Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91.424
Filter
1.
Cell Death Dis ; 15(6): 387, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824145

ABSTRACT

Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.


Subject(s)
Adipose Tissue , Cell Differentiation , Epigenesis, Genetic , Mesenchymal Stem Cells , Mitochondria , Obesity , Humans , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/genetics , Obesity/pathology , Mitochondria/metabolism , Adipose Tissue/metabolism , Cell Differentiation/genetics , Female , Male , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adult , Middle Aged , Cell Proliferation
2.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822901

ABSTRACT

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Subject(s)
Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Exosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Glucose/metabolism , Membrane Proteins/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction , Ubiquitination , Neovascularization, Physiologic , Cells, Cultured , Stem Cells/metabolism , Transcription Factors
3.
Food Res Int ; 188: 114450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823835

ABSTRACT

This study aimed at assessing the effects of two infra-vitam traits, specifically the slaughter weight (SW) and the ultrasound backfat depth (BCKF) on several post-mortem and quality traits of typical Prosciutto Veneto protected designation of origin (PDO) dry-cured ham. The trial was conducted on a population of 423 pigs fed using different strategies to generate a high variation in SW (175 ± 15.5 kg) and BCKF (23.16 ± 4.14 mm). All the left thighs were weighed at slaughter and the ham factory during the different processing phases. The fat cover depth of green trimmed hams was measured. Data were analyzed with a linear model including SW classified in tertiles, BCKF as a covariate, SW × BCKF interaction, sex, batch, and pen nested within batch. Our results highlighted that, for each 10 kg increase in SW, trimmed and seasoned ham weights increased by 0.76 and 0.54 kg, respectively. The increase in SW significantly reduced relative curing and deboning losses but did not affect ham fat cover depth and trimming losses. A rise in BCKF increased the ham fat cover depth and trimming losses and decreased the curing and deboning losses. Increases in SW and BCKF improved quality traits of the seasoned ham including fat cover depth, visible marbling, inner lean firmness, and fat color. These findings confirm the feasibility of increasing SW and BCKF, which will result in a reduction in the relative losses associated with the dry-curing process while improving the quality of the seasoned ham.


Subject(s)
Food Handling , Animals , Food Handling/methods , Male , Female , Meat Products/analysis , Body Weight , Swine , Adipose Tissue , Pork Meat/analysis , Italy , Food Quality
4.
Stem Cell Res Ther ; 15(1): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824568

ABSTRACT

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.


Subject(s)
Adipose Tissue , Chitosan , Mesenchymal Stem Cells , Microspheres , Nerve Regeneration , Rats, Sprague-Dawley , Chitosan/chemistry , Nerve Regeneration/physiology , Animals , Rats , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Sciatic Nerve/physiology , Porosity , Tissue Scaffolds/chemistry , Male , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Cells, Cultured
5.
Narra J ; 4(1): e303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798840

ABSTRACT

Trunk muscles maintain steady effort with adequate strength and endurance. When the muscle performance is subpar, it might cause lower back discomfort. No reference for trunk strength and endurance has been established previously. The aim of this study was to determine the normative reference values for dynamometric and non-dynamometric tests in people with various body fat percentages. Two hundred sixty-four participants aged 19-40 years old were recruited in this cross-sectional study. The Siri equation was used to calculate the individuals body fat proportions, which were divided into normal, high, and very high body fat for men and women. The Modified Sorenson's and the Back-Leg-Chest Dynamometric tests were utilized to measure muscular performance. The means of strength in females with normal, high, and very high body fat percentages were 27.39, 25.75, and 25.37 N/m2, respectively. The males in the same category had the means of 56.48, 51.79, and 60.17 N/m2, respectively. The highest mean of endurance in females was in those with normal body fat percentage (42.28), so did males (71.02). Our findings suggest that males had higher trunk muscle strength and endurance than females, and normal-body-fat individuals had the greatest endurance regardless of gender.


Subject(s)
Muscle Strength , Humans , Female , Male , Adult , Cross-Sectional Studies , Muscle Strength/physiology , Reference Values , Sex Factors , Adipose Tissue , Muscle Strength Dynamometer , Torso/physiology , Physical Endurance/physiology , Young Adult
6.
Cell Rep Methods ; 4(5): 100778, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38749443

ABSTRACT

Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.


Subject(s)
Adipose Tissue , Ethanol , Hepatocytes , Liver Diseases, Alcoholic , Organoids , Humans , Organoids/pathology , Organoids/drug effects , Ethanol/pharmacology , Ethanol/adverse effects , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/metabolism , Adipose Tissue/pathology , Adipose Tissue/cytology , Alcohol Dehydrogenase/metabolism , Oxidative Stress/drug effects , Liver/pathology , Liver/drug effects , Liver/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology , Models, Biological , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Stromal Cells/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Thioredoxins/metabolism
7.
J Nanobiotechnology ; 22(1): 300, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816719

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs. Recent advances in regenerative medicine advocate for the use of three-dimensional culture of hADSCs to produce EVs, as it more accurately simulates their physiological state. Moreover, the successful application of EVs in tissue engineering relies on the targeted delivery of EVs to cells within biomaterial scaffolds. METHODS AND RESULTS: The hADSCs spheroids and hADSCs gelatin methacrylate (GelMA) microspheres are utilized to produce three-dimensional cultured EVs, corresponding to hADSCs spheroids-EVs and hADSCs microspheres-EVs respectively. hADSCs spheroids-EVs demonstrate excellent production and functional molecule loading compared with hADSCs microspheres-EVs. The upregulation of eight miRNAs (i.e. hsa-miR-486-5p, hsa-miR-423-5p, hsa-miR-92a-3p, hsa-miR-122-5p, hsa-miR-223-3p, hsa-miR-320a, hsa-miR-126-3p, and hsa-miR-25-3p) and the downregulation of hsa-miR-146b-5p within hADSCs spheroids-EVs show the potential of improving the fate of remaining ear chondrocytes and promoting cartilage formation probably through integrated regulatory mechanisms. Additionally, a quick and innovative pipeline is developed for isolating chondrocyte homing peptide-modified EVs (CHP-EVs) from three-dimensional dynamic cultures of hADSCs spheroids. CHP-EVs are produced by genetically fusing a CHP at the N-terminus of the exosomal surface protein LAMP2B. The CHP + LAMP2B-transfected hADSCs spheroids were cultured with wave motion to promote the secretion of CHP-EVs. A harvesting method is used to enable the time-dependent collection of CHP-EVs. The pipeline is easy to set up and quick to use for the isolation of CHP-EVs. Compared with nontagged EVs, CHP-EVs penetrate the biomaterial scaffolds and specifically deliver the therapeutic miRNAs to the remaining ear chondrocytes. Functionally, CHP-EVs show a major effect on promoting cell proliferation, reducing cell apoptosis and enhancing cartilage formation in remaining ear chondrocytes in the M1 macrophage-infiltrated microenvironment. CONCLUSIONS: In summary, an innovative pipeline is developed to obtain CHP-EVs from three-dimensional dynamic culture of hADSCs spheroids. This pipeline can be customized to increase EVs production and functional molecule loading, which meets the requirements for regulating remaining ear chondrocyte fate in the M1 macrophage-infiltrated microenvironment.


Subject(s)
Chondrocytes , Extracellular Vesicles , Mesenchymal Stem Cells , Peptides , Spheroids, Cellular , Humans , Chondrocytes/metabolism , Chondrocytes/cytology , Extracellular Vesicles/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Peptides/chemistry , Peptides/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Macrophages/metabolism , Macrophages/cytology , Cells, Cultured , Microspheres , Tissue Engineering/methods , Cell Culture Techniques, Three Dimensional/methods , Cellular Microenvironment , Ear Cartilage/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Differentiation
8.
Parasit Vectors ; 17(1): 215, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734633

ABSTRACT

BACKGROUND: Animal African trypanosomiasis, which is caused by different species of African trypanosomes, is a deadly disease in livestock. Although African trypanosomes are often described as blood-borne parasites, there have been recent reappraisals of the ability of these parasites to reside in a wide range of tissues. However, the majority of those studies were conducted on non-natural hosts infected with only one species of trypanosome, and it is unclear whether a similar phenomenon occurs during natural animal infections, where multiple species of these parasites may be present. METHODS: The infective trypanosome species in the blood and other tissues (adipose and skin) of a natural host (cows, goats and sheep) were determined using a polymerase chain reaction-based diagnostic. RESULTS: The animals were found to harbour multiple species of trypanosomes. Different patterns of distribution were observed within the host tissues; for instance, in some animals, the blood was positive for the DNA of one species of trypanosome and the skin and adipose were positive for the DNA of another species. Moreover, the rate of detection of trypanosome DNA was highest for skin adipose and lowest for the blood. CONCLUSIONS: The findings reported here emphasise the complexity of trypanosome infections in a natural setting, and may indicate different tissue tropisms between the different parasite species. The results also highlight the need to include adipose and skin tissues in future diagnostic and treatment strategies.


Subject(s)
Adipose Tissue , Goat Diseases , Goats , Skin , Trypanosoma , Trypanosomiasis, African , Animals , Goats/parasitology , Trypanosomiasis, African/veterinary , Trypanosomiasis, African/parasitology , Adipose Tissue/parasitology , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Skin/parasitology , Sheep/parasitology , Goat Diseases/parasitology , Cattle , Polymerase Chain Reaction , Sheep Diseases/parasitology , DNA, Protozoan/genetics , Cattle Diseases/parasitology
9.
Clin Interv Aging ; 19: 737-744, 2024.
Article in English | MEDLINE | ID: mdl-38736561

ABSTRACT

Purpose: Although both gait speed and fat mass are crucial for healthy aging, evidence suggests that the associations between these components remain unclear. Therefore, the main purpose of the study was to examine the associations between gait speed and fat mass. Patients and Methods: In this cross-sectional study, we recruited 643 older men and women aged >60 years. Fat mass was assessed using bioelectrical impedance analysis, while gait speed was determined by calculating the time an individual has taken to walk across a 4.6-m distance. Receiver operating characteristic (ROC) curves and odds ratios (OR) were performed to determine cut-off points and mutual associations. Results: In older men, the optimal threshold of gait speed to detect high level of fat mass was 1.40 m/s with the area under the curve (AUC) being 0.82 (95% CI 0.76-0.89, p < 0.001). In older women, the optimal cut-off point was 1.37 m/s (AUC = 0.85, 95% CI 0.81-0.90, p < 0.001). Older men and women who walked below the newly developed threshold were approximately 12 times more likely to have high level of fat. Conclusion: In summary, newly developed cut-off points of gait speed have adequate discriminatory ability to detect older men and women with high level of fat mass. Although gait speed may be considered as a satisfactory screening tool for fat mass, its utility in clinical practice needs to be further investigated.


Subject(s)
ROC Curve , Walking Speed , Humans , Male , Female , Aged , Cross-Sectional Studies , Middle Aged , Electric Impedance , Body Mass Index , Aged, 80 and over , Odds Ratio , Area Under Curve , Adipose Tissue , Aging/physiology
10.
FASEB J ; 38(10): e23626, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38739537

ABSTRACT

Transplantation of adipose-derived stem cells (ASCs) is a promising option in the field of chronic wounds treatment. However, the effectiveness of ASCs therapies has been hampered by highly inflammatory environment in chronic wound areas. These problems could be partially circumvented using efficient approaches that boost the survival and anti-inflammatory capacity of transplanted ASCs. Here, by application of mechanical stretch (MS), we show that ASCs exhibits increased survival and immunoregulatory properties in vitro. MS triggers the secretion of macrophage colony stimulating factor (M-CSF) from ASCs, a chemokine that is linked to anti-inflammatory M2-like macrophages polarization. When the MS-ASCs were transplanted to chronic wounds, the wound area yields significantly faster closure rate and lower inflammatory mediators, largely due to macrophages polarization driven by transplanted MS-ASCs. Thus, our work shows that mechanical stretch can be harnessed to enhance ASCs transplantation efficiency in chronic wounds treatment.


Subject(s)
Adipose Tissue , Macrophages , Wound Healing , Wound Healing/physiology , Macrophages/metabolism , Animals , Adipose Tissue/cytology , Humans , Mice , Stress, Mechanical , Stem Cells/cytology , Stem Cells/metabolism , Cells, Cultured , Male , Macrophage Colony-Stimulating Factor/metabolism , Stem Cell Transplantation/methods , Inflammation/therapy , Mice, Inbred C57BL
11.
Ann Plast Surg ; 92(6): 700-702, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38768023

ABSTRACT

BACKGROUND: There is currently no standardization in the field of research on fat grafts in rats, which is one of the most popular topics in plastic surgery. The aim of our study was to demonstrate the effects of selecting paraepididymal fat grafts as the donor area on enhancing the reliability of fat graft studies. METHODS: In this study, 12 male Sprague-Dawley rats were used to obtain adipose grafts from both inguinal and paraepididymal regions. After measuring the graft weights, they were subjected to histological examination using hematoxylin-eosin staining, as well as immunohistochemical staining with antiperilipin antibody. Purity of the samples, viability of adipose cells, and the presence of lymph nodes within the grafts were analyzed. RESULTS: The purity of adipose cells in graft samples obtained from the paraepididymal region was found to be 98.1% compared with the total sample. In contrast, the purity of adipose cells in graft samples obtained from the inguinal region was 58.37%. Hematoxylin-eosin staining revealed significantly higher adipocyte viability and vascularity in the paraepididymal region compared with the inguinal region (P = 0.0134). Conversely, lymphatic tissue content in samples obtained from the inguinal region was significantly higher compared with paraepididymal adipose tissue samples (P < 0.0001). Immunohistochemical staining with antiperilipin antibody showed a denser and more uniform staining pattern in paraepididymal adipose grafts (P < 0.0001). CONCLUSIONS: Using paraepididymal fat, devoid of lymphatic tissue, naturally eliminates 2 critical biases (estrogen and lymphatic tissue), enhancing the standardization and reliability of fat graft survival studies.


Subject(s)
Adipose Tissue , Epididymis , Graft Survival , Rats, Sprague-Dawley , Animals , Male , Adipose Tissue/transplantation , Rats
12.
J Plast Surg Hand Surg ; 59: 65-71, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769740

ABSTRACT

Radiotherapy is important in breast cancer treatment. A side effect of the treatment is fibrosis that decreases the possibility for a successful breast reconstruction with expanders and with high patient satisfaction with the result. The most common option for mastectomized, irradiated women wishing for a breast reconstruction is autologous tissue transplantation. However, some patients are not suitable for flap surgery. Fifty mastectomized and irradiated women were included in a randomized controlled trial. They underwent breast reconstruction with expanders and were allocated 1:1 to either receive pre-treatment with autologous fat transplantation (AFT) or not. Primary outcomes were frequency of reoperations and complications. Secondary outcomes were number of days in hospital, number of outpatient visits to surgeon or nurse and patient reported outcome as reported with Breast Q. Follow-up time was 2 years. Fifty-two per cent of the intervention group and 68% of the controls underwent reoperations (p = 0.611). Thirty-two per cent of the intervention group and 52% of the controls had complications (p = 0.347). The median number of consultations with the nurse was four in the intervention group and six in the control group (p = 0.002). The AFT patients were significantly more satisfied with their breasts and psychosocial well-being after 2 years. They also had higher increase in satisfaction with breasts, psychosocial well-being, and sexual well-being when comparing baseline with 2 years postoperatively. This randomized controlled trial indicates benefits of AFT prior to breast reconstruction with expanders, especially on patient reported outcome even if the study sample is small.


Subject(s)
Adipose Tissue , Breast Neoplasms , Mammaplasty , Patient Satisfaction , Transplantation, Autologous , Humans , Female , Middle Aged , Breast Neoplasms/surgery , Mammaplasty/methods , Adult , Adipose Tissue/transplantation , Reoperation , Mastectomy , Breast Implants , Postoperative Complications , Tissue Expansion Devices , Treatment Outcome
13.
Ann Plast Surg ; 92(6): 635-641, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38747571

ABSTRACT

BACKGROUND: Keloid is a dermal fibroproliferative disease unique to humans. Due to the ambiguity in its pathophysiology and the frequent recurrence of keloid, there is no clear consensus on the treatment of keloid and there are many treatment methods defined. In order to benefit from the positive effects of fat grafting on pathological scars, we applied fat grafting to patients who underwent keloid enucleation. METHODS: Fifteen ear keloid patients included in the study. All patients underwent the same surgical procedure by the same surgeon. Routine follow-ups and examinations were performed to evaluate the results and in addition, the Patient and Observer Scar Assessment Scale (POSAS) survey was used. RESULTS: In the study, 15 patients were followed for a median (IQR) period of 21 (13-28) months. No recurrence was observed in any patient during follow-up, which occurred for a median of 21 (13-28) months. In the questionnaire filled out by the patients, the preoperative median value was found to be 48 (IQR: 12), whereas the postoperative median value was found to be 14 (IQR: 8). According to the patients, there was a statistically significant ( P < 0.05) positive improvement after surgery. CONCLUSIONS: Historically, surgical procedures were avoided because the surgical recurrence rate was very high, but today, recurrence rates are decreasing with combined treatments. These treatment combinations may require more than one intervention and require frequent clinical follow-ups. With our technique of fat grafting after enucleation, the treatment was completed with a single operation and no additional intervention was required.


Subject(s)
Adipose Tissue , Keloid , Humans , Keloid/surgery , Male , Female , Adipose Tissue/transplantation , Adult , Follow-Up Studies , Treatment Outcome , Young Adult , Middle Aged , Adolescent , Ear Diseases/surgery
14.
Cell Transplant ; 33: 9636897241251621, 2024.
Article in English | MEDLINE | ID: mdl-38756050

ABSTRACT

Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously revealed that a gelatin hydrogel nonwoven fabric (GHNF) markedly improved subcutaneous islet engraftment. We herein investigated whether the addition of adipose tissue-derived stem cells (ADSCs) to GHNF affected the outcome. A silicone spacer sandwiched between two GHNFs with (AG group) or without (GHNF group) ADSCs, or a silicone spacer alone (Silicone group) was implanted into the subcutaneous space of healthy mice at 6 weeks before transplantation, then diabetes was induced 7 days before transplantation. Syngeneic islets were transplanted into the pretreated space. Intraportal transplantation (IPO group) was also performed to compare the transplant efficiency. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, and inflammatory mediators were evaluated. The results in the subcutaneous transplantation were compared using the Silicone group as a control. The results of the IPO group were also compared with those of the AG group. The AG group showed significantly better blood glucose changes than the Silicone and the IPO groups. The cure rate of AG group (72.7%) was the highest among the groups (GHNF; 40.0%, IPO; 40.0%, Silicone; 0%). The number of vWF-positive vessels in the subcutaneous space of the AG group was significantly higher than that in other groups before transplantation (P < 0.01). Lectin angiography also showed that the same results (P < 0.05). According to the results of the ADSCs tracing, ADSCs did not exist at the transplant site (6 weeks after implantation). The positive rates for laminin and collagen III constructed around the transplanted islets did not differ among groups. Inflammatory mediators were higher in the Silicone group, followed by the AG and GHNF groups. Pretreatment using bioabsorbable scaffolds combined with ADSCs enhanced neovascularization in subcutaneous space, and subcutaneous islet transplantation using GHNF with ADSCs was superior to intraportal islet transplantation.


Subject(s)
Adipose Tissue , Gelatin , Hydrogels , Islets of Langerhans Transplantation , Animals , Islets of Langerhans Transplantation/methods , Adipose Tissue/cytology , Gelatin/chemistry , Mice , Hydrogels/chemistry , Male , Diabetes Mellitus, Experimental/therapy , Stem Cells/cytology , Stem Cells/metabolism , Islets of Langerhans/cytology , Blood Glucose/metabolism , Mice, Inbred C57BL
15.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727260

ABSTRACT

Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.


Subject(s)
Adipose Tissue , Bone Marrow , Humans , Adipose Tissue/metabolism , Bone Marrow/pathology , Bone Marrow/metabolism , Animals
16.
Cells ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727286

ABSTRACT

The aim of this study was to review the current literature regarding the effects of intra-articularly applied, fat-derived orthobiologics (FDO) in the treatment of primary knee osteoarthritis over a mid-term follow-up period. A systematic literature search was conducted on the online databases of Scopus, PubMed, Ovid MEDLINE, and Cochrane Library. Studies investigating intra-articularly applied FDO with a minimum number of 10 knee osteoarthritis patients, a follow-up period of at least 2 years, and at least 1 reported functional parameter (pain level or Patient-Reported Outcome Measures) were included. Exclusion criteria encompassed focal chondral defects and techniques including additional arthroscopic bone marrow stimulation. In 28 of 29 studies, FDO showed a subjective improvement in symptoms (pain and Patient-Reported Outcome Measures) up to a maximum follow-up of 7.2 years. Radiographic cartilage regeneration up to 3 years postoperatively, as well as macroscopic cartilage regeneration investigated via second-look arthroscopy, may corroborate the favorable clinical findings in patients with knee osteoarthritis. The methodological heterogeneity in FDO treatments leads to variations in cell composition and represents a limitation in the current state of knowledge. However, this systematic review suggests that FDO injection leads to beneficial mid-term results including symptom reduction and preservation of the affected joint in knee osteoarthritis patients.


Subject(s)
Osteoarthritis, Knee , Humans , Adipose Tissue , Injections, Intra-Articular , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/pathology , Transplantation, Autologous , Treatment Outcome
17.
Biofabrication ; 16(3)2024 May 23.
Article in English | MEDLINE | ID: mdl-38739412

ABSTRACT

Reconstruction of large 3D tissues based on assembly of micro-sized multi-cellular spheroids has gained attention in tissue engineering. However, formation of 3D adipose tissue from spheroids has been challenging due to the limited adhesion capability and restricted cell mobility of adipocytes in culture media. In this study, we addressed this problem by developing adipo-inductive nanofibers enabling dual delivery of indomethacin and insulin. These nanofibers were introduced into composite spheroids comprising human adipose-derived stem cells (hADSCs). This approach led to a significant enhancement in the formation of uniform lipid droplets, as evidenced by the significantly increased Oil red O-stained area in spheroids incorporating indomethacin and insulin dual delivery nanofibers (56.9 ± 4.6%) compared to the control (15.6 ± 3.5%) with significantly greater gene expression associated with adipogenesis (C/EBPA, PPARG, FABP4, and adiponectin) of hADSCs. Furthermore, we investigated the influence of culture media on the migration and merging of spheroids and observed significant decrease in migration and merging of spheroids in adipogenic differentiation media. Conversely, the presence of adipo-inductive nanofibers promoted spheroid fusion, allowing the formation of macroscopic 3D adipose tissue in the absence of adipogenic supplements while facilitating homogeneous adipogenesis of hADSCs. The approach described here holds promise for the generation of 3D adipose tissue constructs by scaffold-free assembly of stem cell spheroids with potential applications in clinical and organ models.


Subject(s)
Adipogenesis , Adipose Tissue , Nanofibers , Spheroids, Cellular , Stem Cells , Tissue Engineering , Nanofibers/chemistry , Humans , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Insulin/metabolism , Indomethacin/pharmacology , Adipocytes/cytology , Adipocytes/metabolism , Cell Differentiation/drug effects , Tissue Scaffolds/chemistry , Adiponectin/metabolism , Cells, Cultured
18.
Cell Rep Med ; 5(5): 101559, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38744275

ABSTRACT

Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.


Subject(s)
Adipocytes , Adipose Tissue , Arrhythmias, Cardiac , Leptin , Myocytes, Cardiac , Neuropeptide Y , Pericardium , Humans , Animals , Pericardium/metabolism , Pericardium/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neuropeptide Y/metabolism , Leptin/metabolism , Adipocytes/metabolism , Male , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neurons/metabolism , Neurons/pathology , Sodium-Calcium Exchanger/metabolism , Female , Receptors, Neuropeptide Y/metabolism , Middle Aged , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Atrial Fibrillation/pathology , Sympathetic Nervous System/metabolism , Mice , Epicardial Adipose Tissue
19.
Nat Commun ; 15(1): 4214, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760332

ABSTRACT

The liver gene expression of the peroxisomal ß-oxidation enzyme acyl-coenzyme A oxidase 1 (ACOX1), which catabolizes very long chain fatty acids (VLCFA), increases in the context of obesity, but how this pathway impacts systemic energy metabolism remains unknown. Here, we show that hepatic ACOX1-mediated ß-oxidation regulates inter-organ communication involved in metabolic homeostasis. Liver-specific knockout of Acox1 (Acox1-LKO) protects mice from diet-induced obesity, adipose tissue inflammation, and systemic insulin resistance. Serum from Acox1-LKO mice promotes browning in cultured white adipocytes. Global serum lipidomics show increased circulating levels of several species of ω-3 VLCFAs (C24-C28) with previously uncharacterized physiological role that promote browning, mitochondrial biogenesis and Glut4 translocation through activation of the lipid sensor GPR120 in adipocytes. This work identifies hepatic peroxisomal ß-oxidation as an important regulator of metabolic homeostasis and suggests that manipulation of ACOX1 or its substrates may treat obesity-associated metabolic disorders.


Subject(s)
Acyl-CoA Oxidase , Liver , Mice, Knockout , Obesity , Animals , Liver/metabolism , Mice , Acyl-CoA Oxidase/metabolism , Acyl-CoA Oxidase/genetics , Obesity/metabolism , Obesity/genetics , Male , Insulin Resistance , Mice, Inbred C57BL , Oxidation-Reduction , Lipid Metabolism , Adipose Tissue/metabolism , Diet, High-Fat , Energy Metabolism , Fatty Acids/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
20.
Elife ; 132024 May 21.
Article in English | MEDLINE | ID: mdl-38771186

ABSTRACT

Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.


Subject(s)
Cell Transdifferentiation , Chickens , Fibroblasts , Meat , Animals , Fibroblasts/metabolism , Fibroblasts/cytology , Adipose Tissue/cytology , Muscle Cells/cytology , Muscle Development , Cell Proliferation , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , In Vitro Meat
SELECTION OF CITATIONS
SEARCH DETAIL
...