Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 841
Filter
1.
Int J Med Mushrooms ; 26(5): 13-24, 2024.
Article in English | MEDLINE | ID: mdl-38780420

ABSTRACT

Mushrooms have been used by humans for centuries as food and medicine because they have been shown to affect certain diseases. Mushrooms for medicinal purposes have been consumed in the form of extracts and/or biomass of the mycelium or fruiting body. The beneficial health effects of mushrooms are due to their content of bioactive compounds (polysaccharides, proteins, ergosterol, lectins, etc.). On the other hand, diabetes is one of the metabolic diseases that affects the population worldwide, characterized by hyperglycemia that involves a defective metabolism of insulin, a hormone secreted by ß cells and that mainly stimulates glucose absorption by the cells. However, it also affects the metabolism of carbohydrates, fats and proteins; poor control of this disease leads to serious damage to eyesight, kidneys, bones, heart, skin, blood vessels, nerves, etc. It has been reported that the consumption of some mushrooms helps control and treat diabetes, since among other actions, they promote the secretion of insulin by the pancreas, help reduce blood glucose and have α-glucosidase inhibitory activity which improves glucose uptake by cells, which are effects that prescription medications have for patients with diabetes. In that sense, this manuscript shows a review of scientific studies that support the abilities of some mushrooms to be used in the control and/or treatment of diabetes.


Subject(s)
Agaricales , Diabetes Mellitus , Hypoglycemic Agents , Agaricales/chemistry , Agaricales/metabolism , Hypoglycemic Agents/pharmacology , Humans , Diabetes Mellitus/drug therapy , Biological Products/pharmacology , Fungi/metabolism , Animals , Insulin/metabolism
2.
Food Funct ; 15(10): 5527-5538, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38700280

ABSTRACT

The salty oligopeptides from Stropharia rugosoannulata have been proven to be potential ACE inhibitors. To investigate the ACE receptor binding properties and interaction mechanisms of salty oligopeptides, the molecular interaction, dynamics simulation, and antihypertensive evaluation cross-validation strategy were employed to reveal the oligopeptides' binding reactions and modes with the ACE receptor. Single oligopeptide (ESPERPFL, KSWDDFFTR) had exothermic and specific binding reactions with the ACE receptor, driven by hydrogen bonds and van der Waals forces. The coexistence of the multiple oligopeptide molecules did not produce the apparent ACE receptor competition binding reactions. The molecular dynamics simulation verified that the two oligopeptides disturbed the ACE receptor's different residue regions. Both oligopeptides could form stable complexes with the ACE receptor. Based on the classification of 50 oligopeptides' binding modes, ESPERPFL and KSWDDFFTR belonged to different classes, and their receptor binding modes and sites complemented, resulting in a potential synergistic effect on ACE inhibition. The antihypertensive effect of KSWDDFFTR and its distribution in the body were evaluated using SHR rats orally and ICR mice by tail vein injection, and KSWDDFFTR had antihypertensive effects within 8 h. The study provides a theoretical basis for understanding salty oligopeptides' ACE receptor binding mechanism and their antihypertensive effects.


Subject(s)
Antihypertensive Agents , Molecular Dynamics Simulation , Oligopeptides , Animals , Oligopeptides/pharmacology , Oligopeptides/chemistry , Oligopeptides/metabolism , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Rats , Male , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Agaricales/chemistry , Agaricales/metabolism , Mice , Hypertension/drug therapy , Hypertension/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Protein Binding , Blood Pressure/drug effects , Rats, Inbred SHR
3.
Adv Appl Microbiol ; 127: 45-142, 2024.
Article in English | MEDLINE | ID: mdl-38763529

ABSTRACT

Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.


Subject(s)
Fungal Polysaccharides , Fungal Polysaccharides/chemistry , Humans , Animals , Agaricales/chemistry , Agaricales/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Immunologic Factors/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
4.
Food Chem ; 451: 139431, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38663248

ABSTRACT

The black morel (Morchella sextelata) is a valuable edible and medicinal mushroom appreciated worldwide. Here, lipidomic profiles and lipid dynamic changes during the growth of M. sexletata were analyzed using ultra-performance liquid chromatography coupled with mass spectrometry. 203 lipid molecules, including four categories and fourteen subclasses, were identified in mature fruiting bodies, with triacylglycerol being the most abundant (37.00 %). Fatty acid composition analysis revealed that linoleic acid was the major fatty acid among the free fatty acids, glycerolipids and glycerophospholipids. The relative concentration of lipids in M. sextelata changed significantly during its growth, from which 12 and 29 differential lipid molecules were screened out, respectively. Pathway analysis based on these differential lipids showed that glycerophospholipid metabolism was the major pathway involved in the growth of M. sextelata. Our study provides a comprehensive understanding of the lipids in M. sextelata and will facilitate the development and utilization of M. sextelata.


Subject(s)
Lipidomics , Lipids , Lipids/analysis , Lipids/chemistry , Chromatography, High Pressure Liquid , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Mass Spectrometry , Fatty Acids/metabolism , Fatty Acids/chemistry , Fatty Acids/analysis , Agaricales/growth & development , Agaricales/chemistry , Agaricales/metabolism , Lipid Metabolism , Ascomycota/growth & development , Ascomycota/chemistry , Ascomycota/metabolism
5.
Microbiol Res ; 284: 127736, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663231

ABSTRACT

Blue light is an important signal for fungal development. In the mushroom-forming basidiomycete Schizophyllum commune, blue light is detected by the White Collar complex, which consists of WC-1 and WC-2. Most of our knowledge on this complex is derived from the ascomycete Neurospora crassa, where both WC-1 and WC-2 contain GATA zinc-finger transcription factor domains. In basidiomycetes, WC-1 is truncated and does not contain a transcription factor domain, but both WC-1 and WC-2 are still important for development. We show that dimerization of WC-1 and WC-2 happens independent of light in S. commune, but that induction by light is required for promoter binding by the White Collar complex. Furthermore, the White Collar complex is a promoter of transcription, but binding of the complex alone is not always sufficient to initiate transcription. For its function, the White Collar complex associates directly with the promoters of structural genes involved in mushroom development, like hydrophobins, but also promotes the expression of other transcription factors that play a role in mushroom development.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Schizophyllum , Transcription Factors , Schizophyllum/metabolism , Schizophyllum/genetics , Schizophyllum/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Light , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Regulatory Networks , Protein Binding , Agaricales/genetics , Agaricales/metabolism , Agaricales/growth & development
6.
Sci Rep ; 14(1): 9903, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688964

ABSTRACT

The edible fungus industry is one of the pillar industries in the Yunnan-Guizhou Plateau, China. The expansion of the planting scale has led to the release of various mushroom residues, such as mushroom feet, and other wastes, which are not treated adequately, resulting in environmental pollution. This study investigated the ability of black soldier fly (Hermetia illucens L.) larvae (BSFL) to degrade mushroom waste. Moreover, this study analyzed changes in the intestinal bacterial community and gene expression of BSFL after feeding on mushroom waste. Under identical feeding conditions, the remaining amount of mushroom waste in Pleurotus ostreatus treatment group was reduced by 18.66%, whereas that in Flammulina velutipes treatment group was increased by 31.08%. Regarding gut microbial diversity, compared with wheat bran-treated control group, Dysgonomonas, Providencia, Enterococcus, Pseudochrobactrum, Actinomyces, Morganella, Ochrobactrum, Raoultella, and Ignatzschineria were the most abundant bacteria in the midgut of BSFL in F. velutipes treatment group. Furthermore, Dysgonomonas, Campylobacter, Providencia, Ignatzschineria, Actinomyces, Enterococcus, Morganella, Raoultella, and Pseudochrobactrum were the most abundant bacteria in the midgut of BSFL in P. ostreatus treatment group. Compared with wheat bran-treated control group, 501 upregulated and 285 downregulated genes were identified in F. velutipes treatment group, whereas 211 upregulated and 43 downregulated genes were identified in P. ostreatus treatment group. Using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we identified 14 differentially expressed genes (DEGs) related to amino sugar and nucleotide sugar metabolism in F. velutipes treatment group, followed by 12 DEGs related to protein digestion and absorption. Moreover, in P. ostreatus treatment group, two DEGs were detected for fructose and mannose metabolism, and two were noted for fatty acid metabolism. These results indicate that feeding on edible mushroom waste can alter the intestinal microbial community structure of BSFL; moreover, the larval intestine can generate a corresponding feedback. These changes contribute to the degradation of edible mushroom waste by BSFL and provide a reference for treating edible mushroom waste using BSFL.


Subject(s)
Agaricales , Gastrointestinal Microbiome , Larva , Pleurotus , Animals , Larva/microbiology , Pleurotus/metabolism , Agaricales/metabolism , Agaricales/genetics , Biodegradation, Environmental , Diptera/microbiology , Diptera/metabolism , Flammulina/metabolism , Flammulina/genetics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
7.
Int J Med Mushrooms ; 26(4): 63-72, 2024.
Article in English | MEDLINE | ID: mdl-38523450

ABSTRACT

In the present study, wide diversity in the set and activity of lignin-modifying enzymes (LME) was revealed during submerged fermentation of mandarin peel with 15 strains of white rot Basidiomycetes. Among them, Trametes pubescens BCC153 was distinguished by the simultaneous production of laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP). Supplementation of CuSO4 at a concentration of 1 mM in the media for the cultivation of four Trametes species manifold increased the production of laccase. The diverse effects of chemically different lignocellulosic growth substrates and nitrogen sources on the production of individual LME have been established. The maximum laccase activity of T. pubescens was observed when the fungus was cultivated on media containing mandarin peel and wheat bran, whereas the highest MnP and LiP activities were detected in the submerged fermentation of tobacco residue. Peptone and casein hydrolysate appeared to be the best sources of nitrogen to produce laccase and both peroxidases by T. pubescens BCC153 whereas KNO3 was the worst nitrogen-containing compound for the production of all enzymes.


Subject(s)
Agaricales , Agaricales/metabolism , Laccase/metabolism , Fermentation , Trametes , Lignin/metabolism , Nitrogen
8.
Int J Med Mushrooms ; 26(3): 55-66, 2024.
Article in English | MEDLINE | ID: mdl-38505903

ABSTRACT

Leukemia can be a result of genetic changes associated with protein tyrosine kinase activity such as in MPL W515L and BCR/ABL genes. However, the current conventional treatment of leukemia produces severe side effects that urge the approach to use natural products. A medicinal mushroom, Lignosus rhinocerus shows potential as an anti-cancer treatment. To investigate the efficacy and mechanism of action of the L. rhinocerus cultivar (TM02®) extract on leukemogenic tyrosine kinase cell lines, a cold-water extract (CWE) was produced by using TM02® sclerotia powder at 4°C. The carbohydrate and protein contents were found to be 77.24% and 1.75% respectively. In comparison to the normal Ba/F3 cell, the CWE TM02® shows significant effects on exhibiting proliferation of Ba/F3 expressed MPL W515L and BCR/ABL, possibly due to the presence of phenolic compounds and antioxidant properties of TM02®, which contribute to act on various signaling pathways, and the reported apoptotic activity of CWE TM02®. In contrast, CWE TM02® significantly exhibited high scavenging activity of both Ba/F3 expressed MPL W515L and BCR/ABL. At concentrations of 125 µg/mL and 500 µg/mL of CWE TM02® decreased 49.5% and 67.5% of cell migration activity of Ba/F3 expressed MPL W515L and BCR/ABL respectively. Therefore, we postulate that CWE TM02® has the capability to mediate the migration route of the leukemogenic tyrosine kinase cell lines.


Subject(s)
Agaricales , Leukemia , Polyporaceae , Humans , Protein-Tyrosine Kinases , Agaricales/metabolism , Cell Line
9.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38505899

ABSTRACT

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Subject(s)
Agaricales , Agaricales/metabolism , Dietary Supplements , Fermentation , Dietary Fiber , Mycelium
10.
Mycologia ; 116(3): 464-474, 2024.
Article in English | MEDLINE | ID: mdl-38489159

ABSTRACT

Tremella fuciformis Berk. (TF), or the white jelly mushroom, is well known for its myriad of pharmacological properties, such as immunomodulatory, anti-inflammatory, antidiabetic, antitumor, and antioxidant activities, and hypocholesterolemic and hepatoprotective effects that boost human health. Most of the studies of TF are concentrated on its polysaccharide (glucuronoxylomannan) composition, which is responsible for its pharmacological as well as rheological properties. It is well established that mushrooms are a great source of dietary vitamin D due to the presence of ergosterol in their cell membrane. There is a lack of published data on TF as a source of vitamin D2. Therefore, this study aimed to evaluate the vitamin D2 composition of the fruiting bodies of TF using triple quadrupole liquid chromatography-mass spectrometry (LC-MS/QQQ). The results showed highest vitamin D2 content (292.02 µg/g dry weight) in the sample irradiated with ultraviolet B (UVB; 310 nm) for 180 min as compared with the control group (52.47 µg/g dry weight) (P ≤ 0.001). The results showed higher accumulation potential of vitamin D2 in TF as compared with published data available for other extensively studied culinary mushrooms, such as Agaricus bisporus, Lentinula edodes, Pleurotus ostreatus, Cordiceps militaris, and Calocybe indica. Moreover, the impact of UV treatment on antioxidant capacities and total polyphenol content of TF was also studied. The accumulation potential of vitamin D in TF reveals a novel commercial source for this nutrient.


Subject(s)
Antioxidants , Ergocalciferols , Polyphenols , Ergocalciferols/metabolism , Ergocalciferols/analysis , Polyphenols/metabolism , Polyphenols/analysis , Antioxidants/metabolism , Antioxidants/analysis , Chromatography, Liquid , Basidiomycota/metabolism , Basidiomycota/chemistry , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Agaricales/chemistry , Agaricales/metabolism , Mass Spectrometry , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry
11.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Article in English | MEDLINE | ID: mdl-38305262

ABSTRACT

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Subject(s)
Agaricales , Ascomycota , Liver Diseases, Alcoholic , Selenium , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Selenium/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Ascomycota/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Agaricales/metabolism , Mycelium/metabolism
12.
Food Chem ; 443: 138554, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38306912

ABSTRACT

This study aimed to investigate the flavor changes in Huangshan floral mushroom by different enzyme treatments. Seven enzyme groups were used to hydrolyze its protein to obtain protein hydrolysates (FPHs). Flavourzyme composite with dispase hydrolysates (FDHs) were selected for ultrafiltration to obtain peptides (FPs) with different molecular weights (Mw). Changes in flavor were investigated using HPLC, LC-MS, GC-MS, amino acid analysis and sensory evaluation. Color parameters and DPPH-scavenging activity were also determined. The results revealed that flavor characteristics of FPHs obtained from different enzyme treatments varied. FDHs presented the highest degree of hydrolysis (DH) (58.61 ± 1.55) %, rich 5'-nucleotides (8.61 ± 0.43 mg/mL), volatile compounds (28.54 ± 0.11 µg/g) and free amino acids (FAAs) (7.73 ± 0.51 mg/g). Further tests suggested that FPs with small Mw (<1K, 1-3 K) were optimal for the development of novel flavors, thus providing application value for rational utilization of Huangshan floral mushroom.


Subject(s)
Agaricales , Agaricales/metabolism , Peptides/chemistry , Hydrolysis , Peptide Hydrolases/metabolism , Antioxidants/chemistry , Protein Hydrolysates/chemistry
13.
Sci Rep ; 14(1): 1540, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233558

ABSTRACT

A series of new analogs of 3,5-dihydroxybenzoyl-hydrazineylidene conjugated to different methoxyphenyl triazole (11a-n) synthesized using click reaction. The structures of all synthesized compounds were characterized by FTIR, 1H, 13C-NMR spectroscopy, and CHO analysis. The tyrosinase inhibitory potential of the synthesized compounds was studied. The newly synthesized scaffolds were found to illustrate the variable degree of the inhibitory profile, and the most potent analog of this series was that one bearing 4-methoxyphenyl moiety, and exhibited an IC50 value of 55.39 ± 4.93 µM. The kinetic study of the most potent derivative reveals a competitive mode of inhibition. Next, molecular docking studies were performed to understand the potent inhibitor's binding mode within the enzyme's binding site. Molecular dynamics simulations were accomplished to further investigate the orientation and binding interaction over time and the stability of the 11m-tyrosinase complex.


Subject(s)
Agaricales , Monophenol Monooxygenase , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Agaricales/metabolism , Dose-Response Relationship, Drug
14.
Plant Physiol Biochem ; 207: 108332, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224638

ABSTRACT

Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.


Subject(s)
Agaricales , Cacao , Selenium , Cacao/microbiology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Selenium/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Plant Cells , Agaricales/metabolism , Cell Death , Glutathione Peroxidase/metabolism , Plant Diseases/microbiology
15.
Environ Res ; 248: 118297, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38281560

ABSTRACT

In this work, harvested mushroom substrate (HMS) has been explored for the first time through a comprehensive optimization study for the green synthesis of silver nanoparticles (AgNPs). A multiple response central composite design with three parameters: pH of the reaction mixture, temperature, and incubation period at three distinct levels was employed in the optimization study. The particle size of AgNPs, UV absorbance, and the percentage of Ag/Cl elemental ratio were considered as the response parameters. For each response variable examined the model used was found to be significant (P < 0.05). The ideal conditions were: pH 8.9, a temperature of 59.4 °C, and an incubation period of 48.5 h. The UV-visible spectra of AgNPs indicated that the absorption maxima for AgNP-3 were 414 nm, 420 for AgNPs-2, and 457 for AgNPs-1. The XRD analysis of AgNPs-3 and AgNPs-2 show a large diffraction peak at ∼38.2°, ∼44.2°, ∼64.4°, and ∼77.4°, respectively, which relate to the planes of polycrystalline face-centered cubic (fcc) silver. Additionally, the XRD result of AgNPs-1, reveals diffraction characteristics of AgCl planes (111, 200, 220, 311, 222, and 400). The TEM investigations indicated that the smallest particles were synthesized at pH 9 with average diameters of 35 ± 6 nm (AgNPs-3). The zeta potentials of the AgNPs are -36 (AgNPs-3), -28 (AgNPs-2), and -19 (AgNPs-1) mV, respectively. The distinct IR peak at 3400, 1634, and 1383 cm-1 indicated the typical vibration of phenols, proteins, and alkaloids, respectively. The AgNPs were further evaluated against gram (+) strain Bacillus subtilis (MTCC 736) and gram (-) strain Escherichia coli (MTCC 68). All of the NPs tested positive for antibacterial activity against both bacterial strains. The study makes a sustainable alternative to disposing of HMS to achieve the Sustainable Development Goals (SDGs).


Subject(s)
Agaricales , Metal Nanoparticles , Silver/chemistry , Agaricales/metabolism , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
16.
Int J Biol Macromol ; 261(Pt 1): 129756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286376

ABSTRACT

Mushroom polysaccharides exhibit numerous health-enhancing attributes that are intricately linked to the breakdown, assimilation, and exploitation of polysaccharides within the organism. Naematelia aurantialba polysaccharides (NAPS-A), highly prized polysaccharides derived from mushrooms, remain shrouded in uncertainty regarding their characteristics pertaining to gastrointestinal digestion and gut microbial fermentation. The study aimed to understand the digestion and fecal fermentation patterns of NAPS-A. After simulated digestion, NAPS-A's physicochemical properties remained unchanged. However, during in vitro fecal fermentation, indigestible NAPS-A underwent significant changes in various properties, such as reducing sugar, chemical composition, constituent monosaccharides, Molecular weight, apparent viscosity, FT-IR spectra, and microscopic morphology. Notably, NAPS-A was effectively utilized by the gut microbiota, with unchanged properties after digestion but altered after fermentation. It influenced gut microbe composition by increasing beneficial bacteria (Lactobacillus, Faecalibacterium, and Roseburia), lowering pH, and producing short-chain fatty acids. NAPS-A fermentation enriches carbohydrate, fatty acid, and amino acid metabolic pathways through PICRUSt prediction analysis. Overall, these findings emphasize NAPS-A's role in regulating gut bacteria and their metabolic functions, despite its challenging digestibility.


Subject(s)
Agaricales , Basidiomycota , Digestion , Fermentation , Spectroscopy, Fourier Transform Infrared , Fatty Acids, Volatile/metabolism , Polysaccharides/metabolism , Agaricales/metabolism , Bacteria/metabolism
17.
Brain Res ; 1824: 148693, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38036238

ABSTRACT

Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through ß-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.


Subject(s)
Agaricales , Ergothioneine , Ergothioneine/pharmacology , Ergothioneine/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Agaricales/chemistry , Agaricales/metabolism , Cellular Senescence
18.
Anal Bioanal Chem ; 416(11): 2761-2772, 2024 May.
Article in English | MEDLINE | ID: mdl-37987766

ABSTRACT

Mushrooms are considered a valuable food source due to their high protein and fibre and low fat content, among the other health benefits of their consumption. Selenium is an essential nutrient and is renowned for its chemo-preventative properties. In this study, batches of selenium-enriched Lingzhi mushrooms were prepared by growing mycelium and fruit in substrates containing various concentrations of sodium selenite. The mushroom fruit accumulated low levels of selenium with selenomethionine being the most abundant form in all enriched samples. Conversely, the mycelium showed significant selenium accumulation but relatively low proportions of selenomethionine. The red colour of the selenium-enriched mycelia indicated the probable presence of selenium nanoparticles, which was confirmed by single-particle inductively coupled plasma-mass spectrometry. Mean particle diameters of 90-120 nm were observed, with size distributions of 60-250 nm. Additional analysis with transmission electron microscopy confirmed this size distribution and showed that the biogenic selenium nanoparticles were roughly spherical in shape and contained elemental selenium.


Subject(s)
Agaricales , Nanoparticles , Reishi , Selenium , Selenium/analysis , Selenomethionine/analysis , Agaricales/metabolism , Reishi/metabolism , Nanoparticles/chemistry
19.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958943

ABSTRACT

Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds in the mushroom, such as erinacines and hericenones, have been the subject of research, providing evidence of their neuroprotective effects. Further research and standardization processes for dietary supplements focused on H. erinaceus are essential to ensuring effectiveness and safety in protecting the nervous system. Advancements in isolation and characterization techniques, along with improved access to pure analytical standards, will play a critical role in achieving standardized, high-quality dietary supplements based on H. erinaceus. The aim of this study is to analyze the protective and nourishing effects of H. erinaceus on the nervous system and present the most up-to-date research findings related to this topic.


Subject(s)
Agaricales , Neuroprotective Agents , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Agaricales/metabolism , Neurons , Dietary Supplements
20.
Angew Chem Int Ed Engl ; 62(49): e202313817, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37852936

ABSTRACT

An epoxycyclohexenone (ECH) moiety occurs in natural products of both bacteria and ascomycete and basidiomycete fungi. While the enzymes for ECH formation in bacteria and ascomycetes have been identified and characterized, it remained obscure how this structure is biosynthesized in basidiomycetes. In this study, we i) identified a genetic locus responsible for panepoxydone biosynthesis in the basidiomycete mushroom Panus rudis and ii) biochemically characterized PanH, the cytochrome P450 enzyme catalyzing epoxide formation in this pathway. Using a PanH-producing yeast as a biocatalyst, we synthesized a small library of bioactive ECH compounds as a proof of concept. Furthermore, homology modeling, molecular dynamics simulation, and site directed mutation revealed the substrate specificity of PanH. Remarkably, PanH is unrelated to ECH-forming enzymes in bacteria and ascomycetes, suggesting that mushrooms evolved this biosynthetic capacity convergently and independently of other organisms.


Subject(s)
Agaricales , Ascomycota , Basidiomycota , Agaricales/metabolism , Cytochrome P-450 Enzyme System/metabolism , Biocatalysis , Basidiomycota/genetics , Ascomycota/metabolism , Bacteria/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...