Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.715
Filter
1.
Vestn Oftalmol ; 140(2): 102-111, 2024.
Article in Russian | MEDLINE | ID: mdl-38742506

ABSTRACT

Dry eye disease (DED) is pathogenetically based on inflammation of the ocular surface. A step-by-step approach to DED treatment involves early initiation of anti-inflammatory therapy, including instillation of cyclosporine A (CsA). However, recommendations for the use of topical CsA in clinical practice are limited. This article presents an expert consensus on practical recommendations for the management of patients with DED, including indications, time of initiation and duration of CsA therapy, comparison of CsA forms currently registered in the Russian Federation, as well as issues of patient education.


Subject(s)
Cyclosporine , Emulsions , Humans , Administration, Ophthalmic , Cyclosporine/administration & dosage , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/etiology , Immunosuppressive Agents/administration & dosage , Ophthalmic Solutions/administration & dosage , Treatment Outcome , Xerophthalmia/etiology , Xerophthalmia/drug therapy , Xerophthalmia/diagnosis
2.
AAPS PharmSciTech ; 25(5): 119, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816667

ABSTRACT

Loteprednol etabonate (LE) is a topical corticosteroid for the symptomatic management of ocular conditions, encompassing both allergic and infectious etiologies. Owing to the dynamic and static barriers of the eye, LE exhibits significantly low bioavailability, necessitating an increase in the frequency of drug administration. The objective of this study is to overcome the limitations by developing niosomal systems loaded with LE. Design of Experiments (DoE) approach was used for the development of optimal niosome formulation. The optimal formulation was characterized using DLS, FT-IR, and DSC analysis. In vitro and ex vivo release studies were performed to demonstrate drug release patterns. After that HET-CAM evaluation was conducted to determine safety profile. Then, in vivo studies were carried out to determine therapeutic activity of niosomes. Zeta potential (ZP), particle size, polydispersity index (PI), and encapsulation efficacy (EE) were -33.8 mV, 89.22 nm, 0.192, and 89.6%, respectively. Medicated niosomes had a broad distribution within rabbit eye tissues and was absorbed by the aqueous humor of the bovine eye for up to 6 h after treatment. Cumulative permeated drug in the bovine eye and rabbit eye were recorded 52.45% and 54.8%, respectively. No irritation or hemorrhagic situation was observed according to the results of HET-CAM study. Thus, novel LE-loaded niosomal formulations could be considered as a promising treatment option for the dry-eye-disease (DED) due to enhanced bioavailability and decreased side effects.


Subject(s)
Delayed-Action Preparations , Dry Eye Syndromes , Liposomes , Loteprednol Etabonate , Animals , Rabbits , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Loteprednol Etabonate/administration & dosage , Loteprednol Etabonate/pharmacokinetics , Dry Eye Syndromes/drug therapy , Cattle , Drug Liberation , Particle Size , Disease Models, Animal , Administration, Ophthalmic , Biological Availability , Drug Delivery Systems/methods , Eye/metabolism , Eye/drug effects , Aqueous Humor/metabolism , Chemistry, Pharmaceutical/methods , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/pharmacokinetics
3.
Int J Pharm ; 658: 124222, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38735632

ABSTRACT

Dry eye disease (DED) is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction and constitutes one of the most common ocular conditions worldwide. However, its treatment remains unsatisfactory. While artificial tears are commonly used to moisturize the ocular surface, they do not address the underlying causes of DED. Apigenin (APG) is a natural product with anti-inflammatory properties, but its low solubility and bioavailability limit its efficacy. Therefore, a novel formulation of APG loaded into biodegradable and biocompatible nanoparticles (APG-NLC) was developed to overcome the restricted APG stability, improve its therapeutic efficacy, and prolong its retention time on the ocular surface by extending its release. APG-NLC optimization, characterization, biopharmaceutical properties and therapeutic efficacy were evaluated. The optimized APG-NLC exhibited an average particle size below 200 nm, a positive surface charge, and an encapsulation efficiency over 99 %. APG-NLC exhibited sustained release of APG, and stability studies demonstrated that the formulation retained its integrity for over 25 months. In vitro and in vivo ocular tolerance studies indicated that APG-NLC did not cause any irritation, rendering them suitable for ocular topical administration. Furthermore, APG-NLC showed non-toxicity in an epithelial corneal cell line and exhibited fast cell internalization. Therapeutic benefits were demonstrated using an in vivo model of DED, where APG-NLC effectively reversed DED by reducing ocular surface cellular damage and increasing tear volume. Anti-inflammatory assays in vivo also showcased its potential to treat and prevent ocular inflammation, particularly relevant in DED patients. Hence, APG-NLC represent a promising system for the treatment and prevention of DED and its associated inflammation.


Subject(s)
Apigenin , Drug Carriers , Dry Eye Syndromes , Lipids , Nanoparticles , Animals , Apigenin/administration & dosage , Apigenin/chemistry , Apigenin/pharmacology , Apigenin/pharmacokinetics , Drug Carriers/chemistry , Dry Eye Syndromes/drug therapy , Humans , Rabbits , Lipids/chemistry , Lipids/administration & dosage , Cell Line , Nanoparticles/chemistry , Administration, Ophthalmic , Drug Liberation , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Particle Size , Nanostructures/administration & dosage , Nanostructures/chemistry , Male
4.
Int J Pharm ; 658: 124226, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38744414

ABSTRACT

This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.


Subject(s)
Administration, Ophthalmic , Drug Delivery Systems , Eye Diseases , Nanoparticles , Suspensions , Humans , Eye Diseases/drug therapy , Drug Delivery Systems/methods , Animals , Solubility , Ophthalmology/methods
5.
Int J Pharm ; 658: 124184, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38692497

ABSTRACT

The present study systematically investigates the impact of active pharmaceutical ingredient (API) variables and oleaginous base characteristics on the in vitro release (IVR) performance of ophthalmic ointments, utilizing dexamethasone as a model drug. The interplay between selected attributes (i.e., particle size distribution, crystallinity, and polymorphic form for API, and rheological factors for compendial-grade white petrolatum) and IVR performance was investigated. APIs from different vendors exhibited variations in crystallinity and polymorphism. Ointments containing amorphous dexamethasone presented higher release amounts/rates compared to crystalline counterparts, emphasizing the role of physical state in release kinetics. Variations in particle size of this lipophilic API (5.4 - 21.2 µm) did not appear to impact IVR performance significantly. In contrast, white petrolatum's rheological attributes, which varied substantially within USP-grade petrolatum, were found to critically affect the drug release rate and extent of the ointment. The study's comprehensive analysis establishes a coherent connection between the quality attributes of both API and petrolatum and IVR, delineating their intricate interdependent effects on ophthalmic ointment performance. These findings provide reference to formulation design, quality control, and regulatory considerations within the pharmaceutical industry, fostering a robust foundational understanding of commonly overlooked quality attributes in ophthalmic ointments.


Subject(s)
Administration, Ophthalmic , Dexamethasone , Drug Liberation , Ointments , Particle Size , Petrolatum , Rheology , Dexamethasone/chemistry , Dexamethasone/administration & dosage , Petrolatum/chemistry , Crystallization , Chemistry, Pharmaceutical/methods
6.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792122

ABSTRACT

The eye's complex anatomical structures present formidable barriers to effective drug delivery across a range of ocular diseases, from anterior to posterior segment pathologies. Emerging as a promising solution to these challenges, nanotechnology-based platforms-including but not limited to liposomes, dendrimers, and micelles-have shown the potential to revolutionize ophthalmic therapeutics. These nanocarriers enhance drug bioavailability, increase residence time in targeted ocular tissues, and offer precise, localized delivery, minimizing systemic side effects. Focusing on pediatric ophthalmology, particularly on retinoblastoma, this review delves into the recent advancements in functionalized nanosystems for drug delivery. Covering the literature from 2017 to 2023, it comprehensively examines these nanocarriers' potential impact on transforming the treatment landscape for retinoblastoma. The review highlights the critical role of these platforms in overcoming the unique pediatric eye barriers, thus enhancing treatment efficacy. It underscores the necessity for ongoing research to realize the full clinical potential of these innovative drug delivery systems in pediatric ophthalmology.


Subject(s)
Drug Delivery Systems , Retinoblastoma , Retinoblastoma/drug therapy , Humans , Drug Carriers/chemistry , Child , Nanoparticles/chemistry , Micelles , Liposomes/chemistry , Dendrimers/chemistry , Retinal Neoplasms/drug therapy , Administration, Ophthalmic , Nanotechnology/methods
7.
Int J Biol Macromol ; 270(Pt 2): 132522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768922

ABSTRACT

The current study goal was to improve mucoadhesive potential and ocular pharmacokinetics of nanoparticles of thiolated xyloglucan (TXGN) containing moxifloxacin (MXF). Thiolation of xyloglucan (XGN) was achieved with esterification with 3-mercaptopropionic acid. TXGN was characterized by NMR and FTIR analysis. The nanoparticles of TXGN were prepared using ionic-gelation method and evaluate the antibacterial properties. TXGN and nanoparticles were determined to possess 0.06 and 0.08 mmol of thiol groups/mg of polymer by Ellman's method. The ex-vivo bioadhesion time of TXGN and nanoparticles was higher than XGN in a comparative assessment of their mucoadhesive properties. The creation of a disulfide link between mucus and TXGN is responsible for the enhanced mucoadhesive properties of TXGN (1-fold) and nanoparticles (2-fold) over XGN. Improved MXF penetration in nanoparticulate formulation (80 %) based on TXGN was demonstrated in an ex-vivo permeation research utilizing rabbit cornea. Dissolution study showed 95 % release of MXF from nanoparticles. SEM images of nanoparticles showed spherical shape and cell viability assay showed nontoxic behavior when tested on RPE cell line. Antibacterial analysis revealed a zone of inhibition of 31.5 ± 0.5 mm for MXF, while NXM3 exhibited an expanded zone of 35.5 ± 0.4 mm (p < 0.001). In conclusion, thiolation of XGN improves its bioadhesion, permeation, ocular-retention and pharmacokinetics of MXF.


Subject(s)
Glucans , Moxifloxacin , Nanoparticles , Xylans , Xylans/chemistry , Glucans/chemistry , Moxifloxacin/chemistry , Moxifloxacin/pharmacokinetics , Moxifloxacin/pharmacology , Animals , Rabbits , Nanoparticles/chemistry , Drug Carriers/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Sulfhydryl Compounds/chemistry , Cornea/metabolism , Cornea/drug effects , Humans , Drug Delivery Systems , Permeability , Cell Line , Administration, Ophthalmic , Adhesiveness , Adhesives/chemistry
8.
Int J Biol Macromol ; 270(Pt 1): 132302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744357

ABSTRACT

Nanocrystalline cellulose (NCC) is a star material in drug delivery applications due to its good biocompatibility, large specific surface area, high tensile strength (TS), and high hydrophilicity. Poly(Vinyl Alcohol)/Gellan-gum-based innovative composite film has been prepared using nanocrystalline cellulose (PVA/GG/NCC) as a strengthening agent for ocular delivery of moxifloxacin (MOX) via solvent casting method. Impedance analysis was studied using the capacitive sensing technique for examining new capacitance nature of the nanocomposite MOX film. Antimicrobial properties of films were evaluated using Pseudomonas aeruginosa and Staphylococcus aureus as gram-negative and gram-positive bacteria respectively by disc diffusion technique. XRD revealed the characteristic peak of NCC and the amorphous form of the drug. Sustained in vitro release and enhanced corneal permeation of drug were noticed in the presence of NCC. Polymer matrix enhanced the mechanical properties (tensile strength 22.05 to 28.41 MPa) and impedance behavior (resistance 59.23 to 213.23 Ω) in the film due to the presence of NCC rather than its absence (16.78 MPa and 39.03 Ω respectively). Occurrence of NCC brought about good antimicrobial behavior (both gram-positive and gram-negative) of the film. NCC incorporated poly(vinyl alcohol)/gellan-gum-based composite film exhibited increased mechanical properties and impedance behavior for improved ocular delivery of moxifloxacin.


Subject(s)
Cellulose , Moxifloxacin , Nanoparticles , Polysaccharides, Bacterial , Polyvinyl Alcohol , Moxifloxacin/chemistry , Moxifloxacin/pharmacology , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Polysaccharides, Bacterial/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Staphylococcus aureus/drug effects , Drug Delivery Systems , Nanocomposites/chemistry , Drug Liberation , Drug Carriers/chemistry , Animals , Administration, Ophthalmic , Pseudomonas aeruginosa/drug effects , Tensile Strength , Microbial Sensitivity Tests
9.
Int J Pharm Compd ; 28(3): 214-225, 2024.
Article in English | MEDLINE | ID: mdl-38768503

ABSTRACT

The aims of this survey were to determine how veterinary ophthalmologists worldwide use compounded ophthalmic drugs to treat ocular diseases, define their attitudes regarding compounding pharmacies, and identify commonly dispensed veterinary ophthalmic formulations as well as the diseases for which those preparations are most often prescribed. Respondents voluntar i ly and anonymously completed a questionnaire that was sent to a total of 1014 veterinary ophthalmologists at universities, specialty colleges, and ophthalmology associations in 24 countries. One hundred thirty (12.83%) veterinary ophthalmologists replied. Of those, 87 (66.92%) had worked in  veterinary ophthalmology for more than 10 years. Ten to 30% of their total prescriptions were compounded ophthalmic drugs, the most common of which were tacrolimus and cyclosporine for the treatment of keratoconjunctivitis sicca. Reported advantages of treatment with a compound included the accessibility of preparations that were not commercially available and the ability to customize formulations; reported disadvantages included brief shelf life, delivery time, and cost.


Subject(s)
Drug Compounding , Surveys and Questionnaires , Cross-Sectional Studies , Humans , Veterinary Drugs , Animals , Ophthalmic Solutions , Ophthalmology , Eye Diseases/drug therapy , Eye Diseases/veterinary , Administration, Ophthalmic , Veterinary Medicine
10.
Biol Pharm Bull ; 47(5): 1033-1042, 2024.
Article in English | MEDLINE | ID: mdl-38797668

ABSTRACT

Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.


Subject(s)
Cell-Penetrating Peptides , Cornea , Ophthalmic Solutions , Suspensions , Animals , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Ophthalmic Solutions/administration & dosage , Humans , Cornea/metabolism , Cornea/drug effects , Swine , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Quinolones/chemistry , Administration, Ophthalmic , Biological Availability , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Particle Size , Alanine/analogs & derivatives
11.
Int J Pharm ; 658: 124192, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703931

ABSTRACT

Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.


Subject(s)
Administration, Ophthalmic , Drug Carriers , Drug Delivery Systems , Eye , Nanoparticles , Humans , Animals , Drug Carriers/chemistry , Eye/metabolism , Eye/drug effects , Drug Delivery Systems/methods , Nanoparticles/chemistry , Eye Diseases/drug therapy , Nanoparticle Drug Delivery System/chemistry , Biological Availability , Drug Liberation
12.
Int J Pharm ; 658: 124195, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703935

ABSTRACT

Microneedles (MN) have emerged as an innovative technology for drug delivery, offering a minimally invasive approach to administer therapeutic agents. Recent applications have included ocular drug delivery, requiring the manufacture of sub-millimeter needle arrays in a reproducible and reliable manner. The development of 3D printing technologies has facilitated the fabrication of MN via mold production, although there is a paucity of information available regarding how the printing parameters may influence crucial issues such as sharpness and penetration efficacy. In this study, we have developed and optimized a 3D-printed MN micro-mold using stereolithography (SLA) 3D printing to prepare a dissolving ocular MN patch. The effects of a range of parameters including aspect ratio, layer thickness, length, mold shape and printing orientation have been examined with regard to both architecture and printing accuracy of the MN micro-mold, while the effects of printing angle on needle fidelity was also examined for a range of basic shapes (conical, pyramidal and triangular pyramidal). Mechanical strength and in vitro penetration of the polymeric (PVP/PVA) MN patch produced from reverse molds fabricated using MN with a range of shapes and height, and aspect ratios were assessed, followed by ex vivo studies of penetration into excised scleral and corneal tissues. The optimization process identified the parameters required to produce MN with the sharpest tips and highest dimensional fidelity, while the ex vivo studies indicated that these optimized systems would penetrate the ocular tissue with minimal applied pressure, thereby allowing ease of patient self-administration.


Subject(s)
Administration, Ophthalmic , Drug Delivery Systems , Needles , Printing, Three-Dimensional , Stereolithography , Animals , Microinjections/methods , Microinjections/instrumentation , Cornea/metabolism , Sclera , Swine , Technology, Pharmaceutical/methods
14.
Int J Pharm ; 657: 124141, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38677392

ABSTRACT

TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) polymeric micelles show interesting properties for ocular administration thanks to their solubilization capability, nanometric size and tissue penetration ability. However, micelles formulations are generally characterized by low viscosity, poor adhesion and very short retention time at the administration site. Therefore, the idea behind this work is the preparation and characterization of a crosslinked film based on xanthan gum that contains TPGS micelles and is capable of controlling their release. The system was loaded with melatonin and cyclosporin A, neuroprotective compounds to be delivered to the posterior eye segment. Citric acid and heating at different times and temperatures were exploited as crosslinking approach, giving the possibility to tune swelling, micelles release and drug release. The biocompatibility of the platform was confirmed by HET-CAM assay. Ex vivo studies on isolated porcine ocular tissues, conducted using Franz cells and two-photon microscopy, demonstrated the potential of the xanthan gum-based platform and enlightened micelles penetration mechanism. Finally, the sterilization step was approached, and a process to simultaneously crosslink and sterilize the platform was developed.


Subject(s)
Administration, Ophthalmic , Delayed-Action Preparations , Drug Liberation , Micelles , Neuroprotective Agents , Polysaccharides, Bacterial , Vitamin E , Polysaccharides, Bacterial/chemistry , Animals , Swine , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Vitamin E/chemistry , Vitamin E/administration & dosage , Delayed-Action Preparations/chemistry , Cyclosporine/administration & dosage , Cyclosporine/chemistry , Melatonin/administration & dosage , Melatonin/chemistry , Melatonin/pharmacology , Melatonin/pharmacokinetics , Sterilization , Cross-Linking Reagents/chemistry , Drug Carriers/chemistry , Eye/drug effects , Eye/metabolism , Drug Delivery Systems/methods
15.
Int J Pharm ; 657: 124110, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38604539

ABSTRACT

The goal of this investigation is to develop stable ophthalmic nanoformulations containing cannabidiol (CBD) and its analog cannabidiol-valine-hemisuccinate (CBD-VHS) for improved ocular delivery. Two nanoformulations, nanoemulsion (NE) and nanomicelles (NMC), were developed and evaluated for physicochemical characteristics, drug-excipient compatibility, sterilization, thermal analysis, surface morphology, ex-vivo transcorneal permeation, corneal deposition, and stability. The saturation solubility studies revealed that among the surfactants tested, Cremophor EL had the highest solubilizing capacity for CBD (23.3 ± 0.1 mg/mL) and CBD-VHS (11.2 ± 0.2 mg/mL). The globule size for the lead CBD formulations (NE and NMC) ranged between 205 and 270 nm while CBD-VHS-NMC formulation had a particle size of about 78 nm. The sterilized formulations, except for CBD-VHS-NMC at 40 °C, were stable for three months of storage (last time point tested). Release, in terms of CBD, in the in-vitro release/diffusion studies over 18 h, were faster from the CBD-VHS nanomicelles (38 %) compared to that from the CBD nanoemulsion (16 %) and nanomicelles (33 %). Transcorneal permeation studies revealed improvement in CBD permeability and flux with both formulations; however, a greater improvement was observed with the NMC formulation compared to the NE formulation. In conclusion, the nanoformulations prepared could serve as efficient topical ocular drug delivery platforms for CBD and its analog.


Subject(s)
Administration, Ophthalmic , Cannabidiol , Cornea , Drug Stability , Emulsions , Nanoparticles , Particle Size , Solubility , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Cannabidiol/pharmacokinetics , Animals , Cornea/metabolism , Cornea/drug effects , Nanoparticles/chemistry , Rabbits , Micelles , Valine/analogs & derivatives , Valine/chemistry , Valine/administration & dosage , Valine/pharmacokinetics , Drug Liberation , Lipids/chemistry , Excipients/chemistry , Permeability , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Surface-Active Agents/chemistry , Ophthalmic Solutions/administration & dosage
16.
AAPS PharmSciTech ; 25(5): 92, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684590

ABSTRACT

PURPOSE: Dry eye syndrome (DES), arising from various etiologic factors, leads to tear film instability and ocular surface damage. Given its anti-inflammatory effects, cyclosporine A (CsA) has been widely used as a short-term treatment option for DES. However, poor bioavailability and solubility of CsA in aqueous phase make the development of a cyclosporine A-based eye drop for ocular topical application a huge challenge. METHODS: In this study, a novel strategy for preparing cyclosporine A-loaded silk fibroin nanoemulsion gel (CsA NBGs) was proposed to address these barriers. Additionally, the rheological properties, ocular irritation potential, tear elimination kinetics, and pharmacodynamics based on a rabbit dry eye model were investigated for the prepared CsA NBGs. Furthermore, the transcorneal mechanism across the ocular barrier was also investigated. RESULTS: The pharmacodynamics and pharmacokinetics of CsA NBGs exhibited superior performance compared to cyclosporine eye drops, leading to a significant enhancement in the bioavailability of CsA NBGs. Furthermore, our investigation into the transcorneal mechanism of CsA NBGs revealed their ability to be absorbed by corneal epithelial cells via the paracellular pathway. CONCLUSION: The CsA NBG formulation exhibits promising potential for intraocular drug delivery, enabling safe, effective, and controlled administration of hydrophobic drugs into the eye. Moreover, it enhances drug retention within the ocular tissues and improves systemic bioavailability, thereby demonstrating significant clinical translational prospects.


Subject(s)
Biological Availability , Cyclosporine , Dry Eye Syndromes , Fibroins , Gels , Ophthalmic Solutions , Rabbits , Animals , Fibroins/chemistry , Cyclosporine/administration & dosage , Cyclosporine/pharmacokinetics , Cyclosporine/chemistry , Dry Eye Syndromes/drug therapy , Ophthalmic Solutions/administration & dosage , Drug Delivery Systems/methods , Administration, Ophthalmic , Solubility , Male , Emulsions/chemistry , Cornea/metabolism , Cornea/drug effects , Disease Models, Animal
19.
Int J Pharm ; 656: 124056, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38548072

ABSTRACT

Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.


Subject(s)
Administration, Ophthalmic , Amikacin , Anti-Bacterial Agents , Delayed-Action Preparations , Drug Liberation , Nanofibers , Polyesters , Polyvinyl Alcohol , Pseudomonas aeruginosa , Staphylococcus aureus , Vancomycin , Animals , Rabbits , Nanofibers/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcus aureus/drug effects , Polyesters/chemistry , Pseudomonas aeruginosa/drug effects , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Vancomycin/chemistry , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Amikacin/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Male
20.
J Ocul Pharmacol Ther ; 40(4): 204-214, 2024 May.
Article in English | MEDLINE | ID: mdl-38527183

ABSTRACT

Background: Insulin and insulin-like growth factor (IGF)-1 receptors are present in ocular tissues such as corneal epithelium, keratocytes, and conjunctival cells. Insulin plays a crucial role in the growth, differentiation, and proliferation of corneal epithelial cells, as well as in wound healing processes in various tissues. Purpose: This review explores the potential role of topical insulin in the treatment of ocular surface diseases. Specifically, it examines its impact on corneal nerve regeneration, sub-basal plexus corneal nerves, and its application in conditions like corneal epithelial defects, dry eye disease, and diabetic keratopathy. Methods: The review analyzes studies conducted over the past decade that have investigated the use of topical insulin in ocular surface diseases. It focuses on indications, drug preparation methods, side effects, efficacy outcomes, and variations in insulin concentrations and dosages used. Results: While off-label use of topical insulin has shown promising results in refractory corneal epithelial defects, its efficacy in dry eye disease is yet to be demonstrated. Variations in concentrations, dilutions, and dosing guidelines have been reported. However, limited data on ocular penetration, ocular toxicity, and systemic side effects pose challenges to its widespread utility. Conclusion: This review synthesizes findings from ocular investigations on topical insulin to assess its potential applicability in treating ocular surface and corneal diseases. By highlighting indications, preparation methods, side effects, and efficacy outcomes, it aims to provide insights into the current status and future prospects of using topical insulin in ophthalmic practice.


Subject(s)
Dry Eye Syndromes , Insulin , Ophthalmic Solutions , Humans , Insulin/administration & dosage , Insulin/therapeutic use , Dry Eye Syndromes/drug therapy , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/therapeutic use , Corneal Diseases/drug therapy , Animals , Administration, Ophthalmic , Administration, Topical , Cornea/drug effects , Cornea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...