Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 851
Filter
1.
BMC Infect Dis ; 24(1): 538, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811902

ABSTRACT

Human adenoviruses (HAdVs) are a diverse group of viruses associated with respiratory infections in humans worldwide. However, there is a lack of research on the genetic diversity and epidemiology of HAdVs in Pakistan. This study characterized HAdVs in pediatric patients with respiratory tract infections in Karachi, Pakistan, between 2022 and 2023. We analyzed 762 nasopharyngeal samples of children ≤ 5 years. DNA extraction, followed by PCR targeting E2B and hexon genes, was carried out. Data analysis was performed on SPSS 25.0, and phylogenetic analysis of hexon gene was performed on MEGA 11. HAdV was detected in 7.34% (56/762) of patients round the year, but at a significantly higher rate during the winter season. Age was insignificantly associated with HAdV incidence (p = 0.662), but more than 62.5% (35/56) of positive cases were younger than 10 months. The circulating HAdVs were identified as six different types from species B (78.57%) and C (21.42%), with the majority of isolates found to be like B3. HAdV was found to be co-infected with bocavirus (5.4%) and measles (7.14%). These findings revealed a high frequency and genetic diversity of respiratory HAdVs in Karachi, Pakistan. We conclude that periodic and continuous surveillance of adenoviruses and other respiratory pathogens is necessary to improve the prognosis and management of respiratory diseases, thereby reducing the child mortality rate in Pakistan.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Phylogeny , Respiratory Tract Infections , Humans , Pakistan/epidemiology , Adenoviruses, Human/genetics , Adenoviruses, Human/classification , Adenoviruses, Human/isolation & purification , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Child, Preschool , Infant , Male , Female , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Nasopharynx/virology , Genetic Variation , Infant, Newborn , Coinfection/virology , Coinfection/epidemiology , DNA, Viral/genetics , Seasons , Genotype
2.
Virol J ; 21(1): 110, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745209

ABSTRACT

BACKGROUND: Severe pneumonia is one of the most important causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Adenovirus (ADV) is a significant cause of severe viral pneumonia after allo-HSCT, and we aimed to identify the clinical manifestations, prognostic factors, and outcomes of ADV pneumonia after allo-HSCT. METHODS: Twenty-nine patients who underwent allo-HSCT at the Peking University Institute of Hematology and who experienced ADV pneumonia after allo-HSCT were enrolled in this study. The Kaplan-Meier method was used to estimate the probability of overall survival (OS). Potential prognostic factors for 100-day OS after ADV pneumonia were evaluated through univariate and multivariate Cox regression analyses. RESULTS: The incidence rate of ADV pneumonia after allo-HSCT was approximately 0.71%. The median time from allo-HSCT to the occurrence of ADV pneumonia was 99 days (range 17-609 days). The most common clinical manifestations were fever (86.2%), cough (34.5%) and dyspnea (31.0%). The 100-day probabilities of ADV-related mortality and OS were 40.4% (95% CI 21.1%-59.7%) and 40.5% (95% CI 25.2%-64.9%), respectively. Patients with low-level ADV DNAemia had lower ADV-related mortality and better OS than did those with high-level (≥ 106 copies/ml in plasma) ADV DNAemia. According to the multivariate analysis, high-level ADV DNAemia was the only risk factor for intensive care unit admission, invasive mechanical ventilation, ADV-related mortality, and OS after ADV pneumonia. CONCLUSIONS: We first reported the prognostic factors and confirmed the poor outcomes of patients with ADV pneumonia after allo-HSCT. Patients with high-level ADV DNAemia should receive immediate and intensive therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Pneumonia, Viral , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Adult , Middle Aged , Prognosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Young Adult , Adolescent , Transplantation, Homologous/adverse effects , Adenoviridae Infections/mortality , Risk Factors , Retrospective Studies , Adenoviridae , Treatment Outcome , Incidence , Adenovirus Infections, Human/mortality , Adenovirus Infections, Human/virology
4.
BMC Infect Dis ; 24(1): 478, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724898

ABSTRACT

PURPOSE: Human adenoviruses (HAdVs) have always been suggested as one of the main causes of gastroenteritis in children. However, no comprehensive report on the global epidemiology of these viruses in pediatric gastroenteritis is available. METHODS: A systematic search was conducted to obtain published papers from 2003 to 2023 in three main databases PubMed, Scopus, and Web of Science. RESULTS: The estimated global pooled prevalence of HAdV infection in children with gastroenteritis was 10% (95% CI: 9-11%), with a growing trend after 2010. The highest prevalence was observed in Africa (20%, 95% CI: 14-26%). The prevalence was higher in inpatients (11%; 95% CI: 8-13%) and patients aged 5 years old and younger (9%; 95% CI: 7-10%). However, no significant difference was observed between male and female patients (P = 0.63). The most prevalent species was found to be the species F (57%; 95% CI: 41-72%). The most common HAdVs observed in children with gastroenteritis were types 40/41, 38, and 2. Analysis of case-control studies showed an association between HAdV and gastroenteritis in children (OR: 2.28, 95% CI; 1.51-3.44). CONCLUSION: This study provided valuable insights into the importance of HAdVs in children with gastroenteritis, especially in hospitalized and younger children. The results can be used in future preventive measurements and the development of effective vaccines.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Gastroenteritis , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Adenoviruses, Human/isolation & purification , Adenoviruses, Human/classification , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Child, Preschool , Child , Infant , Prevalence , Female , Male
5.
BMC Infect Dis ; 24(1): 430, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649842

ABSTRACT

BACKGROUND: Adenovirus (ADV) is a prevalent infective virus in children, accounting for around 5-10% of all cases of acute respiratory illnesses and 4-15% of pneumonia cases in children younger than five years old. Without treatment, severe ADV pneumonia could result in fatality rates of over 50% in cases of emerging strains or disseminated disease. This study aims to uncover the relationship of clinical indicators with primary ADV infection severity, regarding duration of hospitalization and liver injury. METHODS: In this retrospective study, we collected and analyzed the medical records of 1151 in-patients who met the inclusion and exclusion criteria. According to duration of hospitalization, all patients were divided into three groups. Then the difference and correlation of clinical indicators with ADV infection were analyzed, and the relationship among liver injury, immune cells and cytokines was evaluated. RESULTS: The study revealed that patients with a duration of hospitalization exceeding 14 days had the highest percentage of abnormalities across most indicators. This was in contrast to the patients with a hospitalization duration of either less than or equal to 7 days or between 7 and 14 days. Furthermore, correlation analysis indicated that a longer duration of body temperature of ≥ 39°C, bilateral lung lobes infiltration detected by X ray, abnormal levels of AST, PaO2, and SPO2, and a lower age were all predictive of longer hospital stays. Furthermore, an elevated AST level and reduced liver synthesis capacity were related with a longer hospital stay and higher ADV copy number. Additionally, AST/ALT was correlated positively with IFN-γ level and IFN-γ level was only correlated positively with CD4+ T cells. CONCLUSIONS: The study provided a set of predicting indicators for longer duration of hospitalization, which responded for primary severe ADV infection, and elucidated the possible reason for prolonged duration of hospitalization attributing to liver injury via higher ADV copy number, IFN-γ and CD4+ T cells, which suggested the importance of IFN-γ level and liver function monitoring for the patients with primary severe ADV infection.


Subject(s)
Length of Stay , Humans , Male , Female , Retrospective Studies , Child, Preschool , Infant , Length of Stay/statistics & numerical data , Severity of Illness Index , Hospitalization/statistics & numerical data , Adenovirus Infections, Human/virology , Child , Liver/pathology , Liver/virology , Adenoviridae Infections
6.
Biomed Pharmacother ; 174: 116558, 2024 May.
Article in English | MEDLINE | ID: mdl-38603887

ABSTRACT

Human adenovirus (HAdV) infection is a major cause of respiratory disease, yet no antiviral drugs have been approved for its treatment. Herein, we evaluated the antiviral and anti-inflammatory effects of cyclin-dependent protein kinase (CDK) inhibitor indirubin-3'-monoxime (IM) against HAdV infection in cells and a transgenic mouse model. After evaluating its cytotoxicity, cytopathic effect reduction, antiviral replication kinetics, and viral yield reduction assays were performed to assess the anti-HAdV activity of IM. Quantitative real-time polymerase chain reaction (qPCR), quantitative reverse transcription PCR (qRT-PCR), and western blotting were used to assess the effects of IM on HAdV DNA replication, transcription, and protein expression, respectively. IM significantly inhibited HAdV DNA replication as well as E1A and Hexon transcription, in addition to significantly suppressing the phosphorylation of the RNA polymerase II C-terminal domain (CTD). IM mitigated body weight loss, reduced viral burden, and lung injury, decreasing cytokine and chemokine secretion to a greater extent than cidofovir. Altogether, IM inhibits HAdV replication by downregulating CTD phosphorylation to suppress viral infection and corresponding innate immune reactions as a promising therapeutic agent.


Subject(s)
Adenoviruses, Human , Anti-Inflammatory Agents , Antiviral Agents , Indoles , Oximes , Virus Replication , Indoles/pharmacology , Animals , Oximes/pharmacology , Humans , Antiviral Agents/pharmacology , Adenoviruses, Human/drug effects , Virus Replication/drug effects , Anti-Inflammatory Agents/pharmacology , Mice , Mice, Transgenic , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/virology , A549 Cells , Cytokines/metabolism , Phosphorylation/drug effects
7.
Front Immunol ; 15: 1294898, 2024.
Article in English | MEDLINE | ID: mdl-38660301

ABSTRACT

Human adenovirus type 7 (HAdV-7) is a significant viral pathogen that causes respiratory infections in children. Currently, there are no specific antiviral drugs or vaccines for children targeting HAdV-7, and the mechanisms of its pathogenesis remain unclear. The NLRP3 inflammasome-driven inflammatory cascade plays a crucial role in the host's antiviral immunity. Our previous study demonstrated that HAdV-7 infection activates the NLRP3 inflammasome. Building upon this finding, our current study has identified the L4 100 kDa protein encoded by HAdV-7 as the primary viral component responsible for NLRP3 inflammasome activation. By utilizing techniques such as co-immunoprecipitation, we have confirmed that the 100 kDa protein interacts with the NLRP3 protein and facilitates the assembly of the NLRP3 inflammasome by binding specifically to the NACHT and LRR domains of NLRP3. These insights offer a deeper understanding of HAdV-7 pathogenesis and contribute to the development of novel antiviral therapies.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Viral Nonstructural Proteins , Humans , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/immunology , Adenoviruses, Human/physiology , HEK293 Cells , Inflammasomes/metabolism , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Protein Binding , Viral Proteins/metabolism , Viral Proteins/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
8.
Viruses ; 16(4)2024 04 19.
Article in English | MEDLINE | ID: mdl-38675973

ABSTRACT

Differentiated HepaRG cells are popular in vitro cell models for hepatotoxicity studies. Their differentiation is usually supported by the addition of dimethyl sulfoxide (DMSO), an amphipathic solvent widely used in biomedicine, for example, in potential novel therapeutic drugs and cryopreservation of oocytes. Recent studies have demonstrated drastic effects, especially on epigenetics and extracellular matrix composition, induced by DMSO, making its postulated inert character doubtful. In this work, the influence of DMSO and DMSO-mediated modulation of differentiation on human adenovirus (HAdV) infection of HepaRG cells was investigated. We observed an increase in infectivity of HepaRG cells by HAdVs in the presence of 1% DMSO. However, this effect was dependent on the type of medium used for cell cultivation, as cells in William's E medium showed significantly stronger effects compared with those cultivated in DMEM. Using different DMSO concentrations, we proved that the impact of DMSO on infectability was dose-dependent. Infection of cells with a replication-deficient HAdV type demonstrated that the mode of action of DMSO was based on viral entry rather than on viral replication. Taken together, these results highlight the strong influence of the used cell-culture medium on the performed experiments as well as the impact of DMSO on infectivity of HepaRG cells by HAdVs. As this solvent is widely used in cell culture, those effects must be considered, especially in screening of new antiviral compounds.


Subject(s)
Adenoviruses, Human , Cell Differentiation , Dimethyl Sulfoxide , Virus Replication , Dimethyl Sulfoxide/pharmacology , Humans , Adenoviruses, Human/drug effects , Adenoviruses, Human/physiology , Cell Differentiation/drug effects , Cell Line , Virus Replication/drug effects , Virus Internalization/drug effects , Hepatocytes/virology , Hepatocytes/drug effects , Adenovirus Infections, Human/virology , Culture Media/chemistry
9.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673764

ABSTRACT

The exacerbation of pneumonia in children with human adenovirus type 3 (HAdV-3E) is secondary to a Staphylococcus aureus (S. aureus) infection. The influence of host-pathogen interactions on disease progression remains unclear. It is important to note that S. aureus infections following an HAdV-3E infection are frequently observed in clinical settings, yet the underlying susceptibility mechanisms are not fully understood. This study utilized an A549 cell model to investigate secondary infection with S. aureus following an HAdV-3E infection. The findings suggest that HAdV-3E exacerbates the S. aureus infection by intensifying lung epithelial cell damage. The results highlight the role of HAdV-3E in enhancing the interferon signaling pathway through RIG-I (DDX58), resulting in the increased expression of interferon-stimulating factors like MX1, RSAD2, and USP18. The increase in interferon-stimulating factors inhibits the NF-κB and MAPK/P38 pro-inflammatory signaling pathways. These findings reveal new mechanisms of action for HAdV-3E and S. aureus in secondary infections, enhancing our comprehension of pathogenesis.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , DEAD Box Protein 58 , Signal Transduction , Staphylococcal Infections , Staphylococcus aureus , Humans , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/virology , Adenoviruses, Human/physiology , Adenoviruses, Human/immunology , Coinfection/microbiology , DEAD Box Protein 58/metabolism , Host-Pathogen Interactions/immunology , Inflammation/metabolism , NF-kappa B/metabolism , Receptors, Immunologic/metabolism , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity , Ubiquitin Thiolesterase
10.
J Virol ; 98(5): e0020724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38639487

ABSTRACT

To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.


Subject(s)
Adenoviruses, Human , Genes, Reporter , Virus Replication , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Viral Load , HEK293 Cells , Adenovirus Infections, Human/virology , Cell Line
11.
J Virol ; 98(4): e0170123, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38451084

ABSTRACT

Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.


Subject(s)
Adenovirus E4 Proteins , Adenoviruses, Human , Phosphatidylinositol 3-Kinase , Proto-Oncogene Proteins c-akt , Tumor Suppressor Protein p53 , Humans , Adenovirus E4 Proteins/genetics , Adenovirus E4 Proteins/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/growth & development , Adenoviruses, Human/metabolism , Cell Line, Tumor , HEK293 Cells , Open Reading Frames/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/agonists , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Virus Replication
12.
J Virol ; 98(3): e0157623, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38323814

ABSTRACT

Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon's hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE: Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study's cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon's hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5's mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.


Subject(s)
Adenoviruses, Human , Capsid Proteins , Lactoferrin , Receptors, Virus , Virus Internalization , Humans , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/chemistry , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Adenoviruses, Human/ultrastructure , Binding Sites/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Lactoferrin/chemistry , Lactoferrin/genetics , Lactoferrin/metabolism , Lactoferrin/ultrastructure , Models, Biological , Mutation , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Receptors, Virus/ultrastructure , Solubility , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology
13.
J Med Virol ; 95(7): e28897, 2023 07.
Article in English | MEDLINE | ID: mdl-37394792

ABSTRACT

Globally, different genotypes of human adenoviruses are associated with outbreaks of acute respiratory infection (ARI) though such evidence is lacking from India. In the present study, we report a sudden increase in the positivity of respiratory adenovirus among hospitalized children with ARI from Kolkata and the surrounding districts of West Bengal, India, from December 2022 to date. A sharp rise in the positivity rate of respiratory adenovirus was found which ranged from 22.1% in early December 2022 to 52.6% in mid-March 2023. The overall positivity was 40.4% during the period and children in the 2 to <5 years (51.0%) age group were mostly affected. Single infection with adenovirus was found in 72.4% of cases while co-infection with rhinovirus was the maximum (9.4%). Around 97.5% of positive cases required hospitalization. Cough, breathlessness, and wheeze were the most common clinical features among positive patients. Phylogenetic analysis of the hexon and fiber gene of all the sequenced strains revealed HAdV-B 7/3 recombination with more than 99% homology within themselves. This report of a respiratory adenovirus outbreak in West Bengal, India causing severe illness in the pediatric population underscores the need for regular monitoring of the circulating strains.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , India/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Humans , Adenoviruses, Human/classification , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Adult , Phylogeny , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Disease Outbreaks
14.
J Virol ; 97(5): e0020923, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37120831

ABSTRACT

Human adenoviruses type 3 (HAdV-3) and type 55 (HAdV-55) are frequently encountered, highly contagious respiratory pathogens with high morbidity rate. In contrast to HAdV-3, one of the most predominant types in children, HAdV-55 is a reemergent pathogen associated with more severe community-acquired pneumonia (CAP) in adults, especially in military camps. However, the infectivity and pathogenicity differences between these viruses remain unknown as in vivo models are not available. Here, we report a novel system utilizing human embryonic stem cells-derived 3-dimensional airway organoids (hAWOs) and alveolar organoids (hALOs) to investigate these two viruses. Firstly, HAdV-55 replicated more robustly than HAdV-3. Secondly, cell tropism analysis in hAWOs and hALOs by immunofluorescence staining revealed that HAdV-55 infected more airway and alveolar stem cells (basal and AT2 cells) than HAdV-3, which may lead to impairment of self-renewal functions post-injury and the loss of cell differentiation in lungs. Additionally, the viral life cycles of HAdV-3 and -55 in organoids were also observed using Transmission Electron Microscopy. This study presents a useful pair of lung organoids for modeling infection and replication differences between respiratory pathogens, illustrating that HAdV-55 has relatively higher replication efficiency and more specific cell tropism in human lung organoids than HAdV-3, which may result in relatively higher pathogenicity and virulence of HAdV-55 in human lungs. The model system is also suitable for evaluating potential antiviral drugs, as demonstrated with cidofovir. IMPORTANCE Human adenovirus (HAdV) infections are a major threat worldwide. HAdV-3 is one of the most predominant respiratory pathogen types found in children. Many clinical studies have reported that HAdV-3 causes less severe disease. In contrast, HAdV-55, a reemergent acute respiratory disease pathogen, is associated with severe community-acquired pneumonia in adults. Currently, no ideal in vivo models are available for studying HAdVs. Therefore, the mechanism of infectivity and pathogenicity differences between human adenoviruses remain unknown. In this study, a useful pair of 3-dimensional (3D) airway organoids (hAWOs) and alveolar organoids (hALOs) were developed to serve as a model. The life cycles of HAdV-3 and HAdV-55 in these human lung organoids were documented for the first time. These 3D organoids harbor different cell types, which are similar to the ones found in humans. This allows for the study of the natural target cells for infection. The finding of differences in replication efficiency and cell tropism between HAdV-55 and -3 may provide insights into the mechanism of clinical pathogenicity differences between these two important HAdV types. Additionally, this study provides a viable and effective in vitro tool for evaluating potential anti-adenoviral treatments.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Antiviral Agents , Human Embryonic Stem Cells , Adult , Child , Humans , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/virology , Adenoviruses, Human/classification , Adenoviruses, Human/physiology , Antiviral Agents/pharmacology , Lung/virology , Organoids , Pneumonia , Species Specificity
15.
Nature ; 617(7961): 574-580, 2023 May.
Article in English | MEDLINE | ID: mdl-36996871

ABSTRACT

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Subject(s)
Adenovirus Infections, Human , Coinfection , Dependovirus , Hepatitis , Child , Humans , Acute Disease , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/genetics , Dependovirus/isolation & purification , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/virology , Hepatitis/epidemiology , Hepatitis/virology , Herpesvirus 4, Human/isolation & purification , Herpesvirus 6, Human/isolation & purification , Enterovirus A, Human/isolation & purification , Helper Viruses/isolation & purification
16.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: mdl-36996873

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
17.
Nature ; 617(7961): 564-573, 2023 May.
Article in English | MEDLINE | ID: mdl-36996872

ABSTRACT

Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.


Subject(s)
Adenovirus Infections, Human , Genomics , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/virology , B-Lymphocytes/immunology , Gene Expression Profiling , Hepatitis/epidemiology , Hepatitis/immunology , Hepatitis/virology , Immunohistochemistry , Liver/immunology , Liver/virology , Proteomics , T-Lymphocytes/immunology
18.
Viruses ; 15(1)2023 01 05.
Article in English | MEDLINE | ID: mdl-36680201

ABSTRACT

Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Nucleoproteins , Humans , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , Gene Expression , Nucleoproteins/genetics , Virus Replication
19.
N Engl J Med ; 387(7): 620-630, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35830653

ABSTRACT

BACKGROUND: Human adenoviruses typically cause self-limited respiratory, gastrointestinal, and conjunctival infections in healthy children. In late 2021 and early 2022, several previously healthy children were identified with acute hepatitis and human adenovirus viremia. METHODS: We used International Classification of Diseases, 10th Revision, codes to identify all children (<18 years of age) with hepatitis who were admitted to Children's of Alabama hospital between October 1, 2021, and February 28, 2022; those with acute hepatitis who also tested positive for human adenovirus by whole-blood quantitative polymerase chain reaction (PCR) were included in our case series. Demographic, clinical, laboratory, and treatment data were obtained from medical records. Residual blood specimens were sent for diagnostic confirmation and human adenovirus typing. RESULTS: A total of 15 children were identified with acute hepatitis - 6 (40%) who had hepatitis with an identified cause and 9 (60%) who had hepatitis without a known cause. Eight (89%) of the patients with hepatitis of unknown cause tested positive for human adenovirus. These 8 patients plus 1 additional patient referred to this facility for follow-up were included in this case series (median age, 2 years 11 months; age range, 1 year 1 month to 6 years 5 months). Liver biopsies indicated mild-to-moderate active hepatitis in 6 children, some with and some without cholestasis, but did not show evidence of human adenovirus on immunohistochemical examination or electron microscopy. PCR testing of liver tissue for human adenovirus was positive in 3 children (50%). Sequencing of specimens from 5 children showed three distinct human adenovirus type 41 hexon variants. Two children underwent liver transplantation; all the others recovered with supportive care. CONCLUSIONS: Human adenovirus viremia was present in the majority of children with acute hepatitis of unknown cause admitted to Children's of Alabama from October 1, 2021, to February 28, 2022, but whether human adenovirus was causative remains unclear. Sequencing results suggest that if human adenovirus was causative, this was not an outbreak driven by a single strain. (Funded in part by the Centers for Disease Control and Prevention.).


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Hepatitis , Acute Disease , Adenovirus Infections, Human/complications , Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , Child , Child, Preschool , Hepatitis/virology , Humans , Infant , Viremia
20.
Microbiol Spectr ; 10(1): e0156921, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35171015

ABSTRACT

Human mastadenovirus (HAdV), a linear double-stranded DNA (dsDNA) virus, is the causal agent of several diseases, including pharyngoconjunctival fever, epidemic keratoconjunctivitis, and hemorrhagic cystitis, in immunocompromised individuals. There are more than 100 reported types of adenoviruses, but the pathogenicity of many HAdVs remains unknown. Brincidofovir (BCV) is a hexadecyloxypropyl lipid conjugate of cidofovir (CDV) that is active against dsDNA viruses. Clinical effectiveness of BCV against certain HAdV species has been reported; however, its activity against novel HAdV types remains unknown. We investigated the half-maximal inhibitory concentration (IC50) values of BCV for novel HAdV types and found that the epidemic keratoconjunctivitis-associated HAdV-D54 prevalent in the Asian region was the most susceptible. The mean overall IC50 value of BCV was lower than that of CDV, indicating that BCV is effective against HAdVs, including the novel types. IMPORTANCE We investigated the IC50 values of BCV for novel HAdV types and found that the epidemic keratoconjunctivitis-associated HAdV-D54 prevalent in the Asian region was the most susceptible. In addition, the mean overall IC50 value of BCV was lower than that of CDV, indicating that BCV is effective against HAdVs.


Subject(s)
Adenoviridae Infections/virology , Adenovirus Infections, Human/virology , Cytosine/analogs & derivatives , Keratoconjunctivitis/virology , Mastadenovirus/drug effects , Organophosphonates/pharmacology , Adenoviridae Infections/immunology , Adenovirus Infections, Human/immunology , Cystitis , Cytosine/pharmacology , Humans , Immunocompromised Host , Keratoconjunctivitis/immunology , Mastadenovirus/classification , Mastadenovirus/genetics , Mastadenovirus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...