Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 145: 106726, 2020 04.
Article in English | MEDLINE | ID: mdl-31893535

ABSTRACT

In this study, we used RAD-seq data to resolve the phylogeny of the tribe Hippocastaneae (Sapindaceae) and conducted comparative analyses to gain insights into the evolution and biogeography of the group that had fossils dating back to the late Cretaceous. Hippocastaneae, including the horsechestnuts and buckeyes, is a well-supported clade in Sapindaceae that comprises 12-14 species in Aesculus, two in Billia, and one in Handeliodendron. Most species in the tribe are distributed in Eurasia and North America and exhibit a classic pattern of intercontinental disjunction in the Northern Hemisphere, while Billia occurs from southern Mexico to northern South America. The earliest fossils of Aesculus date back to at least the earliest Paleocene of eastern Asia and western North America, where there are also putative occurrences from the latest Cretaceous. The group provides an excellent system for understanding floristic disjunction in the Northern Hemisphere extending to the Neotropics. However, a strongly supported and well resolved phylogeny is presently lacking for the tribe. Previous phylogenetic studies using several gene regions revealed five well-supported clades in Aesculus, largely corresponding to five recognized taxonomic sections, but relationships among these clades and among Aesculus, Billia, and Handeliodendron were not well supported. In this study, we used RAD-seq data from 68 samples representing all clades and species of Hippocastaneae except Billia, for which we used one of two species, to further resolve relationships within the tribe. Our phylogenomic analyses showed strong support for a sister relationship between Aesculus and Handeliodendron, in contrast to previous findings which supported Billia as sister to Aesculus. Within Aesculus, relationships among sections were strongly supported as (sect. Calothyrsus, (sect. Aesculus, (sect. Macrothyrsus, (sect. Parryana, sect. Pavia)))). We found that the traditionally recognized section Calothyrsus was monophyletic, with all eastern Asian species sister to the western North American species, A. californica. Analyses of divergence times combined with biogeographic analyses suggested a Late Cretaceous origin of Hippocastaneae, in eastern Asia, western North America, and Central America (including southern Mexico), followed by isolation of Billia in Central America, extinction of the tribe ancestor in western North America, and divergence of Aesculus from Handeliodendron in eastern Asia. A Late Cretaceous origin of the common ancestor of Aesculus in eastern Asia was followed by dispersals into western North America, Europe, and eastern North America during the Late Cretaceous and the Paleogene. Our results support Aesculus as a relic of the boreotropical flora and subsequent intercontinental spread of the genus through the Bering and North Atlantic land bridges. We performed character mapping analyses, which revealed that biogeographic isolation and niche divergence may have played important roles in driving morphological evolution and lineage divergence in Aesculus. Our study demonstrates the value of RAD-seq data for reconstructing phylogeny back to the Late Cretaceous.


Subject(s)
Aesculus/classification , RNA, Plant/chemistry , Aesculus/genetics , Bayes Theorem , Biological Evolution , Ecosystem , Fossils/history , History, Ancient , Phylogeny , Phylogeography , RNA, Plant/classification , RNA, Plant/metabolism , RNA-Seq
2.
Mol Phylogenet Evol ; 102: 145-51, 2016 09.
Article in English | MEDLINE | ID: mdl-27268715

ABSTRACT

Hippocastaneae is a well-supported clade in Sapindaceae that comprises 15+ species; 12+ in Aesculus, two in Billia, and one in Handeliodendron Rehder. The monophyly of Aesculus and Billia were widely assumed, but a recent molecular phylogenetic study of Sapindanceae used seven species of Aesculus and one each of Billia and Handeliodendron and showed that Billia and Handeliodendron were nested within Aesculus. Here, we tested the hypothesis that Aesculus and Billia are mutually monophyletic using phylogenetic analyses of seven molecular markers and 31 accessions of Hippocastaneae representing 14 species. We performed phylogenetic analyses using a dataset of concatenated genes as well as with coalescent method for constructing a species tree from individual gene trees. The analysis of seven concatenated markers and the species tree strongly supported the mutual monophyly of Aesculus and Billia. We also recovered support for the traditional arrangement of genera within Hippocastaneae: Aesculus and Billia comprising a clade that is sister to Handeliodendron. However, the relationships among the genera remain incompletely resolved.


Subject(s)
Aesculus/genetics , Hippocastanaceae/genetics , Aesculus/classification , Chloroplasts/genetics , DNA, Plant/chemistry , DNA, Plant/isolation & purification , DNA, Plant/metabolism , Hippocastanaceae/classification , Molecular Sequence Data , Phylogeny , Plant Leaves/genetics , Sapindaceae/classification , Sapindaceae/genetics , Sequence Analysis, DNA
3.
ScientificWorldJournal ; 2014: 767392, 2014.
Article in English | MEDLINE | ID: mdl-24672369

ABSTRACT

In vivo (leaves and seed embryos) and in vitro (androgenic embryos) antioxidant scavenging activity of Aesculus hippocastanum and Aesculus flava medical plants was examined. Here we report antioxidant enzyme activities of superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase, reduced glutathione quantity, flavonoids, soluble protein contents, quantities of malondialdehyde, and (•)OH radical presence in the investigated plant samples. Total antioxidant capacity of all the samples of A. hippocastanum and A. flava was determined using FRAP, DPPH, and NO(•) radical scavenger capacity. The leaves of A. flava collected from the botanical garden exhibited stronger antioxidant activity (higher activities of SOD, and higher quantities of GSH, TSH, TPC, and scavenging abilities of DPPH and NO(•), and higher FRAP values and lowest quantities of (•)OH and MDA) than in vitro obtained cultures. However, the leaves of A. flava showed higher antioxidant activity than the leaves of A. hippocastanum, and therefore they have a stronger tolerance of oxidative stress. Androgenic embryos of both species had low amount of antioxidants due to controlled in vitro environmental conditions (T, photoperiod, humidity, nutritive factors, and pathogen-free). Our results confirmed that we found optimal in vitro conditions for producing androgenic embryos of both Aesculus species. Also, we assume that horse chestnut androgenic embryos can be used as an alternative source for large-scale aescin production.


Subject(s)
Aesculus/embryology , Antioxidants/metabolism , Seeds/metabolism , Aesculus/classification , Species Specificity
4.
Phytochemistry ; 90: 95-105, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23489576

ABSTRACT

Fifteen polyhydroxyoleanene saponins, aesculiosides C1-C15 (1-15), were isolated from husks of Aesculus californica. Their structures were established by extensive spectroscopic and chemical analyses. The triterpenoid saponins from A. californica have greater structural diversity than those from any other investigated species thus far in the genus Aesculus. The chemotaxonomic characteristic of aesculiosides C1-C15 is that the unit attached to the C-3 of the aglycone is a glucopyranosyl moiety, instead of a glucuronopyranosyl group in the saponins that have been isolated from other Aesculus species. The saponins isolated from A. californica then provide important evolutionary and chemotaxonomic knowledge of the Aesculus genus, a well-known intercontinental disjunct genus in the Northern hemisphere. Aesculiosides C1-C15 (1-15) showed cytotoxicity to human non-small cell lung tumor (A549) with GI50 ranged from 3.76 to >25µM.


Subject(s)
Aesculus/chemistry , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Saponins/isolation & purification , Saponins/pharmacology , Triterpenes/isolation & purification , Triterpenes/pharmacology , Aesculus/classification , Cell Line, Tumor , Cell Proliferation/drug effects , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Saponins/chemistry , Structure-Activity Relationship , Triterpenes/chemistry
5.
Ann Allergy Asthma Immunol ; 106(1): A6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21195937
SELECTION OF CITATIONS
SEARCH DETAIL
...