Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.474
Filter
1.
Toxins (Basel) ; 16(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38787059

ABSTRACT

The aims of this study were (i) to determine the effect of an algoclay-based decontaminant on the oral availability of three mycotoxins (deoxynivalenol; DON, ochratoxin A; OTA, and aflatoxin B1; AFB1) using an oral bolus model and (ii) to determine the effect of this decontaminant on the performance, intestinal morphology, liver oxidative stress, and metabolism, in broiler chickens fed a diet naturally contaminated with DON. In experiment 1, sixteen 27-day-old male chickens (approximately 1.6 kg body weight; BW) were fasted for 12 h and then given a bolus containing either the mycotoxins (0.5 mg DON/kg BW, 0.25 mg OTA/kg BW, and 2.0 mg AFB1/kg BW) alone (n = 8) or combined with the decontaminant (2.5 g decontaminant/kg feed; circa 240 mg/kg BW) (n = 8). Blood samples were taken between 0 h (before bolus administration) and 24 h post-administration for DON-3-sulphate, OTA, and AFB1 quantification in plasma. The algoclay decontaminant decreased the relative oral bioavailability of DON (39.9%), OTA (44.3%), and AFB1 (64.1%). In experiment 2, one-day-old male Ross broilers (n = 600) were divided into three treatments with ten replicates. Each replicate was a pen with 20 birds. The broiler chickens were fed a control diet with negligible levels of DON (0.19-0.25 mg/kg) or diets naturally contaminated with moderate levels of DON (2.60-2.91 mg/kg), either supplemented or not with an algoclay-based decontaminant (2 g/kg diet). Jejunum villus damage was observed on day 28, followed by villus shortening on d37 in broiler chickens fed the DON-contaminated diet. This negative effect was not observed when the DON-contaminated diet was supplemented with the algoclay-based decontaminant. On d37, the mRNA expression of glutathione synthetase was significantly increased in the liver of broiler chickens fed the DON-contaminated diet. However, its expression was similar to the control when the birds were fed the DON-contaminated diet supplemented with the algoclay-based decontaminant. In conclusion, the algoclay-based decontaminant reduced the systemic exposure of broiler chickens to DON, OTA, and AFB1 in a single oral bolus model. This can be attributed to the binding of the mycotoxins in the gastrointestinal tract. Moreover, dietary contamination with DON at levels between 2.69 and 2.91 mg/kg did not impair production performance but had a negative impact on broiler chicken intestinal morphology and the liver redox system. When the algoclay-based decontaminant was added to the diet, the harm caused by DON was no longer observed. This correlates with the results obtained in the toxicokinetic assay and can be attributed to a decreased absorption of DON.


Subject(s)
Aflatoxin B1 , Animal Feed , Chickens , Food Contamination , Liver , Ochratoxins , Oxidative Stress , Trichothecenes , Animals , Trichothecenes/toxicity , Oxidative Stress/drug effects , Male , Ochratoxins/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Aflatoxin B1/toxicity , Animal Feed/analysis , Intestines/drug effects , Intestines/pathology , Toxicokinetics , Diet/veterinary , Aluminum Silicates
2.
Ecotoxicol Environ Saf ; 278: 116336, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38691883

ABSTRACT

Aflatoxin B1 (AFB1), a common mycotoxin, can occur in agricultural products. As a metabolite of AFB1, aflatoxin M1 (AFM1) mainly exist in dairy products. These two mycotoxins threaten human health, although it is unclear how they affect the function of the intestinal barrier. In this study, mice were exposed to AFB1 (0.3 mg/kg body b.w.) and AFM1(3.0 mg/kg b.w.) either individually or in combination for 28 days to explore the main differentially expressed proteins (DEPs) and the associated enriched pathways. These findings were preliminarily verified by the transcriptomic and proteomic analyses in differentiated Caco-2 cells. The results revealed that AFB1 and AFM1 exposure in mice disrupted the function of the intestinal barrier, and the combined toxicity was greater than that of each toxin alone. Further proteomic analysis in mice demonstrated that the mechanisms underlying these differences could be explained as follows: (i) lipid metabolism was enriched by AFB1-induced DEPs. (ii) protein export pathway was stimulated by AFM1-induced DEPs. (iii) cell metabolic ability was inhibited (as evidenced by changes in UDP-GT1, UDP-GT2, and Gatm6), apoptosis was induced (MAP4K3), and epithelial cell integrity was disrupted (Claudin7 and IQGAP2), resulting in more extensive intestinal damage after combined treatment. In conclusion, the hazardous impact of co-exposure to AFB1 and AFM1 from proteomic perspectives was demonstrated in the present study.


Subject(s)
Aflatoxin B1 , Aflatoxin M1 , Proteomics , Aflatoxin M1/toxicity , Aflatoxin B1/toxicity , Animals , Mice , Caco-2 Cells , Humans , Male , Intestines/drug effects , Intestines/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
3.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791343

ABSTRACT

AIMS: The current review aims to outline and summarize the latest research on aflatoxin, with research studies describing natural, herbal and chemical compound applications in animal (pig) models and in vitro cellular studies. Aflatoxin, a carcinogenic toxin metabolite, is produced by Aspergillus flavus in humid environments, posing a threat to human health and crop production. The current treatment involves the prevention of exposure to aflatoxin and counteracting its harmful toxic effects, enabling survival and research studies on an antidote for aflatoxin. OBJECTIVES: To summarize current research prospects and to outline the influence of aflatoxin on animal forage in farm production, food and crop processing. The research application of remedies to treat aflatoxin is undergoing development to pinpoint biochemical pathways responsible for aflatoxin effects transmission and actions of treatment. SIGNIFICANCE: To underline the environmental stress of aflatoxin on meat and dairy products; to describe clinical syndromes associated with aflatoxicosis on human health that are counteracted with proposed treatment and preventive interventions. To understand how to improve the health of farm animals with feed conditions.


Subject(s)
Aflatoxin B1 , Animal Feed , Food Contamination , Animals , Humans , Aflatoxin B1/toxicity , Aflatoxin B1/adverse effects , Food Contamination/prevention & control , Aspergillus flavus/metabolism , Aspergillus flavus/drug effects
4.
Toxicon ; 244: 107770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768829

ABSTRACT

Aflatoxins are toxic compounds produced by certain molds, primarily Aspergillus species, which can contaminate crops such as grains and nuts. These toxins pose a significant health risk to animals and humans. Aflatoxin B1 (AFB1) is the most potent of these compounds and has been well-characterized to lead to diminished growth and feed efficiency by disrupting nutrient absorption and metabolism in poultry. AFB1 can trigger apoptosis and inflammation, leading to a decline in immune function and changes in blood biochemistry in poultry. Recently, there has been growing interest in using microalgae as a natural antioxidant to mitigate the effects of aflatoxins in poultry diets. Microalgae have strong antioxidant, antimicrobial, anti-apoptotic, and anti-inflammatory properties, and adding them to aflatoxin-contaminated poultry diets has been shown to improve growth and overall health. This review investigates the potential of microalgae, such as Spirulina platensis, Chlorella vulgaris, and Enteromorpha prolifera, to mitigate AFB1 contamination in poultry feeds. These microalgae contain substantial amounts of bioactive compounds, including polysaccharides, peptides, vitamins, and pigments, which possess antioxidant, antimicrobial, and detoxifying properties. Microalgae can bind to aflatoxins and prevent their absorption in the gastrointestinal tract of poultry. They can also enhance the immune system of poultry, making them more resilient to the toxic effects of AFB1. Based on the data collected, microalgae have shown promising results in combating AFB1 contamination in poultry feeds. They can bind to aflatoxins, boost the immune system, and improve feed quality. This review emphasizes the harmful effects of AFB1 on poultry and the promising role of microalgae in reducing these effects.


Subject(s)
Aflatoxin B1 , Animal Feed , Microalgae , Poultry , Animals , Aflatoxin B1/toxicity , Food Contamination/prevention & control , Antioxidants/pharmacology , Spirulina , Aflatoxins/toxicity
5.
Sci Total Environ ; 935: 173285, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38772488

ABSTRACT

Dietary pollution of Aflatoxin B1 (AFB1) poses a great threat to global food safety, which can result in serious hepatic injuries. Following the widespread use of plastic tableware, co-exposure to microplastics and AFB1 has dramatically increased. However, whether microplastics could exert synergistic effects with AFB1 and amplify its hepatotoxicity, and the underlying mechanisms are still unelucidated. Here, mice were orally exposed to 100 nm polystyrene nanoplastics (NPs) and AFB1 to investigate the influences of NPs on AFB1-induced hepatic injuries. We found that exposure to only NPs or AFB1 resulted in colonic inflammation and the impairment of the intestinal barrier, which was exacerbated by combined exposure to NPs and AFB1. Meanwhile, co-exposure to NPs exacerbated AFB1-induced dysbiosis of gut microbiota and remodeling of the fecal metabolome. Moreover, NPs and AFB1 co-exposure exhibited higher levels of systemic inflammatory factors compared to AFB1 exposure. Additionally, NPs co-exposure further exacerbated AFB1-induced hepatic fibrosis and inflammation, which could be associated with the overactivation of the TLR4/MyD88/NF-κB pathway. Notably, Spearman's correlation analysis revealed that the exacerbation of NPs co-exposure was closely associated with microbial dysbiosis. Furthermore, microbiota from NPs-exposed mice (NPsFMT) partly reproduced the exacerbation of NPs on AFB1-induced systemic and hepatic inflammation, but not fibrosis. In summary, our findings indicate that gut microbiota could be involved in the exacerbation of NPs on AFB1-induced hepatic injuries, highlighting the health risks of NPs.


Subject(s)
Aflatoxin B1 , Gastrointestinal Microbiome , Liver , Microplastics , Polystyrenes , Aflatoxin B1/toxicity , Animals , Mice , Gastrointestinal Microbiome/drug effects , Polystyrenes/toxicity , Microplastics/toxicity , Liver/drug effects , Chemical and Drug Induced Liver Injury , Dysbiosis/chemically induced , Nanoparticles/toxicity
6.
Ecotoxicol Environ Saf ; 275: 116278, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564860

ABSTRACT

Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.


Subject(s)
Aflatoxin B1 , Chemical and Drug Induced Liver Injury , Humans , Mice , Animals , Molecular Docking Simulation , Aflatoxin B1/toxicity , Liver/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , ErbB Receptors/metabolism
7.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38572889

ABSTRACT

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Subject(s)
Annona , Curcumin , Rats , Animals , Aflatoxin B1/toxicity , Curcumin/pharmacology , Alanine Transaminase/pharmacology , Alkaline Phosphatase/pharmacology , Creatinine/pharmacology , Liver , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Aspartate Aminotransferases/pharmacology , Lactate Dehydrogenases
8.
Ecotoxicol Environ Saf ; 276: 116316, 2024 May.
Article in English | MEDLINE | ID: mdl-38615640

ABSTRACT

Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.


Subject(s)
Aflatoxin B1 , Apoptosis , Cell Survival , Leydig Cells , Triterpenes , Aflatoxin B1/toxicity , Apoptosis/drug effects , Leydig Cells/drug effects , Animals , Cell Line , Cell Survival/drug effects , Mice , Male , Triterpenes/pharmacology , Sterols/pharmacology , Caspase 3/metabolism , Protective Agents/pharmacology , Caspase 9/metabolism
9.
Ecotoxicol Environ Saf ; 276: 116332, 2024 May.
Article in English | MEDLINE | ID: mdl-38626608

ABSTRACT

According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 µM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 µM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 µM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 µM AFB1 (P < 0.05), respectively. Furthermore, 15 µM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 µM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 µM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.


Subject(s)
Aflatoxin B1 , Carps , Cell Proliferation , Extracellular Matrix , Myoblasts , Reactive Oxygen Species , Animals , Aflatoxin B1/toxicity , Myoblasts/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Cell Movement/drug effects
10.
Ecotoxicol Environ Saf ; 276: 116344, 2024 May.
Article in English | MEDLINE | ID: mdl-38636259

ABSTRACT

Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 µg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.


Subject(s)
Aflatoxin B1 , Chemical and Drug Induced Liver Injury , Polysaccharides , Salvia miltiorrhiza , Animals , Rabbits , Polysaccharides/pharmacology , Aflatoxin B1/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Salvia miltiorrhiza/chemistry , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects , Male , Alanine Transaminase/blood , Reactive Oxygen Species/metabolism
11.
Reprod Toxicol ; 126: 108599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679149

ABSTRACT

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS: The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS: The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS: These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.


Subject(s)
Aflatoxin B1 , Autism Spectrum Disorder , Brain , Disease Models, Animal , Spleen , Animals , Autism Spectrum Disorder/chemically induced , Aflatoxin B1/toxicity , Brain/metabolism , Brain/drug effects , Spleen/drug effects , Spleen/metabolism , Male , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Mice , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism
12.
Proc Natl Acad Sci U S A ; 121(16): e2314426121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38574017

ABSTRACT

Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Animals , Mice , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Aflatoxin B1/toxicity , Ligands , Burkitt Lymphoma/metabolism , Chemokines , Carcinogenesis
13.
Food Chem Toxicol ; 188: 114687, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663764

ABSTRACT

The present study aims to promote network toxicology and molecular docking strategies for the efficient evaluation of the toxicity of food contaminants. With the example of liver injury induced by the food contaminant Aflatoxin B1(AFB1), this study effectively investigated the putative toxicity of food contaminants and the potentially molecular mechanisms. The study found that AFB1 regulates multiple signalling pathways by modulating core targets such as AKT1, BCL2, TNF, CASP3, SRC and EGFR. These pathways encompass Pathways in cancer, PI3K-Akt signalling pathway, Endocrine resistance, Lipid and atherosclerosis, Apoptosis and other pathways, subsequently impacting immunotoxicity, inflammatory responses, apoptosis, cytogenetic mutations, and ultimately leading to liver injury. We provide a theoretical basis for understanding the molecular mechanisms of AFB1 hepatotoxicity and for the prevention and treatment of cancers caused by the food contaminant AFB1. Furthermore, our network toxicology and molecular docking methods also provide an effective method for the rapid evaluation of the toxicity of food contaminants, which effectively solves the cost and ethical problems associated with the use of experimental animals.


Subject(s)
Aflatoxin B1 , Food Contamination , Molecular Docking Simulation , Aflatoxin B1/toxicity , Aflatoxin B1/chemistry , Food Contamination/analysis , Humans , Animals , Signal Transduction/drug effects
14.
Ecotoxicol Environ Saf ; 277: 116363, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663190

ABSTRACT

Environmental aflatoxin B1 (AFB1) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB1-exposed hepatocyte-derived EVs (AFB1-EVs) were extracted, and the functional effects of AFB1-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB1 exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB1 exposure induced liver fibrosis via HSCs activation in mice, while the AFB1-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB1 exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB1-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB1-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB1 exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB1-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB1 exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.


Subject(s)
Aflatoxin B1 , Extracellular Vesicles , Hepatic Stellate Cells , Hepatocytes , Liver Cirrhosis , Mitophagy , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Aflatoxin B1/toxicity , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Mitophagy/drug effects , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Animals , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Male , Humans , Mice, Inbred C57BL , Signal Transduction/drug effects
15.
Food Chem Toxicol ; 188: 114640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583501

ABSTRACT

This study investigates the individual and combined effects of the mycotoxins, Aflatoxin B1 (AFB1), Enniatin B (ENNB) and Sterigmatocystin (STG), on the cellular viability of gastric (NCI-N87), intestinal (Caco-2), hepatic (Hep-G2) and renal (Hek-293) cells, shedding light on synergistic or antagonistic effects using a constant ratio combination design proposed by Chou-Talalay. These toxins are prevalent in cereal-based foods, frequently consumed by children which raises concerns about their exposure to these mycotoxins. This population is particularly vulnerable to the effects of these toxins due to their underdeveloped organs and incompletely structured physiological processes. Results showed that ENB was the most toxic of the three mycotoxins across all cell lines, while STG and AFB1 showed lower toxicity. The combination of ENNB + STG was found to be the most potent in terms of binary mixtures. In regard to ternary combinations, Caco-2 cells are more sensitive to the tested mycotoxins, whereas NCI-N87 cells show lower levels of cell damage. Worrying dose reduction values (>10-fold) were found for ENNB in binary and ternary combinations at low exposure levels. These findings are significant for establishing initial reference values, which play a pivotal role in estimating reference doses that are subsequently incorporated into the broader risk assessment process.


Subject(s)
Aflatoxin B1 , Depsipeptides , Sterigmatocystin , Humans , Sterigmatocystin/toxicity , Aflatoxin B1/toxicity , Depsipeptides/toxicity , Cell Survival/drug effects , Caco-2 Cells , Liver/drug effects , Kidney/drug effects , Intestines/drug effects , HEK293 Cells , Hep G2 Cells
16.
Mutagenesis ; 39(3): 181-195, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38468450

ABSTRACT

Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely distributed in maize and maized-based products, often occurring together. The implications of co-exposure to aflatoxin and fumonsin for human health are numerous, but a particular concern is the potential of FB1 to modulate AFB1 hepatotoxicity. This study evaluated the toxicity of these mycotoxins, alone or combined, in a human non-tumorigenic liver cell line, HHL-16 cells, and assessed the effects of AFB1 and FB1 on expression of genes involved in immune and growth factor pathways. The results demonstrated that in HHL-16 cells, both AFB1 and FB1 had dose-dependent and time-dependent toxicity, and the combination of them showed a synergistic toxicity in the cells. Moreover, AFB1 caused upregulation of IL6, CCL20, and BMP2, and downregulation of NDP. In combination of AFB1 with FB1, gene expression levels of IL6 and BMP2 were significantly higher compared to individual FB1 treatment, and had a tendency to be higher than individual AFB1 treatment. This study shows that FB1 may increase the hepatoxicity of AFB1 through increasing the inflammatory response and disrupting cell growth pathways.


Subject(s)
Aflatoxin B1 , Fumonisins , Hepatocytes , Fumonisins/toxicity , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Aflatoxin B1/toxicity , Cell Line , Inflammation/genetics , Inflammation/chemically induced , Gene Expression Regulation/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism
17.
Sci Total Environ ; 927: 171973, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547995

ABSTRACT

The aim of this study was to investigate the alleviating effect of selenomethionine (SeMet) on aflatoxin B1 (AFB1)-induced testicular injury in rabbits. Twenty-five 90-d-old rabbits were randomly divided into 5 groups (the control group, the AFB1 group, the 0.2 mg/kg SeMet + AFB1 group, the 0.4 mg/kg SeMet + AFB1 group and the 0.6 mg/kg SeMet + AFB1 group). After 1 d of the experiment, the SeMet-treated groups were fed 0.2 mg/kg SeMet, 0.4 mg/kg SeMet, or 0.6 mg/kg SeMet daily, and the remaining two groups were fed a normal diet for 30 d. On Day 31, all rabbits in the model group and the three treatment groups were fed 0.5 mg/kg AFB1 for 21 d. The levels of testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) in rabbit plasma were detected. Rabbit semen was collected, and its quality was evaluated. Pathological changes in rabbit testes were observed by hematoxylin-eosin (HE) staining. The expression of related proteins in testicular tissue was detected by immunohistochemistry, immunofluorescence and western blot (WB) analysis. Enzyme-linked immunosorbent assays (ELISAs) were used to detect oxidative stress-related indices and inflammatory factors in testicular tissue. The results showed that AFB1 can induce oxidative stress and inflammation to activate the p38/MSK/NF-κB signalling pathway, mediate apoptosis, inhibit the proliferation and differentiation of testicular cells, destroy the integrity of the blood-testis barrier (BTB) and the normal structure of the testis, and reduce the content of sex hormones and semen quality. SeMet pretreatment significantly alleviated testicular injury oxidative stress, and the inflammatory response in rabbits. Thus, we demonstrated that SeMet restores AFB1-induced testicular toxicity by inhibiting the p38/MSK/NF-κB signalling pathway. In addition, in this study, 0.4 mg/kg SeMet had the most impactful effect.


Subject(s)
Aflatoxin B1 , Selenomethionine , Testis , Animals , Male , Rabbits , Aflatoxin B1/toxicity , Selenomethionine/pharmacology , Testis/drug effects , Testosterone/blood , Protective Agents/pharmacology , Testicular Diseases/prevention & control , Testicular Diseases/chemically induced , Oxidative Stress/drug effects , Luteinizing Hormone/blood , Apoptosis/drug effects
18.
Food Funct ; 15(7): 3615-3628, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38470843

ABSTRACT

Aflatoxin B1 (AFB1) causes serious immunotoxicity and has attracted considerable attention owing to its high sensitivity and common chemical-viral interactions in living organisms. However, the sensitivity of different species to AFB1 widely varies, which cannot be explained by the different metabolism in species. The gut microbiota plays a crucial role in the immune system, but the interaction of the microbiota with AFB1-induced immunotoxicity still needs to be determined. Our results indicated that AFB1 exposure disrupted the structure of the gut microbiota and damaged the gut barrier, which caused translocation of microbiota metabolites, lipopolysaccharides, to the spleen. Subsequently, pyroptosis of the spleen was activated. Interestingly, AFB1 exposure had little effect on the splenic pyroptosis of pseudo-germfree mice (antibiotic mixtures eliminated their gut microbiota, ABX). Then, fecal microbiota transplant (FMT) and sterile fecal filtrate (SFF) were employed to validate the function of the gut microbiota and its metabolites in AFB1-induced splenic pyroptosis. The AFB1-disrupted microbiota and its metabolites significantly promoted splenic pyroptosis, which was worse than that in control mice. Overall, AFB1-induced splenic pyroptosis is associated with the gut microbiota and its metabolites, which was further demonstrated by FMT and SFF. The mechanism of AFB1-induced splenic pyroptosis was explored for the first time, which paves a new way for preventing and treating the immunotoxicity from mycotoxins by regulating the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Pyroptosis , Animals , Mice , Aflatoxin B1/toxicity , Spleen , Feces
19.
J Hazard Mater ; 469: 133916, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38479137

ABSTRACT

Aflatoxins from the fungus Aspergillus flavus (A. flavus) that contaminate stored peanuts is a major hazard to human health worldwide. Reducing A. flavus in soil can decrease the risk of aflatoxins in stored peanuts. In this experiment, we determined whether peanuts grown on soil fumigated with dazomet (DZ), metham sodium (MS), allyl isothiocyanate (AITC), chloropicrin (PIC) or dimethyl disulfide (DMDS) would reduce of the quantity of A. flavus and its toxin's presence. The results of bioassays and field tests showed that PIC was the most effective fumigant for preventing and controlling A. flavus, followed by MS. PIC and MS applied to the soil for 14 d resulted in LD50 values against A. flavus of 3.558 and 4.893 mg kg-1, respectively, leading to almost 100% and 98.82% effectiveness of A. flavus, respectively. Peanuts harvested from fumigated soil and then stored for 60 d resulted in undetectable levels of aflatoxin B1 (AFB1) compared to unfumigated soil that contained 0.64 ug kg-1 of AFB1, which suggested that soil fumigation can reduce the probability of aflatoxin contamination during peanut storage and showed the potential to increase the safety of peanuts consumed by humans. Further research is planned to determine the practical value of our research in commercial practice.


Subject(s)
Aflatoxin B1 , Aflatoxins , Humans , Aflatoxin B1/toxicity , Aflatoxin B1/analysis , Arachis , Soil , Disinfection , Aspergillus flavus , Aflatoxins/toxicity , Aflatoxins/analysis
20.
J Agric Food Chem ; 72(11): 5966-5974, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446589

ABSTRACT

Mycotoxin contamination is an important issue for food safety and the environment. Removing mycotoxins from food without losing nutrients and flavor components remains a challenge. In this study, a novel strategy was proposed for the targeted removal of aflatoxin B1 (AFB1) from peanut oil using an amphipathic enzyme-metal hybrid nanoreactor (PL-GOx-Fe3O4@COF) constructed with covalent organic frameworks (COFs) which can selectively adsorb AFB1. Due to the confined space provided by COFs and the proximity effect between GOx and Fe3O4, the detoxification of AFB1 is limited in the nanoreactor without affecting the composition and properties of the oil. The detoxification efficiency of AFB1 in the chemoenzymatic cascade reaction catalyzed by PL-GOx-Fe3O4@COF is six times higher than that of the combination of free GOx and Fe3O4. The AFB1 transformation product has nontoxicity to kidney and liver cells. This study provides a powerful tool for the targeted removal of mycotoxins from edible oils.


Subject(s)
Aflatoxin B1 , Food Safety , Aflatoxin B1/toxicity , Hepatocytes , Peanut Oil , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...