Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.913
Filter
1.
Front Immunol ; 15: 1382619, 2024.
Article in English | MEDLINE | ID: mdl-38779671

ABSTRACT

Introduction: Antibodies against the SARS-CoV-2 spike protein are a critical immune determinant for protection against the virus. While virus neutralization is a key function of spike-specific antibodies, antibodies also mediate Fc-dependent activities that can play a role in protection or pathogenesis. Methods: This study characterized serum antibody responses elicited after two doses of heterologous adenovirus-vectored (Ad26/ Ad5) vaccines. Results: Vaccine-induced antibody binding titers and Fc-mediated functions decreased over six months, while neutralization titers remained stable. Comparison of antibody isotypes elicited after Ad26/Ad5 vs. LNP-mRNA vaccination and after infection showed that anti-spike IgG1 were dominant and produced to high levels in all groups. The Ad26/Ad5 vaccines also induced IgG4 but not IgG2 and IgG3, whereas the LNP-mRNA vaccines elicited a full Ig spectrum (IgM, IgG1-4, IgA1-2). Convalescent COVID-19 patients had mainly IgM and IgA1 alongside IgG1. Despite these differences, the neutralization potencies against early variants were similar. However, both vaccine groups had antibodies with greater Fc potencies of binding complement and Fcg receptors than the COVID-19 group. The Ad26/Ad5 group also displayed a greater potency of RBD-specific antibody-mediated cellular phagocytosis. Discussion: Antibodies with distinctive quality were induced by different vaccines and infection. The data imply the utility of different vaccine platforms to elicit antibody responses with fine-tuned Fc activities.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , Immunoglobulin G/immunology , Immunoglobulin G/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Male , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/genetics , Ad26COVS1/immunology , Adult , Middle Aged , Adenoviridae/immunology , Adenoviridae/genetics , Genetic Vectors , Immunoglobulin A/immunology , Immunoglobulin A/blood
2.
Biol Pharm Bull ; 47(5): 886-894, 2024.
Article in English | MEDLINE | ID: mdl-38692864

ABSTRACT

The number of patients with lifestyle-related diseases such as type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has continued to increase worldwide. Therefore, development of innovative therapeutic methods targeting lifestyle-related diseases is required. Gene therapy has attracted considerable attention as an advanced medical treatment. Safe and high-performance vectors are essential for the practical application of gene therapy. Replication-incompetent adenovirus (Ad) vectors are widely used in clinical gene therapy and basic research. Here, we developed a novel Ad vector, named Ad-E4-122aT, exhibiting higher and longer-term transgene expression and lower hepatotoxicity than conventional Ad vectors. We also elucidated the mechanisms underlying Ad vector-induced hepatotoxicity during the early phase using Ad-E4-122aT. Next, we examined the therapeutic effects of the genes of interest, namely zinc finger AN1-type domain 3 (ZFAND3), lipoprotein lipase (LPL), and lysophospholipid acyltransferase 10 (LPLAT10), on lifestyle-related diseases using Ad-E4-122aT. We showed that the overexpression of ZFAND3 in the liver improved glucose tolerance and insulin resistance. Liver-specific LPL overexpression suppressed hepatic lipid accumulation and improved glucose metabolism. LPLAT10 overexpression in the liver suppressed postprandial hyperglycemia by increasing glucose-stimulated insulin secretion. Furthermore, we also focused on foods to advance research on the pathophysiology and treatment of lifestyle-related diseases. Cranberry and calamondin, which are promising functional foods, attenuated the progression of MASLD/NAFLD. Our findings will aid the development of new therapeutic methods, including gene therapy, for lifestyle-related diseases such as T2DM and MASLD/NAFLD.


Subject(s)
Adenoviridae , Diabetes Mellitus, Type 2 , Genetic Therapy , Genetic Vectors , Life Style , Genetic Vectors/administration & dosage , Adenoviridae/genetics , Genetic Therapy/methods , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Animals , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/genetics , Liver/metabolism , Insulin Resistance
3.
Front Immunol ; 15: 1374486, 2024.
Article in English | MEDLINE | ID: mdl-38745651

ABSTRACT

A universal recombinant adenovirus type-5 (Ad5) vaccine against COVID19 (Ad-US) was constructed, and immunogenicity and broad-spectrum of Ad5-US were evaluated with both intranasal and intramuscular immunization routes. The humoral immune response of Ad5-US in serum and bronchoalveolar lavage fluid were evaluated by the enzyme-linked immunosorbent assay (ELISA), recombinant vesicular stomatitis virus based pseudovirus neutralization assay, and angiotensin-converting enzyme-2 (ACE2) -binding inhibition assay. The cellular immune response and Th1/Th2 biased immune response of Ad5-US were evaluated by the IFN-γ ELISpot assay, intracellular cytokine staining, and Meso Scale Discovery (MSD) profiling of Th1/Th2 cytokines. Intramuscular priming followed by an intranasal booster with Ad5-US elicited the broad-spectrum and high levels of IgG, IgA, pseudovirus neutralizing antibody (PNAb), and Th1-skewing of the T-cell response. Overall, the adenovirus type-5 vectored universal SARS-CoV-2 vaccine Ad5-US was successfully constructed, and Ad5-US was highly immunogenic and broad spectrum. Intramuscular priming followed by an intranasal booster with Ad5-US induced the high and broad spectrum systemic immune responses and local mucosal immune responses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Genetic Vectors , SARS-CoV-2 , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Humans , Female , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Adenoviridae/genetics , Adenoviridae/immunology , Mice, Inbred BALB C , Administration, Intranasal , Injections, Intramuscular , Immunity, Humoral , Cytokines/metabolism , Immunity, Cellular
4.
J Immunother Cancer ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38719544

ABSTRACT

OBJECTIVE: To evaluate the safety and preliminary efficacy of YSCH-01 (Recombinant L-IFN adenovirus) in subjects with advanced solid tumors. METHODS: In this single-center, open-label, investigator-initiated trial of YSCH-01, 14 patients with advanced solid tumors were enrolled. The study consisted of two distinct phases: (1) the dose escalation phase and (2) the dose expansion phase; with three dose groups in the dose escalation phase based on dose levels (5.0×109 viral particles (VP)/subject, 5.0×1010 VP/subject, and 5.0×1011 VP/subject). Subjects were administered YSCH-01 injection via intratumoral injections. The safety was assessed using National Cancer Institute Common Terminology Criteria for Adverse Events V.5.0, and the efficacy evaluation was performed using Response Evaluation Criteria in Solid Tumor V.1.1. RESULTS: 14 subjects were enrolled in the study, including 9 subjects in the dose escalation phase and 5 subjects in the dose expansion phase. Of the 13 subjects included in the full analysis set, 4 (30.8%) were men and 9 (69.2%) were women. The most common tumor type was lung cancer (38.5%, 5 subjects), followed by breast cancer (23.1%, 3 subjects) and melanoma (23.1%, 3 subjects). During the dose escalation phase, no subject experienced dose-limiting toxicities. The content of recombinant L-IFN adenovirus genome and recombinant L-IFN protein in blood showed no trend of significant intergroup changes. No significant change was observed in interleukin-6 and interferon-gamma. For 11 subjects evaluated for efficacy, the overall response rate with its 95% CI was 27.3% (6.02% to 60.97%) and the disease control rate with its 95% CI was 81.8% (48.22% to 97.72%). The median progression-free survival was 4.97 months, and the median overall survival was 8.62 months. In addition, a tendency of decrease in the sum of the diameters of target lesions was observed. For 13 subjects evaluated for safety, the overall incidence of adverse events (AEs) was 92.3%, the overall incidence of adverse drug reactions (ADRs) was 84.6%, and the overall incidence of >Grade 3 AEs was 7.7%, while no AEs/ADRs leading to death occurred. The most common AEs were fever (69.2%), nausea (30.8%), vomiting (30.8%), and hypophagia (23.1%). CONCLUSIONS: The study shows that YSCH-01 injections were safe and well tolerated and exhibited preliminary efficacy in patients with advanced solid tumors, supporting further investigation to evaluate its efficacy and safety. TRIAL REGISTRATION NUMBER: NCT05180851.


Subject(s)
Neoplasms , Adult , Aged , Female , Humans , Male , Middle Aged , Adenoviridae/genetics , Neoplasms/drug therapy , Oncolytic Virotherapy/methods , Oncolytic Virotherapy/adverse effects , Treatment Outcome
5.
Circ Cardiovasc Interv ; 17(5): e014054, 2024 May.
Article in English | MEDLINE | ID: mdl-38696284

ABSTRACT

BACKGROUND: XC001 is a novel adenoviral-5 vector designed to express multiple isoforms of VEGF (vascular endothelial growth factor) and more safely and potently induce angiogenesis. The EXACT trial (Epicardial Delivery of XC001 Gene Therapy for Refractory Angina Coronary Treatment) assessed the safety and preliminary efficacy of XC001 in patients with no option refractory angina. METHODS: In this single-arm, multicenter, open-label trial, 32 patients with no option refractory angina received a single treatment of XC001 (1×1011 viral particles) via transepicardial delivery. RESULTS: There were no severe adverse events attributed to the study drug. Twenty expected severe adverse events in 13 patients were related to the surgical procedure. Total exercise duration increased from a mean±SD of 359.9±105.55 seconds at baseline to 448.2±168.45 (3 months), 449.2±175.9 (6 months), and 477.6±174.7 (12 months; +88.3 [95% CI, 37.1-139.5], +84.5 [95% CI, 34.1-134.9], and +115.5 [95% CI, 59.1-171.9]). Total myocardial perfusion deficit on positron emission tomography imaging decreased by 10.2% (95% CI, -3.1% to 23.5%), 14.3% (95% CI, 2.8%-25.7%), and 10.2% (95% CI, -0.8% to -21.2%). Angina frequency decreased from a mean±SD 12.2±12.5 episodes to 5.2±7.2 (3 months), 5.1±7.8 (6 months), and 2.7±4.8 (12 months), with an average decrease of 7.7 (95% CI, 4.1-11.3), 6.6 (95% CI, 3.5-9.7), and 8.8 (4.6-13.0) episodes at 3, 6, and 12 months. Angina class improved in 81% of participants at 6 months. CONCLUSIONS: XC001 administered via transepicardial delivery is safe and generally well tolerated. Exploratory improvements in total exercise duration, ischemic burden, and subjective measures support a biologic effect sustained to 12 months, warranting further investigation. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04125732.


Subject(s)
Angina Pectoris , Genetic Therapy , Genetic Vectors , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A , Humans , Male , Female , Middle Aged , Angina Pectoris/therapy , Angina Pectoris/physiopathology , Genetic Therapy/adverse effects , Aged , Treatment Outcome , Vascular Endothelial Growth Factor A/genetics , Time Factors , Exercise Tolerance , Adenoviridae/genetics , Recovery of Function
6.
Eur J Pharm Biopharm ; 199: 114300, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697488

ABSTRACT

Triple-negative breast cancer (TNBC) is considered one of the most incurable malignancies due to its clinical characteristics, including high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Therefore, it remains a critical unmet medical need. On the other hand, poor delivery efficiency continues to reduce the efficacy of anti-cancer therapeutics developed against solid tumours using various strategies, such as genetically engineered oncolytic vectors used as nanocarriers. The study was designed to evaluate the anti-tumour efficacy of a novel combinatorial therapy based on oncolytic adenovirus AdV5/3-D24-ICOSL-CD40L with an anti-PD-1 (pembrolizumab) and paclitaxel (PTX). Here, we first tested the antineoplastic effect in two-dimensional (2D) and three-dimensional (3D) breast cancer models in MDA-MB-231, MDA-MB-468 and MCF-7 cells. Then, to further evaluate the efficacy of combinatorial therapy, including immunological aspects, we established a three-dimensional (3D) co-culture model based on MDA-MB-231 cells with peripheral blood mononuclear cells (PBMCs) to create an integrated system that more closely mimics the complexity of the tumour microenvironment and interacts with the immune system. Treatment with OV as a priming agent, followed by pembrolizumab and then paclitaxel, was the most effective in reducing the tumour volume in TNBC co-cultured spheroids. Further, T-cell phenotyping analyses revealed significantly increased infiltration of CD8+, CD4+ T and Tregs cells. Moreover, the observed anti-tumour effects positively correlated with the level of CD4+ T cell infiltrates, suggesting the development of anti-cancer immunity. Our study demonstrated that combining different immunotherapeutic agents (virus, pembrolizumab) with PTX reduced the tumour volume of the TNBC co-cultured spheroids compared to relevant controls. Importantly, sequential administration of the investigational agents (priming with the vector) further enhanced the anti-cancer efficacy in 3D culture over other groups tested. Taken together, these results support further evaluation of the virus in combination with anti-PD-1 and PTX for the treatment of triple-negative breast cancer patients. Importantly, further studies with in vivo models should be conducted to better understand the translational aspects of tested therapy.


Subject(s)
Adenoviridae , Antibodies, Monoclonal, Humanized , Oncolytic Virotherapy , Paclitaxel , Programmed Cell Death 1 Receptor , Triple Negative Breast Neoplasms , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Humans , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Female , Adenoviridae/genetics , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Oncolytic Virotherapy/methods , Cell Line, Tumor , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Oncolytic Viruses , MCF-7 Cells , Combined Modality Therapy/methods , Tumor Microenvironment/drug effects , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage
7.
Viruses ; 16(5)2024 04 23.
Article in English | MEDLINE | ID: mdl-38793540

ABSTRACT

Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications.


Subject(s)
Genetic Vectors , Recombination, Genetic , Genetic Vectors/genetics , Humans , Adenoviridae/genetics , Adenoviruses, Human/genetics , Animals , Gene Transfer Techniques , Adenoviruses, Simian/genetics , Cloning, Molecular/methods
8.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793642

ABSTRACT

Mouse adenoviruses (MAdV) play important roles in studying host-adenovirus interaction. However, easy-to-use reverse genetics systems are still lacking for MAdV. An infectious plasmid pKRMAV1 was constructed by ligating genomic DNA of wild-type MAdV-1 with a PCR product containing a plasmid backbone through Gibson assembly. A fragment was excised from pKRMAV1 by restriction digestion and used to generate intermediate plasmid pKMAV1-ER, which contained E3, fiber, E4, and E1 regions of MAdV-1. CMV promoter-controlled GFP expression cassette was inserted downstream of the pIX gene in pKMAV1-ER and then transferred to pKRMAV1 to generate adenoviral plasmid pKMAV1-IXCG. Replacement of transgene could be conveniently carried out between dual BstZ17I sites in pKMAV1-IXCG by restriction-assembly, and a series of adenoviral plasmids were generated. Recombinant viruses were rescued after transfecting linearized adenoviral plasmids to mouse NIH/3T3 cells. MAdV-1 viruses carrying GFP or firefly luciferase genes were characterized in gene transduction, plaque-forming, and replication in vitro or in vivo by observing the expression of reporter genes. The results indicated that replication-competent vectors presented relevant properties of wild-type MAdV-1 very well. By constructing viruses bearing exogenous fragments with increasing size, it was found that MAdV-1 could tolerate an insertion up to 3.3 kb. Collectively, a replication-competent MAdV-1 vector system was established, which simplified procedures for the change of transgene or modification of E1, fiber, E3, or E4 genes.


Subject(s)
Genetic Vectors , Plasmids , Virus Replication , Animals , Mice , Genetic Vectors/genetics , Plasmids/genetics , Adenoviridae/genetics , NIH 3T3 Cells , Cloning, Molecular , Genes, Reporter
9.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793651

ABSTRACT

Numerous human adenovirus (AdV) types are endowed with arginine-glycine-aspartic acid (RGD) sequences that enable them to recognize vitronectin-binding (αv) integrins. These RGD-binding cell receptors mediate AdV entry into host cells, a crucial early step in virus infection. Integrin interactions with adenoviruses not only initiate receptor-mediated endocytosis but also facilitate AdV capsid disassembly, a prerequisite for membrane penetration by AdV protein VI. This review discusses fundamental aspects of AdV-host interactions mediated by integrins. Recent efforts to re-engineer AdV vectors and non-viral nanoparticles to target αv integrins for bioimaging and the eradication of cancer cells will also be discussed.


Subject(s)
Genetic Therapy , Integrins , Virus Internalization , Humans , Genetic Therapy/methods , Integrins/metabolism , Genetic Vectors/genetics , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , Adenoviridae/genetics , Adenoviridae/physiology , Animals , Receptors, Virus/metabolism , Neoplasms/therapy , Neoplasms/virology , Integrin alphaV/metabolism , Integrin alphaV/genetics , Oligopeptides
10.
Mol Med Rep ; 30(1)2024 07.
Article in English | MEDLINE | ID: mdl-38757346

ABSTRACT

Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad­siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad­siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT­caspase­3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad­siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad­siERCC1 on ovarian cancers in vivo.


Subject(s)
Adenoviridae , Apoptosis , Cell Proliferation , Cisplatin , DNA-Binding Proteins , Endonucleases , Oncolytic Virotherapy , Oncolytic Viruses , Ovarian Neoplasms , RNA, Small Interfering , Humans , Female , Ovarian Neoplasms/therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Adenoviridae/genetics , Cell Line, Tumor , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Apoptosis/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Movement/genetics , Drug Resistance, Neoplasm/genetics , Genetic Vectors/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
11.
J Immunol Methods ; 529: 113680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703946

ABSTRACT

AIM: Quality control testing of the vaccine for lot release is of paramount importance in public health. A recent pandemic caused by the SARS-CoV-2 virus brought together all spheres of vaccine to combat the virus. The scientific advancement in the development of vaccines facilitated the scientists to develop the vaccine against SARS-CoV-2 in a record time. Thus, these vaccines should be stringently monitored for their safety and efficacy as per the latest WHO and national regulatory guidelines, and quality control evaluation of the product should be done at national control laboratories before releasing the product into the market as it assures the quality and safety of the vaccine. METHODS: The SARS-CoV-2 exploited the ACE2 (Angiotensin Converting Enzyme 2) receptor, a surface protein on mammalian cells to gain entry into the host cells. The viral surface protein that interacted with the ACE2 receptor is the Spike protein of SARS-CoV-2. Thus, in the development of the vaccine and assessing its quality, the Spike protein of SARS-CoV-2 became an attractive immunodominant antigen. In National Institute of Biologicals, an apex body in the testing of biologicals in India, received the Adenovector (Adenovirus + vector) based COVID-19 vaccine, a finished product for quality evaluation. Due to the lack of a pharmacopeial monograph, the testing of the vaccine was done as per the manufacturer's specifications and methods. The routine assays of identification employed by the manufacturer do not reflect the expression of Spike protein which is required for the immune system to get activated. In this report, we showed the determination of Spike protein expression by immunoblotting and immunofluorescence for identification parameters in the quality testing of the COVID-19 vaccine. We determined the translation of the SARS-CoV-2 Spike gene cloned into an Adenovector. RESULTS: The results from these experiments indicated the expression of Spike protein upon infection of mammalian cells with viral particles suggested that the expression of immunodominant Spike protein of SARS-CoV-2 may be employed by quality control laboratories as a parameter for identification. CONCLUSION: The study suggested that the determination of the expression of Spike protein is pertinent to identifying the Adenovector based vaccines against COVID-19.


Subject(s)
COVID-19 Vaccines , Quality Control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , Humans , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , HEK293 Cells , Genetic Vectors , Adenoviridae/immunology , Adenoviridae/genetics , Animals
12.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38714444

ABSTRACT

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Subject(s)
Adenoviridae , Administration, Intranasal , Antibodies, Viral , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Viral Matrix Proteins , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Adenoviridae/genetics , Adenoviridae/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Vaccine Efficacy , Nucleoproteins/immunology , Nucleoproteins/genetics , Viral Core Proteins/immunology , Viral Core Proteins/genetics , Injections, Intramuscular , Viroporin Proteins
13.
Virus Res ; 345: 199398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754786

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne nairovirus with a wide geographic spread that can cause severe and lethal disease. No specific medical countermeasures are approved to combat this illness. The CCHFV L protein contains an ovarian tumor (OTU) domain with a cysteine protease thought to modulate cellular immune responses by removing ubiquitin and ISG15 post-translational modifications from host and viral proteins. Viral deubiquitinases like CCHFV OTU are attractive drug targets, as blocking their activity may enhance cellular immune responses to infection, and potentially inhibit viral replication itself. We previously demonstrated that the engineered ubiquitin variant CC4 is a potent inhibitor of CCHFV replication in vitro. A major challenge of the therapeutic use of small protein inhibitors such as CC4 is their requirement for intracellular delivery, e.g., by viral vectors. In this study, we examined the feasibility of in vivo CC4 delivery by a replication-deficient recombinant adenovirus (Ad-CC4) in a lethal CCHFV mouse model. Since the liver is a primary target of CCHFV infection, we aimed to optimize delivery to this organ by comparing intravenous (tail vein) and intraperitoneal injection of Ad-CC4. While tail vein injection is a traditional route for adenovirus delivery, in our hands intraperitoneal injection resulted in higher and more widespread levels of adenovirus genome in tissues, including, as intended, the liver. However, despite promising in vitro results, neither route of in vivo CC4 treatment resulted in protection from a lethal CCHFV infection.


Subject(s)
Adenoviridae , Disease Models, Animal , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Virus Replication , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/virology , Mice , Adenoviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Genetic Vectors/genetics , Antiviral Agents/pharmacology , Female , Liver/virology , Humans
14.
Front Immunol ; 15: 1369436, 2024.
Article in English | MEDLINE | ID: mdl-38629062

ABSTRACT

Adenovirus vaccines, particularly the COVID-19 Ad5-nCoV adenovirus vaccine, have emerged as promising tools in the fight against infectious diseases. In this study, we investigated the structure of the T cell response to the Spike protein of the SARS-CoV-2 virus used in the COVID-19 Ad5-nCoV adenoviral vaccine in a phase 3 clinical trial (NCT04540419). In 69 participants, we collected peripheral blood samples at four time points after vaccination or placebo injection. Sequencing of T cell receptor repertoires from Spike-stimulated T cell cultures at day 14 from 17 vaccinated revealed a more diverse CD4+ T cell repertoire compared to CD8+. Nevertheless, CD8+ clonotypes accounted for more than half of the Spike-specific repertoire. Our longitudinal analysis showed a peak T cell response at day 14, followed by a decline until month 6. Remarkably, multiple T cell clonotypes persisted for at least 6 months after vaccination, as demonstrated by ex vivo stimulation. Examination of CDR3 regions revealed homologous sequences in both CD4+ and CD8+ clonotypes, with major CD8+ clonotypes sharing high similarity with annotated sequences specific for the NYNYLYRLF peptide, suggesting potential immunodominance. In conclusion, our study demonstrates the immunogenicity of the Ad5-nCoV adenoviral vaccine and highlights its ability to induce robust and durable T cell responses. These findings provide valuable insight into the efficacy of the vaccine against COVID-19 and provide critical information for ongoing efforts to control infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Vaccines , Humans , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus , COVID-19/prevention & control , SARS-CoV-2 , T-Lymphocytes , Adenoviridae/genetics
15.
Acta Med Okayama ; 78(2): 151-161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38688833

ABSTRACT

Soft-tissue sarcoma (STS) is a heterogeneous group of rare tumors originating predominantly from the embryonic mesoderm. Despite the development of combined modalities including radiotherapy, STSs are often refractory to antitumor modalities, and novel strategies that improve the prognosis of STS patients are needed. We previously demonstrated the therapeutic potential of two telomerase-specific replication-competent oncolytic adenoviruses, OBP-301 and tumor suppressor p53-armed OBP-702, in human STS cells. Here, we demonstrate in vitro and in vivo antitumor effects of OBP-702 in combination with ionizing radiation against human STS cells (HT1080, NMS-2, SYO-1). OBP-702 synergistically promoted the antitumor effect of ionizing radiation in the STS cells by suppressing the expression of B-cell lymphoma-X large (BCL-xL) and enhancing ionizing radiation-induced apoptosis. The in vivo experiments demonstrated that this combination therapy significantly suppressed STS tumors' growth. Our results suggest that OBP-702 is a promising antitumor reagent for promoting the radiosensitivity of STS tumors.


Subject(s)
Oncolytic Virotherapy , Radiation Tolerance , Sarcoma , Tumor Suppressor Protein p53 , bcl-X Protein , Sarcoma/therapy , Sarcoma/radiotherapy , Humans , Oncolytic Virotherapy/methods , bcl-X Protein/genetics , bcl-X Protein/metabolism , Cell Line, Tumor , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mice , Apoptosis , Adenoviridae/genetics
16.
Viruses ; 16(4)2024 04 05.
Article in English | MEDLINE | ID: mdl-38675909

ABSTRACT

Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.


Subject(s)
Adenoviridae , Breast Neoplasms , Drug Resistance, Neoplasm , Neoplastic Stem Cells , Oncolytic Virotherapy , Oncolytic Viruses , Paclitaxel , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Paclitaxel/pharmacology , Adenoviridae/genetics , Adenoviridae/physiology , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , Oncolytic Virotherapy/methods , Female , Cell Line, Tumor , Animals , Mice , Symporters/metabolism , Symporters/genetics , Genetic Vectors/genetics
17.
Regul Toxicol Pharmacol ; 149: 105617, 2024 May.
Article in English | MEDLINE | ID: mdl-38561146

ABSTRACT

Accumulating evidence has shown that the abnormal toxicity test (ATT) is not suitable as a quality control batch release test for biologics and vaccines. The purpose of the current study was to explore the optimal ATT experimental design for an adenoviral vector-based vaccine product to avoid false positive results following the standard test conditions stipulated in the Pharmacopoeias. ATT were conducted in both mice and guinea pigs based on methods in Pharmacopeias, with modifications to assess effects of dose volume and amount of virus particles (VPs). The results showed intraperitoneal (IP) dosing at human relevant dose and volume (i.e., VPs), as required by pharmacopeia study design, resulted in false positive findings not associated with extraneous contaminants of a product. Considering many gene therapy products use adeno associated virus as the platform for transgene delivery, data from this study are highly relevant in providing convincing evidence to show the ATT is inappropriate as batch release test for biologics, vaccine and gene therapy products. In conclusion, ATT, which requires unnecessary animal usage and competes for resources which otherwise can be spent on innovative medicine research, should be deleted permanently as batch release test by regulatory authorities around the world.


Subject(s)
Genetic Vectors , Toxicity Tests , Animals , Guinea Pigs , Toxicity Tests/methods , Mice , False Positive Reactions , Female , Adenoviridae/genetics , Male , Vaccines
18.
J Med Virol ; 96(4): e29618, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639293

ABSTRACT

Human adenovirus (HAdV) is a significant viral pathogen causing severe acute respiratory infections (SARIs) in children. To improve the understanding of type distribution and viral genetic characterization of HAdV in severe cases, this study enrolled 3404 pediatric SARI cases from eight provinces of China spanning 2017-2021, resulting in the acquisition of 112 HAdV strains. HAdV-type identification, based on three target genes (penton base, hexon, and fiber), confirmed the diversity of HAdV types in SARI cases. Twelve types were identified, including species B (HAdV-3, 7, 55), species C (HAdV-1, 2, 6, 89, 108, P89H5F5, Px1/Ps3H1F1, Px1/Ps3H5F5), and E (HAdV-4). Among these, HAdV-3 exhibited the highest detection rate (44.6%), followed by HAdV-7 (19.6%), HAdV-1 (12.5%), and HAdV-108 (9.8%). All HAdV-3, 7, 55, 4 in this study belonged to dominant lineages circulating worldwide, and the sequences of the three genes demonstrated significant conservation and stability. Concerning HAdV-C, excluding the novel type Px1/Ps3H1F1 found in this study, the other seven types were detected both in China and abroad, with HAdV-1 and HAdV-108 considered the two main types of HAdV-C prevalent in China. Two recombinant strains, including P89H5F5 and Px1/Ps3H1F1, could cause SARI as a single pathogen, warranting close monitoring and investigation for potential public health implications. In conclusion, 5 years of SARI surveillance in China provided crucial insights into HAdV-associated respiratory infections among hospitalized pediatric patients.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Child , Humans , Adenoviruses, Human/genetics , Sequence Analysis, DNA/methods , Phylogeny , Adenoviridae/genetics , China/epidemiology , Respiratory Tract Infections/epidemiology
19.
Avian Dis ; 68(1): 38-42, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687106

ABSTRACT

High mortality in great cormorants (Phalacrocorax carbo) was registered on the Alakol Lake in eastern Kazakhstan in 2021 when about 20% of juveniles died. High-throughput sequencing revealed the presence of a putative novel cormorant adenovirus significantly divergent from known aviadenoviruses. We suggest that this cormorant adenovirus can be considered an emerging threat to the health and conservation of this species.


Aislamiento y caracterización genética de un nuevo adenovirus asociado con la mortalidad masiva en cormoranes grandes (Phalacrocorax carbo). En 2021 se registró una alta mortalidad de cormoranes grandes (Phalacrocorax carbo) en el lago Alakol, en el este de Kazajstán, cuando murieron alrededor del 20% de las aves jóvenes. La secuenciación de alto rendimiento reveló la presencia de un supuesto nuevo adenovirus de cormorán significativamente divergente de los aviadenovirus conocidos. Sugerimos que este adenovirus de cormorán puede considerarse una amenaza emergente para la salud y conservación de esta especie.


Subject(s)
Adenoviridae Infections , Bird Diseases , Birds , Phylogeny , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Bird Diseases/virology , Bird Diseases/mortality , Kazakhstan , Birds/virology , Adenoviridae/isolation & purification , Adenoviridae/genetics
20.
J Med Virol ; 96(4): e29615, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628102

ABSTRACT

Human adenovirus (HAdV) is one of the causative viruses of acute gastroenteritis (AGE) in children worldwide. Species F is known to be enteric adenovirus (genotypes 40 and 41) detected in stool samples. In Japan, we conducted an epidemiological study and molecular characterization of HAdV before and after the COVID-19 pandemic from 2017 to 2023. Among 821 patients, HAdV was detected in 118 AGE cases (14.4%). During a period of 6 years, the HAdV detection rates for each year were relatively low at 3.7% and 0%, in 2017-2018, and 2020-2021, respectively. However, the detection rate increased to remarkably high rates, ranging from 13.3% to 27.3% in the other 4-year periods. Of these HAdV-positive strains, 83.1% were F41 genotypes and 16.9% were other genotypes (A31, B3, C1, C2/C6, and C5). Phylogenetic analyses of the nucleotide and deduced amino acid sequences of the full-length hexon gene demonstrated that HAdV-F41 strains were comprised of three clades, and each clade was distributed across the study period from 2017 to 2023. Analysis of deduced amino acid sequences of the hexon gene of the representative HAdV-F41 strains from each clade revealed numerous amino acid substitutions across hypervariable regions (HVRs) from HVR-1 to HVR-7, two insertions in HVR-1 and HVR-7, and two deletions in HVR-1 and HVR-2 of the hexon gene compared to those of the prototype strain, particularly, those of clade 3 HAdV-F41 strains. The findings suggested that the HAdV-F41 of each clade was stable, conserved, and co-circulated for over two decades in Japan.


Subject(s)
Adenoviridae Infections , Adenovirus Infections, Human , Adenoviruses, Human , Gastroenteritis , Child , Humans , Adenoviridae/genetics , Japan/epidemiology , Phylogeny , Pandemics , Sequence Analysis, DNA , Adenoviruses, Human/genetics , Adenoviridae Infections/epidemiology , Gastroenteritis/epidemiology , Adenovirus Infections, Human/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...