Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.989
Filter
1.
Int J Pharm Compd ; 28(3): 249-259, 2024.
Article in English | MEDLINE | ID: mdl-38768505

ABSTRACT

Since ancient times, mouth fresheners in many different forms have been used throughout the world. Traditional knowledge describes the health benefits of mouth fresheners, and contemporary science is now investigating their benefits. Claims have been made that mouth fresheners not only improve digestion but also promote oral health. Similar, but in a more profound sense, probiotics offer astounding advantages in treating many disorders. In certain cases, probiotics also offer prophylactic effects. Numerous benefits for dental health are being studied for B. coagulans (MB-BCM9) and B. subtilis (MB-BSM12). In this current study, a probiotic and a mouth freshener were combined to ameliorate the impacts of both. The oral residence of probiotics was enhanced by employing mucoadhesive polymers. Numerous compositions were developed and evaluated for the unaltered growth of probiotics, along with other evaluations like microscopy, in vitro mucoadhesive strength, and stability studies. Xanthan gum and hydroxypropyl methylcellulose were used in the development of mucoadhesive probiotic powder by employing the lyophilization technique. More than five hours of residence time were observed in the in vitro study with goat oral mucosa. The enumeration study validated the label claims of MB-BCM9 and MB-BSM12. It also concluded that none of the components of the formulation had a detrimental effect on probiotics. In essence, the present work discloses the novel and stable formulation of a probiotic-based mouth freshener.


Subject(s)
Hypromellose Derivatives , Mouth Mucosa , Polysaccharides, Bacterial , Probiotics , Probiotics/administration & dosage , Animals , Hypromellose Derivatives/chemistry , Polysaccharides, Bacterial/chemistry , Goats , Adhesiveness , Freeze Drying , Drug Compounding , Powders , Drug Stability
2.
Pak J Pharm Sci ; 37(2): 405-416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767108

ABSTRACT

To develop a new kind of famotidine-resin microcapsule for gastric adhesion sustained release by screening out suitable excipients and designing reasonable prescriptions to improve patient drug activities to achieve the expected therapeutic effect. The famotidine drug resin was prepared using the water bath method with carbomer 934 used as coating material. Microcapsules were prepared using the emulsified solvent coating method and appropriate excipients were used to prepare famotidine sustained release suspension. Pharmacokinetics of the developed microcapsules were studied in the gastrointestinal tract of rats. The self-made sustained-release suspension of famotidine hydrochloride effectively reduced the blood concentration and prolonged the action time. The relative bioavailability of the self-made suspension of the famotidine hydrochloride to the commercially available famotidine hydrochloride was 146.44%, with an average retention time of about 5h longer, which indicated that the new suspension had acceptable adhesion properties. The findings showed that the newly developed famotidine-resin microcapsule increased the bioavailability of the drug with a significant sustained-release property.


Subject(s)
Biological Availability , Delayed-Action Preparations , Famotidine , Famotidine/pharmacokinetics , Famotidine/administration & dosage , Famotidine/chemistry , Famotidine/pharmacology , Animals , Rats , Male , Excipients/chemistry , Suspensions , Capsules , Drug Liberation , Acrylic Resins/chemistry , Histamine H2 Antagonists/pharmacokinetics , Histamine H2 Antagonists/administration & dosage , Histamine H2 Antagonists/pharmacology , Histamine H2 Antagonists/chemistry , Adhesiveness , Drug Compounding , Acrylates
3.
ACS Appl Mater Interfaces ; 16(21): 27065-27074, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748094

ABSTRACT

Wearable biomedical sensors have enabled noninvasive and continuous physiological monitoring for daily health management and early detection of chronic diseases. Among biomedical sensors, wearable pH sensors attracted significant interest, as pH influences most biological reactions. However, conformable pH sensors that have sweat absorption ability, are self-adhesive to the skin, and are gas permeable remain largely unexplored. In this study, we present a pioneering approach to this problem by developing a Janus membrane-based pH sensor with self-adhesiveness on the skin. The sensor is composed of a hydrophobic polyurethane-polydimethylsiloxane porous hundreds nanometer-thick substrate and a hydrophilic poly(vinyl alcohol)-poly(acrylic acid) porous nanofiber layer. This Janus membrane exhibits a thickness of around 10 µm, providing a conformable adhesion to the skin. The simultaneous realization of solution absorption, gas permeability, and self-adhesiveness makes it suitable for long-term continuous monitoring without compromising the comfort of the wearer. The pH sensor was tested successfully for continuous monitoring for 7.5 h, demonstrating its potential for stable analysis of skin health conditions. The Janus membrane-based pH sensor holds significant promise for comprehensive skin health monitoring and wearable biomedical applications.


Subject(s)
Polyurethanes , Sweat , Wearable Electronic Devices , Hydrogen-Ion Concentration , Humans , Sweat/chemistry , Polyurethanes/chemistry , Permeability , Acrylic Resins/chemistry , Membranes, Artificial , Dimethylpolysiloxanes/chemistry , Adhesiveness , Nanofibers/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Porosity , Gases/chemistry , Gases/analysis
4.
Int J Biol Macromol ; 267(Pt 2): 131662, 2024 May.
Article in English | MEDLINE | ID: mdl-38636754

ABSTRACT

In this study, we investigated detailedly the contribution of catechol in tuning the formation and adhesive properties of coacervates. We have constructed a series of catechol-grafted Chitosan (Chitosan-C), and investigated their coacervation with gum arabic (GA) and the corresponding adhesion. We demonstrate that, increasing catechol grafting ratio from 0 %-44 % impacted the coacervation moderately, while enhanced the adhesion of the coacervate up to 438 % when the catechol faction was 37 %. Further increasing the grafting ratio to 55 % led to precipitated coacervates associated with a declined adhesion. Our findings identify the optimal grafting threshold for coacervation and adhesion, providing insights into the underlying mechanism of coacervate binding. Moreover, the catechol enhancement on adhesion of coacervates tolerates different substrates and diverse polyelectrolyte pairs. The revealed principles shall be helpful for designing adhesive coacervates and boosting their applications in various industrial and biomedical areas.


Subject(s)
Catechols , Chitosan , Chitosan/chemistry , Catechols/chemistry , Gum Arabic/chemistry , Adhesiveness , Adhesives/chemistry
5.
Int J Pharm ; 656: 124075, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38599445

ABSTRACT

AIM: This study aims to design chemically crosslinked thiolated cyclodextrin-based hydrogels and to evaluate their mucoadhesive properties via mucosal residence time studies on porcine small intestinal mucosa and on porcine buccal mucosa. METHODS: Free thiol groups of heptakis(6-deoxy-6-thio)-ß-cyclodextrin (ß-CD-SH) were S-protected with 2-mercaptoethanesulfonic acid (MESNA) followed by crosslinking with citric acid. Cytotoxicity was assessed by hemolysis as well as resazurin assay. Hydrogels were characterized by their rheological and mucoadhesive properties. Ritonavir was employed as model drug for in vitro release studies from these hydrogels. RESULTS: The structure of S-protected ß-CD-SH was confirmed by IR and 1H NMR spectroscopy. Degree of thiolation was 390 ± 7 µmol/g. Hydrogels based on native ß-CD showed hemolysis of 12.5 ± 2.5 % and 13.6 ± 2.7 % within 1 and 3 h, whereas hemolysis of just 3.5 ± 2.8 % and 3.9 ± 3.0 % was observed for the S-protected thiolated CD hydrogels, respectively. Both native and S-protected thiolated hydrogels showed minor cytotoxicity on Caco-2 cells. Rheological investigations of S-protected thiolated ß-CD-based hydrogel (16.2 % m/v) showed an up to 13-fold increase in viscosity in contrast to the corresponding native ß-CD-based hydrogel. Mucosal residence time studies showed that thiolated ß-CD-based hydrogel is removed to a 16.6- and 2.4-fold lower extent from porcine small intestinal mucosa and porcine buccal mucosa in comparision to the native ß-CD-based hydrogel, respectively. Furthermore, a sustained release of ritonavir from S-protected thiolated ß-CD-based hydrogels was observed. CONCLUSION: Because of their comparatively high mucoadhesive and release-controlling properties, S-protected thiolated ß-CD-based hydrogels might be promising systems for mucosal drug delivery.


Subject(s)
Hydrogels , Mouth Mucosa , Sulfhydryl Compounds , beta-Cyclodextrins , Hydrogels/chemistry , Animals , Humans , Caco-2 Cells , Swine , Sulfhydryl Compounds/chemistry , Mouth Mucosa/metabolism , beta-Cyclodextrins/chemistry , Intestinal Mucosa/metabolism , Rheology , Hemolysis/drug effects , Adhesiveness , Drug Liberation , Polymers/chemistry , Cell Survival/drug effects , Intestine, Small/metabolism
6.
Acta Biomater ; 181: 146-160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679406

ABSTRACT

Discovering macromolecules and understanding the associated mechanisms involved in underwater adhesion are essential for both studying the fundamental ecology of benthos in aquatic ecosystems and developing biomimetic adhesive materials in industries. Here, we employed quantitative proteomics to assess protein expression variations during the development of the distinct adhesive structure - stolon in the model fouling ascidian, Ciona robusta. We found 16 adhesive protein candidates with increased expression in the stolon, with ascidian adhesive protein 1 (AAP1) being particularly rich in adhesion-related signal peptides, amino acids, and functional domains. Western blot and immunolocalization analyses confirmed the prominent AAP1 signals in the mantle, tunic, stolon, and adhesive footprints, indicating the interfacial role of this protein. Surface coating and atomic force microscopy experiments verified AAP1's adhesion to diverse materials, likely through the specific electrostatic and hydrophobic amino acid interactions with various substrates. In addition, molecular docking calculations indicated the AAP1's potential for cross-linking via hydrogen bonds and salt bridges among Von Willebrand factor type A domains, enhancing its adhesion capability. Altogether, the newly discovered interfacial protein responsible for permanent underwater adhesion, along with the elucidated adhesion mechanisms, are expected to contribute to the development of biomimetic adhesive materials and anti-fouling strategies. STATEMENT OF SIGNIFICANCE: Discovering macromolecules and studying their associated mechanisms involved in underwater adhesion are essential for understanding the fundamental ecology of benthos in aquatic ecosystems and developing innovative bionic adhesive materials in various industries. Using multidisciplinary analytical methods, we identified an interfacial protein - Ascidian Adhesive Protein 1 (AAP1) from the model marine fouling ascidian, Ciona robusta. The interfacial functions of AAP1 are achieved by electrostatic and hydrophobic interactions, and the Von Willebrand factor type A domain-based cross-linking likely enhances AAP1's interfacial adhesion. The identification and validation of the interfacial functions of AAP1, combined with the elucidation of adhesion mechanisms, present a promising target for the development of biomimetic adhesive materials and the formulation of effective anti-fouling strategies.


Subject(s)
Biofouling , Animals , Adhesiveness , Urochordata/metabolism , Molecular Docking Simulation , Adhesives/chemistry , Amino Acid Sequence , Ciona/metabolism
7.
Int J Biol Macromol ; 269(Pt 2): 131876, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685543

ABSTRACT

Buccal mucosa administration is a promising method for insulin (INS) delivery with good compliance. However, buccal mucosa delivery systems still face challenges of long-term mucosal adhesion, sustained drug release, and mucosal drug penetration. To address these issues, a double-layer film consisting of a hydroxypropyl methylcellulose/polyacrylic acid interpolymer complex (IPC)-formulated mucoadhesive layer and an ethylcellulose (EC)-formulated waterproof backing layer (IPC/EC film) was designed. Protamine (PTM) and INS were co-loaded in the mucoadhesive layer of the IPC/EC film (PTM-INS-IPC/EC film). In ex vivo studies with porcine buccal mucosa, this film exhibited robust adhesion, with an adhesion force of 120.2 ±â€¯20.3 N/m2 and an adhesion duration of 491 ±â€¯45 min. PTM has been shown to facilitate INS mucosal transfer. Pharmacokinetic studies indicated that the PTM-INS-IPC/EC film significantly improved the absorption of INS, exhibiting a 1.45 and 2.24-fold increase in the area under the concentration-time curve (AUC0-∞) compared to the INS-IPC/EC film and free INS, respectively. Moreover, the PTM-INS-IPC/EC film effectively stabilized the blood glucose levels of type 1 diabetes mellitus (T1DM) rats with post oral glucose administration, maintaining lower glucose levels for approximately 8 h. Hence, the PTM-INS-IPC/EC film provides a promising noninvasive INS delivery system for diabetes treatment.


Subject(s)
Acrylic Resins , Diabetes Mellitus, Experimental , Hypromellose Derivatives , Insulin , Mouth Mucosa , Mouth Mucosa/metabolism , Animals , Acrylic Resins/chemistry , Insulin/administration & dosage , Insulin/pharmacokinetics , Rats , Hypromellose Derivatives/chemistry , Swine , Diabetes Mellitus, Experimental/drug therapy , Drug Delivery Systems , Male , Adhesives/chemistry , Drug Liberation , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Administration, Buccal , Adhesiveness , Blood Glucose/drug effects , Drug Carriers/chemistry
8.
J Texture Stud ; 55(2): e12827, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38486420

ABSTRACT

There is an increasing demand for texture sensations of bread during mastication, with reformulation being needed. This study investigated how bread structure influences oral processing behavior and texture perception. Variations in bread structure were created by manipulating ingredient additions, including pumpkin content and pumpkin processing methods. Results indicated that the physical, chemical, and structural properties drove the oral processing behaviors, and texture sensations were highly correlated with bolus properties. At the beginning and middle of the mastication, bolus from breads with low pumpkin-content required more saliva and exhibited greater hardness, lower adhesiveness, and a higher proportion of small-piece particles than the bolus from high pumpkin-content breads. Bolus from pumpkin pulp breads required more saliva, and was softer, stickier, and generated particles with a lower degree of degradation than the bolus from pumpkin puree breads. However, at the end period, the bolus properties tended to change to similar values. Low pumpkin content breads were initially perceived chewy, whereas high pumpkin content, soft. The dominance rate for soft sensation was higher and lasted longer in breads with pumpkin puree than in breads with pumpkin pulp. Finally, six bread samples were all perceived as hydrated, sticky, and crumbly. This study contributes to a better understanding of the impact of reformulation on oral behavior and sensory properties.


Subject(s)
Bread , Cucurbita , Saliva , Sensation , Adhesiveness
9.
J Photochem Photobiol B ; 253: 112888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471422

ABSTRACT

AIM: To acquire a thorough comprehension of the photoactivated Cur-doped ZnONPs at different concentrations 0%, 2.5%, and 5% on the physical qualities, antibacterial efficacy, degree of conversion, and µshear bond strength between orthodontic brackets and the enamel surface. MATERIAL AND METHODS: An extensive investigation was carried out utilizing a range of analytical methods, scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, micro tensile bond strength (µTBS) testing, and evaluation of antibacterial effectiveness. Cur-doped ZnONPs at concentrations of 2.5% and 5% were blended with Transbond XT, a light-curable orthodontic adhesive. A control group without the addition of Cur-doped ZnONPs was also prepared. The tooth samples were categorized into three groups based on the weight percentage of NPs: Group 1 (control) with 0% Cur-doped ZnONPs, Group 2 with 2.5 wt% Cur-doped ZnONPs, and Group 3 with 5 wt% Cur-doped ZnONPs. The SEM technique was employed to analyze the morphological characteristics of Cur-doped ZnONPs and ZnONPs. The composition and elemental distribution of the modified Cur-doped ZnONPs were assessed using energy-dispersive X-ray spectroscopy. The effectiveness of NPs at various concentrations against S.Mutans was gauged through the pour plate method. DC of Cur-doped ZnONPs at a region of 1608 cm-1 to 1636 cm-1 for the cured area, whereas the uncured area spanned the same range of 1608 cm-1 to 1636 cm-1 was assessed. The Adhesive Remnant Index (ARI) approach was utilized to investigate the bond failure of orthodontic brackets, while a Universal Testing Machine (UTM) was utilized to test µTBS. The Kruskal-Wallis test was employed to investigate variations in S.mutans survival rates. To determine the µTBS values, analysis of variance (ANOVA) and the post hoc Tukey multiple comparisons test were used. RESULTS: The maximum µTBS was given and documented in group 3: 5 wt% Cur-doped ZnONPs (21.21 ± 1.53 MPa). The lowest µTBS was given in group 2: 2.5 wt% Cur-doped ZnONPs (19.58 ± 1.27 MPa). The highest efficacy against S.mutans was documented in group 3 in which 5 wt% Cur-doped ZnONPs (0.39 ± 0.15). The lowest efficacy was seen in group 1 in which no Cur-doped ZnONPs were used (6.47 ± 1.23). The ARI analysis indicated that the predominant failure was between scores 0 and 1 among all experimental groups. Control group 1 which was not modified showed the highest DC (73.11 ± 4.19). CONCLUSION: Orthodontic adhesive, containing 5% Cur-doped ZnONPs photoactivated with visible light exhibited a favorable impact on µTBS and indicated enhanced antibacterial efficacy against S.mutans. Nevertheless, it was observed that the addition of Cur-doped ZnONPs at different concentrations (2.5%,5%) resulted in a decrease in the monomer-to-polymer ratio compromising DC.


Subject(s)
Curcumin , Nanoparticles , Zinc Oxide , Adhesiveness , Surface Properties , Staphylococcus aureus , Microscopy, Electron, Scanning , X-Rays , Anti-Bacterial Agents/pharmacology , Light , Spectrum Analysis , Materials Testing
10.
Int J Biol Macromol ; 266(Pt 1): 131215, 2024 May.
Article in English | MEDLINE | ID: mdl-38552679

ABSTRACT

Realizing adhesion between wet materials remains challenging because of the interfacial water. Current strategies depend on complicated surface modifications, resulting in limited functions. Herein, a facile strategy based on the powder of grape seed protein and tannic acid (GSP-TA) was reported to endow various non-adhesive hydrogels adhesion without chemical modifications for both hydrogels and adherents. The GSP-TA powder has the capability to absorb interfacial water, form an adhesive layer on the hydrogel surface, diffusion into the underneath hydrogel matrix, and establish the initial adhesion within 5 s. By forming multiple non-covalent interactions between powders and substrates, the GSP-TA powder served as an efficient surface treating agent, enabling robust adhesion to solid substrates (wood, cardboard, glass, iron, and rubber) and wet tissues (pigskin, muscle, liver and heart). The adhesive strength for wood, cardboard, glass, iron, and rubber was 145.92 ± 5.93, 123.93 ± 15.98, 66.24 ± 7.67, 98.22 ± 4.13, and 80.83 ± 7.48 kPa, respectively. Because of reversible interactions, the adhesion was also repeatable. Due to the merits of grape seed protein and plant polyphenol, it could be completely degraded within 11 days. Bearing several merits, this strategy has promising applications in wound patches, tissue repair, and sensors.


Subject(s)
Hydrogels , Polyphenols , Powders , Tannins , Vitis , Tannins/chemistry , Hydrogels/chemistry , Vitis/chemistry , Adhesives/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Animals , Adhesiveness
11.
Int J Biol Macromol ; 266(Pt 2): 131034, 2024 May.
Article in English | MEDLINE | ID: mdl-38518948

ABSTRACT

This article has focused on collagen-gelatin, the gelation process, as well as blend interaction between collagen/gelatin with various polysaccharides to boost mucoadhesion and gastric retention. The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged time in the gastrointestinal tract. This paper reviews the current advancement and mucoadhesive properties of collagen/gelatin and different polysaccharide complexes concerning the mucin layer and interactions are briefly highlighted. Collagen/gelatin and polysaccharide blends biocompatible and biodegradable, the complex biomolecules have shown encouraging mucoadhesive properties due to their cationic nature and ability to form hydrogen bonds with mucin glycoproteins. The mucoadhesion mechanism was attributed to the electrostatic interactions between the positively charged amino (NH2) groups of blend biopolymers and the negatively charged sialic acid residues present in mucin glycoprotein. At the end of this article, the encouraging prospect of collagen/polysaccharide complex and mucin glycoprotein is highlighted.


Subject(s)
Collagen , Gastric Mucosa , Gelatin , Polysaccharides , Gelatin/chemistry , Polysaccharides/chemistry , Collagen/chemistry , Humans , Animals , Gastric Mucosa/metabolism , Mucins/chemistry , Mucins/metabolism , Adhesiveness
12.
J Colloid Interface Sci ; 661: 196-206, 2024 May.
Article in English | MEDLINE | ID: mdl-38301458

ABSTRACT

HYPOTHESIS: Adjusting the water content and mechanical properties of polyelectrolyte coacervates for optimal underwater adhesion requires simultaneous control of the macromolecular design and the type and concentration of the salt used. Using synthetic or bio-inspired polymers to make coacervates often involves complicated chemistries and large variations in salt concentration. The underwater adhesiveness of simple, bio-sourced coacervates can be tuned with relatively small variations in salt concentration. Bio-sourced polymers can also impart beneficial biological activities to the final material. EXPERIMENTS: We made complex coacervates from charged chitosan (CHI) and hyaluronic acid (HA) with NaCl as the salt. Their water content and viscoelastic properties were investigated to identify the formulation with optimal underwater adhesion in physiological conditions. The coacervates were also studied in antibacterial and cytotoxicity experiments. FINDINGS: As predicted by linear rheology, the CHI-HA coacervates at 0.1 and 0.2 M NaCl had the highest pull-off adhesion strengths of 44.4 and 40.3 kPa in their respective supernatants. In-situ physical hardening of the 0.2 M coacervate upon a salt switch in 0.1 M NaCl resulted in a pull-off adhesion strength of 62.9 kPa. This material maintained its adhesive properties in physiological conditions. Finally, the optimal adhesive was found to be non-cytotoxic and inherently antimicrobial through a chitosan release-killing mechanism.


Subject(s)
Chitosan , Sodium Chloride , Sodium Chloride/pharmacology , Adhesiveness , Chitosan/pharmacology , Polysaccharides , Anti-Bacterial Agents/pharmacology , Water , Adhesives
13.
J Biosci Bioeng ; 137(4): 313-320, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307767

ABSTRACT

The Cell Dome is a dome-shaped structure (diameter: 1 mm, height: 270 µm) with cells enclosed within a cavity, covered by a hemispherical hydrogel shell, and immobilized on a glass plate. Given that the cells within Cell Dome are in contact with the inner walls of the hydrogel shell, the properties of the shell are anticipated to influence cell behavior. To date, the impact of the hydrogel shell properties on the enclosed cells has not been investigated. In this study, we explored the effects of the cell adhesiveness of hydrogel shell on the behavior of enclosed cancer cells. Hydrogel shells with varying degrees of cell adhesiveness were fabricated using aqueous solutions containing either an alginate derivative with phenolic hydroxyl moieties exclusively or a mixture of alginate and gelatin derivatives with phenolic hydroxyl moieties. Hydrogel formation was mediated by horseradish peroxidase. We used the HeLa human cervical cancer cell line, which expresses fucci2, a cell cycle marker, to observe cell behavior. Cells cultured in hydrogel shells with cell adhesiveness proliferated along the inner wall of the hydrogel shell. Conversely, cells in hydrogel shells without cell adhesiveness grew uniformly at the bottom of the cavities. Furthermore, cells in non-adhesive hydrogel shells had a higher percentage of cells in the G1/G0 phase compared to those in adhesive shells and exhibited increased resistance to mitomycin hydrochloride when the cavities became filled with cells. These results highlight the need to consider the cell adhesiveness of the hydrogel shell when selecting materials for constructing Cell Dome.


Subject(s)
Alginates , Hydrogels , Humans , HeLa Cells , Adhesiveness , Hydrogels/chemistry , Cell Adhesion , Alginates/chemistry , Gelatin/chemistry
14.
J Forensic Sci ; 69(3): 1061-1068, 2024 May.
Article in English | MEDLINE | ID: mdl-38415957

ABSTRACT

An investigation into whether the addition of a commonly used anti-coagulant agent like ethylenediaminetetraacetic acid (EDTA) has an impact on the adhesion potential of blood to non-porous substrates was conducted. Two non-porous substrates (aluminum and polypropylene) exhibiting six different surface roughness categories (R1-R6) were used as test substrates upon which either whole blood or blood treated with EDTA was deposited. Samples were exposed to different drying periods (24 hours, 48 hours, and 1 week) before undergoing a tapping agitation experiment in order to evaluate the adhesion to the surface. Clear differences in adhesion potential were observed between whole blood and blood treated with EDTA. Blood treated with EDTA displayed a stronger adhesion strength to aluminum after a drying time of 24 h pre-agitation, while whole blood presented with a stronger adhesion strength at the drying time of 48 h and 1 week. Both EDTA-treated and EDTA-untreated blood was shown to dislodge less easily on polypropylene with the only difference observed on smooth surfaces (0.51-1.50 µm surface roughness). Thus, when conducting transfer studies using smooth hydrophobic substrates like polypropylene or considering the likelihood of transfer given specific case scenarios, differences in adhesion strength of blood due to hydrophobic substrate characteristics and a decreased surface area need to be considered. Overall, whole blood displayed a better adhesion strength to aluminum, emphasizing that indirect transfer probability experiments using EDTA blood on substrates like aluminum should take an increased dislodgment tendency into account in their transfer estimations.


Subject(s)
Aluminum , Anticoagulants , Edetic Acid , Polypropylenes , Surface Properties , Edetic Acid/pharmacology , Humans , Anticoagulants/pharmacology , Adhesiveness , Blood Stains , Blood , Hydrophobic and Hydrophilic Interactions
15.
Int Orthod ; 22(1): 100836, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134823

ABSTRACT

OBJECTIVE: Fixed appliances used in orthodontic treatment are accompanied by some drawbacks, including the development of white spots or enamel demineralization in the vicinity of the brackets and bonding failures. This study aims to evaluate the effect of combining different wt.% of Emodin nanoparticles (ENPs) with orthodontic adhesives to attain adhesives with improved antimicrobial and mechanical properties. METHODS: ENPs were synthesized and added to orthodontic composite at different concentrations (0.5%, 1%, and 2%). The distribution of ENPs within the composite was evaluated using a field emission scanning electron microscope (FESEM). A total of 216 disks were prepared, with 144 subjected to an eluted components test, 36 used for disk agar diffusion (DAD) test, and 36 for biofilm inhibition test. These tests aimed to assess the antimicrobial activity of the composites against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Additionally, the bond strength between stainless-steel brackets and teeth was evaluated using the shear bond strength (SBS) test, and the adhesive remnant index (ARI) score was determined. One-way analysis of variance and Kruskal-Wallis test were used to analyse the SBS and ARI, respectively. For pairwise group comparison concerning the biofilm inhibition, DAD, and eluted components tests, the Tamhane and Games-Howell tests for data with unequal variances and the post-hoc Tukey's HSD and Scheffe tests for data with equal variances were used. RESULTS: The FESEM results confirmed the synthesis and even distribution of ENPs in the composite. Only the 2% group showed significant biofilm inhibition against all microorganisms studied (P<0.05). The DAD test revealed that a 1% concentration of ENPs is sufficient to inhibit growth for all microorganisms. The eluted components test demonstrated that the 2% concentration of ENPs performed significantly better against S. mutans compared to the control group (P<0.05). The highest mean SBS was observed with the 0.5% ENP concentration, while no significant differences in SBS and ARI were found among the groups (P>0.05). CONCLUSIONS: This in vitro study showed that the 2% concentration of ENP produced significantly improved antimicrobial activity without adversely affecting SBS and ARI score. This would support the addition of 2% ENP to orthodontic adhesives.


Subject(s)
Anti-Infective Agents , Dental Bonding , Emodin , Nanoparticles , Orthodontic Brackets , Humans , Adhesiveness , Surface Properties , Resin Cements/chemistry , Dental Cements/chemistry , Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Shear Strength , Materials Testing
16.
Adv Sci (Weinh) ; 11(10): e2303816, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145336

ABSTRACT

The hierarchical design of the toe pad surface in geckos and its reversible adhesiveness have inspired material scientists for many years. Micro- and nano-patterned surfaces with impressive adhesive performance have been developed to mimic gecko's properties. While the adhesive performance achieved in some examples has surpassed living counterparts, the durability of the fabricated surfaces is limited and the capability to self-renew and restore function-inherent to biological systems-is unimaginable. Here the morphogenesis of gecko setae using skin samples from the Bibron´s gecko (Chondrodactylus bibronii) is studied. Gecko setae develop as specialized apical differentiation structures at a distinct cell-cell layer interface within the skin epidermis. A primary role for F-actin and microtubules as templating structural elements is necessary for the development of setae's hierarchical morphology, and a stabilization role of keratins and corneus beta proteins is identified. Setae grow from single cells in a bottom layer protruding into four neighboring cells in the upper layer. The resulting multicellular junction can play a role during shedding by facilitating fracture of the cell-cell interface and release of the high aspect ratio setae. The results contribute to the understanding of setae regeneration and may inspire future concepts to bioengineer self-renewable patterned adhesive surfaces.


Subject(s)
Actins , Lizards , Animals , Sensilla , Adhesiveness , Lizards/anatomy & histology , Adhesives
17.
Adv Mater ; 36(13): e2310338, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38148316

ABSTRACT

Customizable bioadhesives for individual organ requirements, including tissue type and motion, are essential, especially given the rise in implantable medical device applications demanding adequate underwater adhesion. While synthetic bioadhesives are widely used, their toxicity upon degradation shifts focus to biocompatible natural biomaterials. However, enhancing the adhesive strengths of these biomaterials presents ongoing challenges while accommodating the unique properties of specific organs. To address these issues, three types of customized underwater bioadhesive patches (CUBAPs) with strong, water-responsive adhesion and controllable biodegradability and stretchability based on bioengineered mussel adhesive proteins conjugated with acrylic acid and/or methacrylic acid are proposed. The CUBAP system, although initially nonadhesive, shows strong underwater adhesion upon hydration, adjustable biodegradation, and adequate physical properties by adjusting the ratio of poly(acrylic acid) and poly(methacrylic acid). Through ex vivo and in vivo evaluations using defective organs and the implantation of electronic devices, the suitability of using CUBAPs for effective wound healing in diverse internal organs is demonstrated. Thus, this innovative CUBAP system offers strong underwater adhesiveness with tailored biodegradation timing and physical properties, giving it great potential in various biomedical applications.


Subject(s)
Adhesives , Methacrylates , Water , Adhesiveness , Biocompatible Materials/pharmacology , Wound Healing , Hydrogels
18.
AAPS PharmSciTech ; 24(8): 237, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989970

ABSTRACT

"Sticking" during tablet manufacture is the term used to describe the accumulation of adhered tablet material on the punch over the course of several compaction cycles. The occurrence of sticking can affect tablet weight, image, and structural integrity and halt manufacturing operations. The earlier the risk of sticking is detected during R&D, the more options are available for mitigation and the less potential there is for significant delays and costs. The detection osf sticking, however, during the early stages of drug development is challenging due to the limitations of available material quantity. In this work, single tablet multi-compaction (STMC) and a highly sensitive laser reflection sensor are used to detect the propensity of sticking with ibuprofen powder blends. STMC can differentiate the various formulations and replicates the trends of sticking at different punch speeds. The results demonstrate the potential for STMC to be used as an extremely material sparing (requiring very few tablets) methodology for the assessment of sticking during early-stage development.


Subject(s)
Ibuprofen , Adhesiveness , Drug Compounding/methods , Tablets/chemistry , Ibuprofen/chemistry , Powders/chemistry
19.
ACS Appl Mater Interfaces ; 15(41): 48744-48753, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37802535

ABSTRACT

Although conductive hydrogels (CHs) have been investigated as the wearable sensor in recent years, how to prepare the multifunctional CHs with long-term usability is still a big challenge. In this paper, we successfully prepared a kind of conductive and self-adhesive hydrogel with a simple method, and its excellent ductility makes it possible as a flexible strain sensor for intelligent monitoring. The CHs are constructed by poly(vinyl alcohol) (PVA), polydopamine (PDA), and phytic acid (PA) through the freeze-thaw cycle method. The introduction of PA enhanced the intermolecular force with PVA and provided much H+ for augmented conductivity, while the catechol group on PDA endows the hydrogel with self-adhesion ability. The PVA/PA/PDA hydrogel can directly contact with the skin and adhere to it stably, which makes the hydrogel potentially a wearable strain sensor. The PVA/PA/PDA hydrogel can monitor human motion signals (including fingers, elbows, knees, etc.) in real-time and can accurately monitor tiny electrical signals for smile and handwriting recognition. Notably, the composite CHs can be used in a normal environment even after 4 months. Because of its excellent ductility, self-adhesiveness, and conductivity, the PVA/PA/PDA hydrogel provides a new idea for wearable bioelectronic sensors.


Subject(s)
Adhesives , Hydrogels , Humans , Resin Cements , Electric Conductivity , Adhesiveness , Phytic Acid
20.
AAPS PharmSciTech ; 24(7): 209, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817056

ABSTRACT

Sticking to tablet punches is a major issue during drug product manufacturing. Research has shown that sticking involves the interrelationship of powder properties, compression force, length of manufacturing runs and punch quality. Here, we present a novel non-destructive methodology to study the surface metrology of punches to monitor them over their lifetime. This investigation used a non-contact laser interferometer to characterise roughness of commercial standard S7 steel punches coated with chrome that were originally used for commercial scale production that developed a sticking issue. During the development, this phenomenon had not been observed and was not considered a scale-up risk. The profilometer was used to examine the complete surface of these punches to investigate whether they met the acceptability criteria based on BS_ISO_18804 tooling standard. To improve data analysis during changeover, a 3D-printed holder was designed to enable analysis with minimal set-up requirements. Upon investigation, the punches were found to be of an unacceptable roughness and, particularly rough areas of the punch surface profiled, correlated well with areas of visually pronounced sticking. This non-destructive method can be used to produce a more detailed characterisation of punch roughness to ensure surfaces are of an acceptable quality after treatment with coatings.


Subject(s)
Mechanical Phenomena , Adhesiveness , Tablets , Pressure , Surface Properties , Drug Compounding/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...