Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.010
Filter
1.
Parasit Vectors ; 17(1): 292, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978086

ABSTRACT

BACKGROUND: The Aedes albopictus mosquito is of medical concern due to its ability to transmit viral diseases, such as dengue and chikungunya. Aedes albopictus originated in Asia and is now present on all continents, with the exception of Antarctica. In Mozambique, Ae. albopictus was first reported in 2015 within the capital city of Maputo, and by 2019, it had become established in the surrounding area. It was suspected that the mosquito population originated in Madagascar or islands of the Western Indian Ocean (IWIO). The aim of this study was to determine its origin. Given the risk of spreading insecticide resistance, we also examined relevant mutations in the voltage-sensitive sodium channel (VSSC). METHODS: Eggs of Ae. albopictus were collected in Matola-Rio, a municipality adjacent to Maputo, and reared to adults in the laboratory. Cytochrome c oxidase subunit I (COI) sequences and microsatellite loci were analyzed to estimate origins. The presence of knockdown resistance (kdr) mutations within domain II and III of the VSSC were examined using Sanger sequencing. RESULTS: The COI network analysis denied the hypothesis that the Ae. albopictus population originated in Madagascar or IWIO; rather both the COI network and microsatellites analyses showed that the population was genetically similar to those in continental Southeast Asia and Hangzhou, China. Sanger sequencing determined the presence of the F1534C knockdown mutation, which is widely distributed among Asian populations, with a high allele frequency (46%). CONCLUSIONS: These results do not support the hypothesis that the Mozambique Ae. albopictus population originated in Madagascar or IWIO. Instead, they suggest that the origin is continental Southeast Asia or a coastal town in China.


Subject(s)
Aedes , Insecticide Resistance , Mosquito Vectors , Animals , Mozambique , Insecticide Resistance/genetics , Aedes/genetics , Aedes/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Mutation , Electron Transport Complex IV/genetics , Insecticides/pharmacology , Madagascar , Microsatellite Repeats/genetics , Female , Voltage-Gated Sodium Channels/genetics
2.
PLoS One ; 19(7): e0300368, 2024.
Article in English | MEDLINE | ID: mdl-38985752

ABSTRACT

BACKGROUND: A treated fabric device for emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against night-biting Anopheles and Culex mosquitoes for several months. Here perceptions of community end users provided with such transfluthrin emanators, primarily intended to protect them against day-active Aedes vectors of human arboviruses that often attack people outdoors, were assessed in Port-au-Prince, Haiti. METHODS: Following the distribution of transfluthrin emanators to participating households in poor-to-middle class urban neighbourhoods, questionnaire surveys and in-depth interviews of end-user households were supplemented with conventional and Photovoice-based focus group discussions. Observations were assessed synthetically to evaluate user perceptions of protection and acceptability, and to solicit advice for improving and promoting them in the future. RESULTS: Many participants viewed emanators positively and several outlined various advantages over current alternatives, although some expressed concerns about smell, health hazards, bulkiness, unattractiveness and future cost. Most participants expressed moderate to high satisfaction with protection against mosquitoes, especially indoors. Protection against other arthropod pests was also commonly reported, although satisfaction levels were highly variable. Diverse use practices were reported, some of which probably targeted nocturnal Culex resting indoors, rather than Aedes attacking them outdoors during daylight hours. Perceived durability of protection varied: While many participants noted some slow loss over months, others noted rapid decline within days. A few participants specifically attributed efficacy loss to outdoor use and exposure to wind or moisture. Many expressed stringent expectations of satisfactory protection levels, with even a single mosquito bite considered unsatisfactory. Some participants considered emanators superior to fans, bedsheets, sprays and coils, but it is concerning that several preferred them to bed nets and consequently stopped using the latter. CONCLUSIONS: The perspectives shared by Haitian end-users are consistent with those from similar studies in Brazil and recent epidemiological evidence from Peru that other transfluthrin emanator products can protect against arbovirus infection. While these encouraging sociological observations contrast starkly with evidence of essentially negligible effects upon Aedes landing rates from parallel entomological assessments across Haiti, Tanzania, Brazil and Peru, no other reason to doubt the generally encouraging views expressed herein by Haitian end users could be identified.


Subject(s)
Cyclopropanes , Fluorobenzenes , Mosquito Control , Haiti , Animals , Humans , Mosquito Control/methods , Female , Male , Insecticides , Adult , Mosquito Vectors , Aedes/drug effects , Middle Aged , Surveys and Questionnaires , Anopheles/drug effects , Culex/drug effects
3.
Sci Rep ; 14(1): 15421, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965297

ABSTRACT

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.


Subject(s)
Aedes , Imidazoles , Insecticides , Larva , Aedes/drug effects , Animals , Larva/drug effects , Imidazoles/toxicity , Imidazoles/pharmacology , Insecticides/toxicity , Insecticides/pharmacology , Humans , Mosquito Vectors/drug effects , Cell Line , Cell Survival/drug effects , Mosquito Control/methods
4.
PLoS One ; 19(7): e0301677, 2024.
Article in English | MEDLINE | ID: mdl-39018308

ABSTRACT

Little is known about Native American adaptations to blood-sucking arthropods prior to and following European contact. Multiple accounts starting in the 16th century suggest that rancid animal grease was employed by Gulf Coast indigenes as a mosquito repellent. Although many Native American ethnobotanical remedies for biting insects have been recorded, the use of animal products for this purpose is not well documented. Moreover, few traditional Native American mosquito repellents have been examined using controlled laboratory methods for repellency testing. In this study, we tested the repellent efficacy of fats derived from alligator, bear, cod, and shark that were aged to various stages of rancidity. Using yellow fever mosquitoes, (Aedes aegypti), we performed an arm-in-cage assay to measure the complete protection times resulted from these fats, when applied to human skin. We used a Y-tube olfactometer assay to evaluate long-distance repellency and tested tick-repellency in a crawling assay. Our results suggest that rancid animal fats from cod, bear, and alligator are potent albeit short-lived mosquito repellents. We found that both rancid and fresh fats do not repel ticks. Our findings show the validity of traditional ethnozoological knowledge of Native American people and support aspects of the ethnohistorical record.


Subject(s)
Insect Repellents , Animals , Humans , Aedes/drug effects , Fats , Indians, North American , Insect Repellents/pharmacology
5.
Sci Rep ; 14(1): 13701, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871831

ABSTRACT

Dengue virus (DENV), mainly transmitted by Aedes aegypti mosquitoes, is the most prevalent arbovirus worldwide, representing a public health problem in tropical and subtropical countries. In these areas, antibiotic consumption rises which may impact both mosquito microbiota and dengue transmission. Here, we assessed how the ingestion by Ae. aegypti of therapeutic concentrations of amoxicillin-clavulanic Acid association (Amox/Clav), a broad-spectrum antibiotic used to treat febrile symptoms worldwide, impacted its microbiota. We also evaluated whether simultaneous ingestion of antibiotic and DENV impacted Ae. aegypti ability to transmit this virus. We found that Amox/Clav ingestion impacted microbiota composition in Ae. aegypti and we confirmed such impact in field-collected mosquitoes. Furthermore, we observed that Amox/Clav ingestion enhanced DENV dissemination and transmission by this mosquito at 21 days post-DENV exposure. These findings increase our understanding of factors linked to human hosts that may influence dengue transmission dynamics in regions with mass-drug administration programs.


Subject(s)
Aedes , Dengue Virus , Dengue , Microbiota , Aedes/microbiology , Aedes/virology , Aedes/drug effects , Animals , Dengue Virus/drug effects , Dengue/transmission , Microbiota/drug effects , Mosquito Vectors/microbiology , Mosquito Vectors/drug effects , Mosquito Vectors/virology , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Amoxicillin-Potassium Clavulanate Combination/administration & dosage , Anti-Bacterial Agents/pharmacology , Humans , Female
6.
Sci Rep ; 14(1): 13447, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862628

ABSTRACT

Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.


Subject(s)
Aedes , Genetic Variation , Insecticide Resistance , Insecticide Resistance/genetics , Animals , Aedes/genetics , Aedes/drug effects , Genomics/methods , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Insect Proteins/genetics , Whole Genome Sequencing/methods , DNA Copy Number Variations
7.
Parasit Vectors ; 17(1): 254, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863023

ABSTRACT

BACKGROUND: Aedes aegypti is the primary mosquito vector for several arboviruses, such as dengue, chikungunya and Zika viruses, which cause frequent outbreaks of human disease in tropical and subtropical regions. Control of these outbreaks relies on vector control, commonly in the form of insecticide sprays that target adult female mosquitoes. However, the spatial coverage and frequency of sprays needed to optimize effectiveness are unclear. In this study, we characterize the effect of ultra-low-volume (ULV) indoor spraying of pyrethroid insecticides on Ae. aegypti abundance within households. We also evaluate the effects of spray events during recent time periods or in neighboring households. Improved understanding of the duration and distance of the impact of a spray intervention on Ae. aegypti populations can inform vector control interventions, in addition to modeling efforts that contrast vector control strategies. METHODS: This project analyzes data from two large-scale experiments that involved six cycles of indoor pyrethroid spray applications in 2 years in the Amazonian city of Iquitos, Peru. We developed spatial multi-level models to disentangle the reduction in Ae. aegypti abundance that resulted from (i) recent ULV treatment within households and (ii) ULV treatment of adjacent or nearby households. We compared fits of models across a range of candidate weighting schemes for the spray effect, based on different temporal and spatial decay functions to understand lagged ULV effects. RESULTS: Our results suggested that the reduction of Ae. aegypti in a household was mainly due to spray events occurring within the same household, with no additional effect of sprays that occurred in neighboring households. Effectiveness of a spray intervention should be measured based on time since the most recent spray event, as we found no cumulative effect of sequential sprays. Based on our model, we estimated the spray effect is reduced by 50% approximately 28 days after the spray event. CONCLUSIONS: The reduction of Ae. aegypti in a household was mainly determined by the number of days since the last spray intervention in that same household, highlighting the importance of spray coverage in high-risk areas with a spray frequency determined by local viral transmission dynamics.


Subject(s)
Aedes , Family Characteristics , Insecticides , Mosquito Control , Mosquito Vectors , Pyrethrins , Spatio-Temporal Analysis , Animals , Aedes/drug effects , Insecticides/pharmacology , Insecticides/administration & dosage , Mosquito Control/methods , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Female , Peru , Humans , Population Density , Dengue/prevention & control , Dengue/transmission
8.
PLoS Negl Trop Dis ; 18(6): e0012243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865422

ABSTRACT

Aedes albopictus, also known as the Asian tiger mosquito, is indigenous to the tropical forests of Southeast Asia. Ae. albopictus is expanding across the globe at alarming rates, raising concern over the transmission of mosquito-borne diseases, such as dengue, West Nile fever, yellow fever, and chikungunya fever. Since Ae. albopictus was reported in Houston (Harris County, Texas) in 1985, this species has rapidly expanded to at least 32 states across the United States. Public health efforts aimed at controlling Ae. albopictus, including surveillance and adulticide spraying operations, occur regularly in Harris County. Despite rotation of insecticides to mitigate the development of resistance, multiple mosquito species including Culex quinquefasciatus and Aedes aegypti in Harris County show organophosphate and pyrethroid resistance. Aedes albopictus shows relatively low resistance levels as compared to Ae. aegypti, but kdr-mutation and the expression of detoxification genes have been reported in Ae. albopictus populations elsewhere. To identify potential candidate detoxification genes contributing to metabolic resistance, we used RNA sequencing of field-collected malathion-resistant and malathion-susceptible, and laboratory-maintained susceptible colonies of Ae. albopictus by comparing the relative expression of transcripts from three major detoxification superfamilies involved in malathion resistance due to metabolic detoxification. Between these groups, we identified 12 candidate malathion resistance genes and among these, most genes correlated with metabolic detoxification of malathion, including four P450 and one alpha esterase. Our results reveal the metabolic detoxification and potential cuticular-based resistance mechanisms associated with malathion resistance in Ae. albopictus in Harris County, Texas.


Subject(s)
Aedes , Gene Expression Profiling , Insecticide Resistance , Insecticides , Malathion , Animals , Malathion/pharmacology , Aedes/genetics , Aedes/drug effects , Aedes/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/metabolism , Sequence Analysis, RNA , Transcriptome , Texas , Female , Insect Proteins/genetics , Insect Proteins/metabolism
9.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893531

ABSTRACT

In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 µg/cm2. In time-span bioassays performed at 333 µg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-ß-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents.


Subject(s)
Aedes , Insect Repellents , Oils, Volatile , Oviposition , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Insect Repellents/pharmacology , Insect Repellents/chemistry , Oviposition/drug effects , Aedes/drug effects , Culex/drug effects , Anopheles/drug effects , Anopheles/physiology , Culicidae/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Lantana/chemistry , Anacardiaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Female
10.
J Vector Borne Dis ; 61(2): 167-175, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38922650

ABSTRACT

BACKGROUND OBJECTIVES: The incidence of Dengue Hemorrhagic Fever (DHF) continues to increase over time in the world, including Indonesia. One of the prevention efforts against dengue virus transmission is to avoid vector mosquito bites by the use of repellants. Using repellents can reduce exposure to mosquito bites that may cause infection with the dengue virus. This study aimed to determine the effectiveness of repellent lotion composed of patchouli batik extract (Pogostemon cablin) from Southeast Sulawesi varieties against Aedes aegypti mosquitoes. METHODS: The research subjects were Aedes aegypti adult mosquitoes. The research consisted of three stages. The first stage was a phytochemical test (qualitative method), the second stage was the analysis of patchouli essential oil (GC-MS method) and the third stage was a test of the effectiveness of lotions made from patchouli extract in lotion preparations against Aedes aegypti. RESULTS: The results of the effectiveness test of patchouli leaf repellent (Pogestemon cablin) lotion preparations were as follows: for a concentration of 2.5%, protective power 81.5%; concentration 5%, protection power 83.67%; concentration 7.5%, protection power 88.64 %; the concentration of 10%, protection power 90.44%, and the concentration of 12.5% had protection power 90.89%. Probit analysis and linear regression showed the value of ProbitLc 50 was 6.631. INTERPRETATION CONCLUSION: The results of the effectiveness test of Pogestemon cablin repellent lotion preparations with the most effective concentrations were 10% and 12.5%. The results of ANOVA test indicated there was no difference in the average value of the protection power in patchouli leaves.


Subject(s)
Aedes , Insect Repellents , Plant Extracts , Pogostemon , Animals , Aedes/drug effects , Insect Repellents/pharmacology , Pogostemon/chemistry , Indonesia , Plant Extracts/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Female , Mosquito Vectors/drug effects , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry
11.
PLoS Negl Trop Dis ; 18(6): e0012256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38870209

ABSTRACT

The Aedes aegypti cadherin-like protein (Aae-Cad) and the membrane-bound alkaline phosphatase (Aae-mALP) are membrane proteins identified as putative receptors for the larvicidal Cry toxins produced by Bacillus thuringiensis subsp. israelensis bacteria. Cry toxins are the most used toxins in the control of different agricultural pest and mosquitos. Despite the relevance of Aae-Cad and Aae-mALP as possible toxin-receptors in mosquitoes, previous efforts to establish a clear functional connection among them and Cry toxins activity have been relatively limited. In this study, we used CRISPR-Cas9 to generate knockout (KO) mutations of Aae-Cad and Aae-mALP. The Aae-mALP KO was successfully generated, in contrast to the Aae-Cad KO which was obtained only in females. The female-linked genotype was due to the proximity of aae-cad gene to the sex-determining loci (M:m). Both A. aegypti KO mutant populations were viable and their insect-development was not affected, although a tendency on lower egg hatching rate was observed. Bioassays were performed to assess the effects of these KO mutations on the susceptibility of A. aegypti to Cry toxins, showing that the Aae-Cad female KO or Aae-mALP KO mutations did not significantly alter the susceptibility of A. aegypti larvae to the mosquitocidal Cry toxins, including Cry11Aa, Cry11Ba, Cry4Ba, and Cry4Aa. These findings suggest that besides the potential participation of Aae-Cad and Aae-mALP as Cry toxin receptors in A. aegypti, additional midgut membrane proteins are involved in the mode of action of these insecticidal toxins.


Subject(s)
Aedes , Alkaline Phosphatase , Bacillus thuringiensis Toxins , Bacterial Proteins , CRISPR-Cas Systems , Cadherins , Endotoxins , Hemolysin Proteins , Animals , Aedes/genetics , Aedes/drug effects , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Female , Cadherins/genetics , Cadherins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance/genetics , Gene Knockout Techniques , Larva/genetics , Larva/growth & development , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Male , Insecticides/pharmacology
12.
PLoS Negl Trop Dis ; 18(6): e0011903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829904

ABSTRACT

BACKGROUND: The first dengue outbreak in Sao Tome and Principe was reported in 2022. Entomological investigations were undertaken to establish the typology of Aedes larval habitats, the distribution of Ae. aegypti and Ae. albopictus, the related entomological risk and the susceptibility profile of Ae. aegypti to insecticides, to provide evidence to inform the outbreak response. METHODOLOGY/PRINCIPAL FINDINGS: Entomological surveys were performed in all seven health districts of Sao Tome and Principe during the dry and rainy seasons in 2022. WHO tube and synergist assays using piperonyl butoxide (PBO) and diethyl maleate (DEM) were carried out, together with genotyping of F1534C/V1016I/V410L mutations in Ae. aegypti. Aedes aegypti and Ae. albopictus were found in all seven health districts of the country with high abundance of Ae. aegypti in the most urbanised district, Agua Grande. Both Aedes species bred mainly in used tyres, discarded tanks and water storage containers. In both survey periods, the Breteau (BI > 50), house (HI > 35%) and container (CI > 20%) indices were higher than the thresholds established by WHO to indicate high potential risk of dengue transmission. The Ae. aegypti sampled were susceptible to all insecticides tested except dichlorodiphenyltrichloroethane (DDT) (9.2% mortality, resistant), bendiocarb (61.4% mortality, resistant) and alpha-cypermethrin (97% mortality, probable resistant). A full recovery was observed in Ae. aegypti resistant to bendiocarb after pre-exposure to synergist PBO. Only one Ae. aegypti specimen was found carrying F1534C mutation. CONCLUSIONS/SIGNIFICANCE: These findings revealed a high potential risk for dengue transmission throughout the year, with the bulk of larval breeding occurring in used tyres, water storage and discarded containers. Most of the insecticides tested remain effective to control Aedes vectors in Sao Tome, except DDT and bendiocarb. These data underline the importance of raising community awareness and implementing routine dengue vector control strategies to prevent further outbreaks in Sao Tome and Principe, and elsewhere in the subregion.


Subject(s)
Aedes , Dengue , Disease Outbreaks , Insecticide Resistance , Insecticides , Larva , Mosquito Vectors , Aedes/drug effects , Aedes/genetics , Aedes/virology , Animals , Dengue/transmission , Dengue/epidemiology , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/virology , Insecticide Resistance/genetics , Larva/drug effects , Larva/virology , Humans , Piperonyl Butoxide/pharmacology , Female , Maleates/pharmacology , Ecosystem , Dengue Virus/drug effects , Dengue Virus/genetics
13.
Parasit Vectors ; 17(1): 276, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937807

ABSTRACT

BACKGROUND: Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small-molecule NPYLR7 agonists that inhibit host-seeking and blood-feeding when fed to mosquitoes at high micromolar doses. METHODS: Using structure-activity relationship analysis and structure-guided design we synthesized 128 compounds with similarity to known NPYLR7 agonists. RESULTS: Although in vitro potency (EC50) was not strictly predictive of in vivo effect, we identified three compounds that reduced blood-feeding from a live host when fed to mosquitoes at a dose of 1 µM-a 100-fold improvement over the original reference compound. CONCLUSIONS: Exogenous activation of NPYLR7 represents an innovative vector control strategy to block mosquito biting behavior and prevent mosquito-human host interactions that lead to pathogen transmission.


Subject(s)
Aedes , Feeding Behavior , Mosquito Vectors , Receptors, Neuropeptide Y , Animals , Aedes/drug effects , Female , Feeding Behavior/drug effects , Receptors, Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/agonists , Mosquito Vectors/drug effects , Structure-Activity Relationship , Humans
14.
J Invertebr Pathol ; 205: 108126, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734162

ABSTRACT

Aedes-transmitted arboviral infections such as Dengue, Yellow Fever, Zika and Chikungunya are increasing public health problems. Xenorhabdus and Photorhabdus bacteria are promising sources of effective compounds with important biological activities. This study investigated the effects of cell-free supernatants of X. szentirmaii, X. cabanillasii and P. kayaii against Ae. aegypti eggs and larvae and identified the bioactive larvicidal compound in X. szentirmaii using The EasyPACId method. Among the three tested bacterial species, X. cabanillasii exhibited the highest (96%) egg hatching inhibition and larvicidal activity (100% mortality), whereas P. kayaii was the least effective species in our study. EasyPACId method revealed that bioactive larvicidal compound in the bacterial supernatant was fabclavine. Fabclavines obtained from promoter exchange mutants of different bacterial species such as X. cabanillasii, X. budapestensis, X. indica, X. szentirmaii, X. hominckii and X. stockiae were effective against mosquito larvae. Results show that these bacterial metabolites have potential to be used in integrated pest management (IPM) programmes of mosquitoes.


Subject(s)
Aedes , Larva , Photorhabdus , Xenorhabdus , Animals , Aedes/drug effects , Aedes/microbiology , Larva/microbiology , Larva/drug effects , Xenorhabdus/metabolism , Ovum/drug effects , Ovum/microbiology , Mosquito Control/methods , Mosquito Vectors/drug effects , Mosquito Vectors/microbiology , Pest Control, Biological/methods , Insecticides/pharmacology
15.
J Agric Food Chem ; 72(22): 12469-12477, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771932

ABSTRACT

Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 µM, LC50, IMI-AB-IMI = 210.52-266.63 µM, LC50, and FIP-AB-FIP = 36.25-51.04 µM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.


Subject(s)
Aedes , Azo Compounds , Insecticides , Neonicotinoids , Nitro Compounds , Pyrazoles , Animals , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Azo Compounds/chemistry , Azo Compounds/pharmacology , Neonicotinoids/chemistry , Neonicotinoids/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Aedes/drug effects , Larva/drug effects , Larva/growth & development , Insect Proteins/chemistry , Insect Proteins/metabolism , Behavior, Animal/drug effects , Light , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, GABA/metabolism , Receptors, GABA/chemistry
16.
J Med Entomol ; 61(4): 1001-1008, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38767975

ABSTRACT

Propylene glycol (PG) demonstrates greater efficacy than other sugar polyols. However, the attributes it confers for toxicity and possible co-formulation with other ingredients are unknown. To evaluate this, α-glucosidase and glucose oxidase reactions were performed in Aedes aegypti (L.) (Diptera: Culicidae) to categorize if PG behaves similarly to prior studied sugar alcohols. A combination of no-choice and choice assays was used to determine effective ratios of PG and sucrose, competitiveness against a control of 10% sucrose, and whether mosquitoes recovered from PG consumption. The final trials included ß-cyclodextrin encapsulated cinnamon leaf oil, clove stem oil, patchouli oil, garlic oil, cedarwood oil, and papaya seed oil formulated with 5% sucrose + 5% PG. PG functioned as a linear competitive inhibitor of α-glucosidase. The efficacy of PG was synergized by co-ingestion with equivalent ratios of sucrose. Unlike the high diuretic response to other sugar alcohols, PG resulted in diminished excretion regardless of being co-formulated with sucrose or terpenoids. PG is not especially competitive against unadulterated sugar meals but is likewise not clearly repellent. Although mosquitoes did not recover from ingestion of the glycol meals, there was no indication that mortality would continue to accumulate once the treatments were removed. Of the terpenoids tested, cinnamon and patchouli caused ~50% or less mortality; garlic, cedarwood, and clove caused 80-90% mortality; and papaya seed caused 100% mortality, exceeding all other test groups and the formulation blank. PG is a useful supporting ingredient in attractive toxic sugar bait formulations with flexibility in formulation.


Subject(s)
Aedes , Propylene Glycol , Terpenes , Animals , Aedes/drug effects , Terpenes/chemistry , Terpenes/pharmacology , Propylene Glycol/chemistry , Mosquito Control , Sucrose/chemistry , Insecticides/chemistry , Female , Glucose/chemistry
17.
PLoS One ; 19(5): e0299722, 2024.
Article in English | MEDLINE | ID: mdl-38809841

ABSTRACT

BACKGROUND: A low technology emanator device for slowly releasing vapour of the volatile pyrethroid transfluthrin was recently developed in Tanzania that provides robust protection against night biting Anopheles and Culex vectors of malaria and filariasis for several months. Here these same emanator devices were assessed in Dar es Salaam city, as a means of protection against outdoor-biting Aedes (Stegomia) aegypti, the most important vector of human arboviruses worldwide, in parallel with similar studies in Haiti and Brazil. METHODS: A series of entomological experiments were conducted under field and semi-field conditions, to evaluate whether transfluthrin emanators protect against wild Ae. aegypti, and also compare the transfluthrin responsiveness of Ae. aegypti originating from wild-caught eggs to established pyrethroid-susceptible Ae. aegypti and Anopheles gambiae colonies. Preliminary measurements of transfluthrin vapour concentration in air samples collected near treated emanators were conducted by gas chromatography-mass spectrometry. RESULTS: Two full field experiments with four different emanator designs and three different transfluthrin formulations consistently indicated negligible reduction of human landing rates by wild Ae. aegypti. Under semi-field conditions in large cages, 50 to 60% reductions of landing rates were observed, regardless of which transfluthrin dose, capture method, emanator placement position, or source of mosquitoes (mildly pyrethroid resistant wild caught Ae. aegypti or pyrethroid-susceptible colonies of Ae. aegypti and An. gambiae) was used. Air samples collected immediately downwind from an emanator treated with the highest transfluthrin dose (15g), contained 12 to 19 µg/m3 transfluthrin vapour. CONCLUSIONS: It appears unlikely that the moderate levels of pyrethroid resistance observed in wild Ae. aegypti can explain the modest-to-undetectable levels of protection exhibited. While potential inhalation exposure could be of concern for the highest (15g) dose evaluated, 3g of transfluthrin appears sufficient to achieve the modest levels of protection that were demonstrated entomologically. While the generally low levels of protection against Aedes reported here from Tanzania, and from similar entomological studies in Haiti and Brazil, are discouraging, complementary social science studies in Haiti and Brazil suggest end-users perceive valuable levels of protection against mosquitoes. It therefore remains unclear whether transfluthrin emanators have potential for protecting against Aedes vectors of important human arboviruses.


Subject(s)
Aedes , Cyclopropanes , Fluorobenzenes , Insecticides , Mosquito Control , Animals , Tanzania , Aedes/drug effects , Cyclopropanes/pharmacology , Mosquito Control/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Humans , Anopheles/drug effects , Insect Bites and Stings/prevention & control , Pyrethrins
18.
PLoS One ; 19(5): e0303027, 2024.
Article in English | MEDLINE | ID: mdl-38728353

ABSTRACT

Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.


Subject(s)
Aedes , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Pyrethrins/pharmacology , Aedes/drug effects , Aedes/genetics , Aedes/metabolism , Insecticide Resistance/genetics , Nitriles/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Dengue/virology , Insect Proteins/genetics , Insect Proteins/metabolism , Female
19.
Chemosphere ; 358: 142219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704040

ABSTRACT

The worldwide used herbicide Glyphosate can interact with environmental variables, but there is limited information on the influence of environmental stressors on its toxicity. Environmental changes could modify glyphosate effects on non-target organisms, including parasites such as gordiids. The freshwater microscopic larvae of the gordiid Chordodes nobilii are sensitive to several pollutants and environmental variables, but their combined effect has not been evaluated yet. The aim of this study was to evaluate the impact of temperature, pH and exposure time on the toxicity of Glyphosate to C. nobilii larvae. A protocol was followed to evaluate the infectivity of larvae treated with factorial combinations of concentration (0 and 0.067 mg/L), exposure time (24 and 48 h), temperature (18, 23 and 28 °C), and pH (7, 8 and 9). The reference values were 23 °C, pH 8 and 48 h. The interaction effect on the infectivity of gordiid larvae was assessed post-exposure using Aedes aegyptii larvae as host. Results were evaluated using GLMM, which does not require data transformation. The modeling results revealed three highly significant triple interactions. Glyphosate toxicity varied depending on the combination of variables, with a decrease being observed after 24 h-exposure at pH 7 and 23 °C. Glyphosate and 28 °C combination led to slightly reduced infectivity compared to temperature alone. This study is the first to report the combined effects of glyphosate, temperature, pH and time on a freshwater animal. It demonstrates that a specific combination of factors determines the effect of glyphosate on a non-target organism. The potential use of C. nobilli as a bioindicator is discussed. In the context of global warming and considering that the behavioral manipulation of terrestrial hosts by gordiids can shape community structure and the energy flow through food webs, our results raise concerns about possible negative effects of climate change on host-parasite dynamics.


Subject(s)
Glycine , Glyphosate , Herbicides , Larva , Temperature , Glycine/analogs & derivatives , Glycine/toxicity , Animals , Herbicides/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Hydrogen-Ion Concentration , Helminths/drug effects , Helminths/physiology , Aedes/drug effects , Parasites/drug effects
20.
Chemosphere ; 358: 142240, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705417

ABSTRACT

The Aedes aegypti mosquito is a vector for various arboviruses, including dengue and yellow fever. Insecticides, such as pyrethroids and organophosphates, are widely used to manage and control these insects. However, mosquitoes have developed resistance to these chemicals. Therefore, this study aimed to investigate the effects of the commercial formulation of fipronil (Tuit® Florestal; 80% purity) on the survival, behavior, morphology, and proteins related to signaling pathways of the midgut in A. aegypti larvae under controlled laboratory conditions. Significant reductions in immature survival were observed in all concentrations of fipronil tested. Low insecticide concentration (0.5 ppb) led to decreased locomotor activity in the larvae and caused disorganization of the epithelial tissue in the midgut. Moreover, exposure to the insecticide decreased the activity of detoxifying enzymes such as catalase, superoxide dismutase, and glutathione-S-transferase. On the other hand, the insecticide increased protein oxidation and nitric oxide levels. The detection of LC3, caspase-3, and JNK proteins, related to autophagy and apoptosis, increased after exposure. However, there was a decrease in the positive cells for ERK 1/2. Furthermore, the treatment with fipronil decreased the number of positive cells for the proteins FMRF, Prospero, PH3, Wg, Armadillo, Notch, and Delta, which are related to cell proliferation and differentiation. These findings demonstrate that even at low concentrations, fipronil exerts larvicidal effects on A. aegypti by affecting behavior and enzymatic detoxification, inducing protein oxidation, free radical generation, midgut damage and cell death, and inhibiting cell proliferation and differentiation. Thus, this insecticide may represent a viable alternative for controlling the spread of this vector.


Subject(s)
Aedes , Insecticides , Larva , Pyrazoles , Animals , Aedes/drug effects , Aedes/growth & development , Aedes/physiology , Pyrazoles/toxicity , Insecticides/toxicity , Larva/drug effects , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Digestive System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...