilitating action on glutamate cytotoxicity, as demonstrated by the use of adenosine deaminase and selective antagonists. However, enhancing the action of endogenous adenosine on A1ARs by TRR469 completely abrogated glutamate-mediated cell death, caspase 3/7 activation, ROS production, and mitochondrial membrane potential loss. Our results indicate a novel potential therapeutic strategy against glutamate cytotoxicity based on the positive allosteric modulation of A1ARs.


Subject(s)
Adenosine/pharmacology , Glutamic Acid/toxicity , Neuroprotection/drug effects , Receptor, Adenosine A1/metabolism , Adenosine A1 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Allosteric Regulation/drug effects , Animals , Carbazoles/pharmacology , Caspases/metabolism , Cell Death/drug effects , Colforsin/pharmacology , Membrane Potential, Mitochondrial/drug effects , PC12 Cells , Piperazines/pharmacology , Pyrroles/pharmacology , Quinazolines/pharmacology , Rats , Reactive Oxygen Species/metabolism , Receptors, Adenosine A2/metabolism , Thiophenes/pharmacology , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...