Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 66(13): 3893-905, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25911746

ABSTRACT

In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation.


Subject(s)
Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Agave/anatomy & histology , Agave/drug effects , Agave/genetics , Agave/metabolism , Arabidopsis/genetics , Biological Transport/drug effects , DNA, Complementary/genetics , Flowers/drug effects , Flowers/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Indoleacetic Acids/pharmacology , Models, Biological , Molecular Sequence Data , Phylogeny , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction
2.
J Plant Physiol ; 171(3-4): 359-72, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-23988562

ABSTRACT

The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 µM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species.


Subject(s)
Agave/metabolism , Fructans/metabolism , Plant Proteins/metabolism , Abscisic Acid/pharmacology , Acetates/pharmacology , Agave/drug effects , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant/drug effects , Oxylipins/pharmacology , Salicylic Acid/pharmacology , Sucrose/pharmacology
3.
ScientificWorldJournal ; 2013: 167834, 2013.
Article in English | MEDLINE | ID: mdl-24453802

ABSTRACT

We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.


Subject(s)
Agave/drug effects , Cadmium/chemistry , Germination/drug effects , Metals, Heavy/chemistry , Seedlings/drug effects , Seeds/metabolism , Adsorption , Biomass , Ions , Metallothionein/chemistry , Metals/chemistry , Soil Pollutants/chemistry
4.
Bioresour Technol ; 112: 327-35, 2012 May.
Article in English | MEDLINE | ID: mdl-22437048

ABSTRACT

Nine phenol derivatives, p-coumaric acid (PC), vanillin (V), acetovanillone (AV), acetosyringone (AS), syringaldehyde (SA), coniferaldehyde (CLD), ferulic acid (FRC), sinapic acid (SNC), and sinapyl aldehyde (SLD) were assayed as laccase redox mediators in the biobleaching of kenaf and sisal pulps. As a general behaviour, the phenolic mediators increased the kappa number (KN) and reduced the brightness of pulps. In particular, these changes were found to depend in a linear manner on the energy of the highest occupied molecular orbital (E(HOMO)) of the mediators. The phenolic mediator with the lowest E(HOMO) (PC) led to the highest increase of KN and the lowest reduction of brightness. On the contrary, syringyl derivatives (i.e. SA) with high E(HOMO) values caused small KN increases and significant losses of brightness. This behaviour was explained on the basis of a competition between grafting and polymerisation processes. The former basically affects KN, whereas the latter affects pulp brightness.


Subject(s)
Agave/drug effects , Biotechnology/methods , Hibiscus/drug effects , Laccase/metabolism , Phenols/chemistry , Phenols/pharmacology , Trametes/enzymology , Free Radicals/chemistry , Hydrogen/chemistry , Paper , Structure-Activity Relationship , Thermodynamics
5.
Bioresour Technol ; 102(16): 7555-60, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21665465

ABSTRACT

Functionalization of sisal specialty pulp fibers by laccase-catalysed grafting of ferulic acid (FRC) was investigated. To this end, the extent of phenol coupling to fibers under different reaction conditions (laccase and FRC rates, and time) was evaluated in terms of pulp properties including kappa number (expressed as the combined contributions of lignin and hexenuronic acids), brightness, Klason lignin and surface anionic charge after Soxhlet extraction of acetone-treated pulp. The specific treatment resulting in the highest degree of grafting was then used in a comparative study of the effects of applying the laccase-FRC system to refined and unrefined pulp with a view to confirming whether the increased surface area obtained by effect of fibrillation would lead to enhanced grafting. Based on the results, refining the pulp prior to the enzyme treatment resulted in increased grafting which in turn led to handsheets with improved strength-related properties (particularly wet tensile strength) relative to control samples.


Subject(s)
Agave/chemistry , Coumaric Acids/chemistry , Laccase/chemistry , Paper , Agave/drug effects , Coumaric Acids/pharmacology , Laccase/pharmacology , Phenols/chemistry , Tensile Strength , Trametes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...