Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.116
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000412

ABSTRACT

Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.


Subject(s)
Cell Survival , Cellular Senescence , Mitochondria , Signal Transduction , Humans , Mitochondria/metabolism , Animals , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Inflammation/metabolism , Inflammation/pathology , Cell Death , Apoptosis , Pyroptosis , Aging/metabolism
2.
Cells ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38994987

ABSTRACT

Skin provides a physical and immune barrier to protect the body from foreign substances, microbial invasion, and desiccation. Aging reduces the barrier function of skin and its rate of repair. Aged skin exhibits decreased mitochondrial function and prolonged low-level inflammation that can be seen in other organs with aging. Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), an important transcriptional coactivator, plays a central role in modulating mitochondrial function and antioxidant production. Mitochondrial function and inflammation have been linked to epidermal function, but the mechanisms are unclear. The aim of this review is to discuss the mechanisms by which PGC-1α might exert a positive effect on aged skin barrier function. Initially, we provide an overview of the function of skin under physiological and aging conditions, focusing on the epidermis. We then discuss mitochondrial function, oxidative stress, cellular senescence, and inflamm-aging, the chronic low-level inflammation observed in aging individuals. Finally, we discuss the effects of PGC-1α on mitochondrial function, as well as the regulation and role of PGC-1α in the aging epidermis.


Subject(s)
Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Skin Aging , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Skin Aging/physiology , Mitochondria/metabolism , Animals , Skin/metabolism , Skin/pathology , Aging/metabolism , Oxidative Stress , Inflammation/metabolism , Inflammation/pathology , Cellular Senescence
3.
Eur J Med Res ; 29(1): 361, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992689

ABSTRACT

BACKGROUND: Liver grafts are frequently declined due to high donor age or age mismatch with the recipient. To improve the outcome of marginal grafts, we aimed to characterize the performance of elderly vs. young liver grafts in a standardized rat model of normothermic ex vivo liver machine perfusion (NMP). METHODS: Livers from Sprague-Dawley rats aged 3 or 12 months were procured and perfused for 6 h using a rat NMP system or collected as a reference group (n = 6/group). Tissue, bile, and perfusate samples were used for biochemical, and proteomic analyses. RESULTS: All livers cleared lactate during perfusion and continued to produce bile after 6 h of perfusion (614 mg/h). Peak urea levels in 12-month-old animals were higher than in younger animals. Arterial and portal venous pressure, bile production and pH did not differ between groups. Proteomic analysis identified a total of 1477 proteins with oxidoreductase and catalytic activity dominating the gene ontology analysis. Proteins such as aldehyde dehydrogenase 1A1 and 2-Hydroxyacid oxidase 2 were significantly more present in livers of older age. CONCLUSIONS: Young and elderly liver grafts exhibited similar viability during NMP, though proteomic analyses indicated that older grafts are less resilient to oxidative stress. Our study is limited by the elderly animal age, which corresponds to mature but not elderly human age typically seen in marginal human livers. Nevertheless, reducing oxidative stress could be a promising therapeutic target in the future.


Subject(s)
Liver Transplantation , Liver , Perfusion , Proteomics , Rats, Sprague-Dawley , Animals , Liver/metabolism , Rats , Perfusion/methods , Liver Transplantation/methods , Proteomics/methods , Male , Organ Preservation/methods , Humans , Oxidative Stress , Aging/metabolism
4.
Exp Brain Res ; 242(8): 2013-2022, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38949687

ABSTRACT

BACKGROUND: The frontal cortex, relevant to global cognition and motor function, is recruited to compensate for mobility dysfunction in older adults. However, the in vivo neurophysiological (e.g., neurometabolites) underpinnings of the frontal cortex compensation for mobility dysfunction remain poorly understood. The purpose of this study was to investigate the relationships among frontal cortex neurophysiology, mobility, and cognition in healthy older adults. METHODS: Magnetic Resonance Spectroscopy (MRS) quantified N-acetylasparate (tNAA) and total choline (tCho) concentrations and ratios in the frontal cortex in 21 older adults. Four inertial sensors recorded the Timed Up & Go (TUG) test. Cognition was assessed using the Flanker Inhibitory Control and Attention Test which requires conflict resolution because of response interference from flanking distractors during incongruent trials. Congruent trials require no conflict resolution. RESULTS: tNAA concentration significantly related to the standing (p = 0.04) and sitting (p = 0.03) lean angles. tCho concentration (p = 0.04) and tCho ratio (p = 0.02) significantly related to TUG duration. tCho concentration significantly related to incongruent response time (p = 0.01). tCho ratio significantly related to both congruent (p = 0.009) and incongruent (p < 0.001) response times. Congruent (p = 0.02) and incongruent (p = 0.02) Flanker response times significantly related to TUG duration. CONCLUSIONS: Altered levels of frontal cortex neurometabolites are associated with both mobility and cognitive abilities in healthy older adults. Identifying neurometabolites associated with frontal cortex compensation of mobility dysfunction could improve targeted therapies aimed at improving mobility in older adults.


Subject(s)
Frontal Lobe , Magnetic Resonance Spectroscopy , Humans , Aged , Male , Female , Frontal Lobe/metabolism , Choline/metabolism , Aging/metabolism , Aging/physiology , Aged, 80 and over , Middle Aged , Cognition/physiology
5.
Mech Ageing Dev ; 220: 111959, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950628

ABSTRACT

Oligodendrocyte precursor cells (OPCs) comprise 5-8 % of the adult glial cell population and stand out as the most proliferative cell type in the central nervous system (CNS). OPCs are responsible for generating oligodendrocytes (OLs), the myelinating cells of the CNS. However, OPC functions decline as we age, resulting in impaired differentiation and inadequate remyelination. This review explores the cellular and molecular changes associated with OPC aging, and their impact on OPC differentiation and functionality. Furthermore, it examines the impact of OPC aging within the context of multiple sclerosis and Alzheimer's disease, both neurodegenerative conditions wherein aged OPCs exacerbate disease progression by impeding remyelination. Moreover, various pharmacological interventions targeting pathways related to senescence and differentiation are discussed as potential strategies to rejuvenate aged OPCs. Enhancing our understanding of OPC aging mechanisms holds promise for developing new therapies to improve remyelination and repair in age-related neurodegenerative disorders.


Subject(s)
Brain , Cell Differentiation , Cellular Senescence , Oligodendrocyte Precursor Cells , Humans , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/physiology , Cellular Senescence/physiology , Animals , Brain/metabolism , Brain/pathology , Cell Differentiation/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Aging/physiology , Aging/metabolism , Aging/pathology , Oligodendroglia/metabolism , Remyelination/physiology
6.
J Am Heart Assoc ; 13(14): e034225, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38979810

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the relationship between blood-brain barrier (BBB) permeability and cognitive functioning in healthy older adults and individuals with neurodegenerative diseases. METHODS AND RESULTS: A total of 124 participants with Alzheimer disease, cerebrovascular disease, or a mix Alzheimer's and cerebrovascular diseases and 55 controlparticipants underwent magnetic resonance imaging and neuropsychological testing. BBB permeability was measured with dynamic contrast-enhanced magnetic resonance imaging and white matter injury was measured using a quantitative diffusion-tensor imaging marker of white matter injury. Structural equation modeling was used to examine the relationships between BBB permeability, vascular risk burden, white matter injury, and cognitive functioning. Vascular risk burden predicted BBB permeability (r=0.24, P<0.05) and white matter injury (r=0.38, P<0.001). BBB permeability predicted increased white matter injury (r=0.34, P<0.001) and increased white matter injury predicted lower cognitive functioning (r=-0.51, P<0.001). CONCLUSIONS: The study provides empirical support for a vascular contribution to white matter injury and cognitive impairment, directly or indirectly via BBB permeability. This highlights the importance of targeting modifiable vascular risk factors to help mitigate future cognitive decline.


Subject(s)
Blood-Brain Barrier , Cognition , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Male , Female , Aged , Cognition/physiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Capillary Permeability , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Middle Aged , Aged, 80 and over , White Matter/diagnostic imaging , White Matter/metabolism , White Matter/pathology , Neuropsychological Tests , Magnetic Resonance Imaging , Case-Control Studies , Diffusion Tensor Imaging , Aging/metabolism , Aging/psychology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Healthy Aging
7.
J Am Heart Assoc ; 13(14): e032904, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38979831

ABSTRACT

BACKGROUND: Cardiac aging represents an independent risk factor for aging-associated cardiovascular diseases. Although evidence suggests an association between NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome formation and numerous cardiovascular diseases, its role in cardiac aging remains largely unclear. METHODS AND RESULTS: The longevity of mice with wild-type and NLRP3 knockout (NLRP3-/-) genotypes was assessed, with or without d-galactose treatment. Cardiac function was evaluated using echocardiography, and cardiac histopathology was examined through hematoxylin and eosin and Masson's trichrome staining. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to detect cardiac aging. Western blotting was used to assess aging-related proteins (p53, p21) and pyroptosis-related proteins. Additionally, dihydroethidium staining, lactate dehydrogenase release, and interleukin-1ß ELISA assays were performed, along with measurements of total superoxide dismutase and malondialdehyde levels. In vitro, H9c2 cells were exposed to d-galactose for 24 hours in the absence or presence of N-acetyl-l-cysteine (reactive oxygen species inhibitor), BAY-117082 (nuclear factor κ-light-chain enhancer of activated B cells inhibitor), MCC950 (NLRP3 inhibitor), and VX-765 (Caspase-1 inhibitor). Immunofluorescence staining was employed to detect p53, gasdermin D, and apoptosis-associated speck-like protein proteins. Intracellular reactive oxygen species levels were assessed using fluorescence microscopy and flow cytometry. Senescence-associated ß-galactosidase staining and Western blotting were also employed in vitro for the same purpose. The results showed that NLRP3 upregulation was implicated in aging and cardiovascular diseases. Inhibition of NLRP3 extended life span, mitigated the aging phenotype, improved cardiac function and blood pressure, ameliorated lipid metabolism abnormalities, inhibited pyroptosis in cardiomyocytes, and ultimately alleviated cardiac aging. In vitro, the inhibition of reactive oxygen species, nuclear factor κ-light-chain enhancer of activated B cells, NLRP3, or caspase-1 attenuated NLRP3 inflammasome-mediated pyroptosis. CONCLUSIONS: The reactive oxygen species/nuclear factor κ-light-chain enhancer of activated B cells/NLRP3 signaling pathway loop contributes to d-galactose-treated cardiomyocyte senescence and cardiac aging.


Subject(s)
Galactose , Inflammasomes , Mice, Knockout , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Galactose/toxicity , Galactose/metabolism , Pyroptosis/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Inflammasomes/metabolism , Mice , Aging/metabolism , Mice, Inbred C57BL , Signal Transduction , Cellular Senescence/drug effects , Male , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Cell Line , Disease Models, Animal , Rats
8.
Methods Mol Biol ; 2816: 87-100, 2024.
Article in English | MEDLINE | ID: mdl-38977591

ABSTRACT

Laparotomy (EL) is one of the most common procedures performed among surgical specialties. Previous research demonstrates that surgery is associated with an increased inflammatory response. Low psoas muscle mass and quality markers are associated with increased mortality rates after emergency laparotomy. Analysis of lipid mediators in serum and muscle by using liquid chromatography-mass spectrometry (LC-MS)-based lipidomics has proven to be a sensitive and precise technique. In this chapter, we describe an LC-MS/MS protocol for the profiling and quantification of signaling lipids formed from Eicosapentaenoic Acid (EPA) and Eicosatetranoic acid (ETA) by 5, 12, or 15 lipoxynases. This protocol has been developed for and validated in serum and muscle samples in a mouse model of surgical stress caused by laparotomy.


Subject(s)
Aging , Laparotomy , Lipidomics , Tandem Mass Spectrometry , Animals , Mice , Lipidomics/methods , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Aging/metabolism , Stress, Physiological , Disease Models, Animal , Lipids/analysis , Lipids/blood , Lipid Metabolism
9.
Nat Commun ; 15(1): 5761, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982055

ABSTRACT

While protein aggregation's association with aging and age-related diseases is well-established, the specific proteins involved and whether dissolving them could alleviate aging remain unclear. Our research addresses this gap by uncovering the role of PKM2 aggregates in aging. We find that PKM2 forms aggregates in senescent cells and organs from aged mice, impairing its enzymatic activity and glycolytic flux, thereby driving cells into senescence. Through a rigorous two-step small molecule library screening, we identify two compounds, K35 and its analog K27, capable of dissolving PKM2 aggregates and alleviating senescence. Further experiments show that treatment with K35 and K27 not only alleviate aging-associated signatures but also extend the lifespan of naturally and prematurely aged mice. These findings provide compelling evidence for the involvement of PKM2 aggregates in inducing cellular senescence and aging phenotypes, and suggest that targeting these aggregates could be a promising strategy for anti-aging drug discovery.


Subject(s)
Aging , Cellular Senescence , Thyroid Hormone-Binding Proteins , Animals , Aging/metabolism , Mice , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Carrier Proteins/metabolism , Glycolysis , Thyroid Hormones/metabolism , Protein Aggregates , Pyruvate Kinase/metabolism , Mice, Inbred C57BL , Male
11.
FASEB J ; 38(14): e23815, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38989587

ABSTRACT

To investigate how the fatty acid composition of brain phospholipids influences brain-specific processes, we leveraged the AdipoR2 (adiponectin receptor 2) knockout mouse model in which the brain is enlarged, and cellular membranes are excessively rich in saturated fatty acids. Lipidomics analysis of brains at 2, 7, and 18 months of age showed that phosphatidylcholines, which make up about two-thirds of all cerebrum membrane lipids, contain a gross excess of saturated fatty acids in AdipoR2 knockout mice, and that this is mostly attributed to an excess palmitic acid (C16:0) at the expense of oleic acid (C18:1), consistent with a defect in fatty acid desaturation and elongation in the mutant. Specifically, there was a ~12% increase in the overall saturated fatty acid content within phosphatidylcholines and a ~30% increase in phosphatidylcholines containing two palmitic acids. Phosphatidylethanolamines, sphingomyelins, ceramides, lactosylceramides, and dihydroceramides also showed an excess of saturated fatty acids in the AdipoR2 knockout mice while nervonic acid (C24:1) was enriched at the expense of shorter saturated fatty acids in glyceroceramides. Similar defects were found in the cerebellum and myelin sheaths. Histology showed that cell density is lower in the cerebrum of AdipoR2 knockout mice, but electron microscopy did not detect reproducible defects in the ultrastructure of cerebrum neurons, though proteomics analysis showed an enrichment of electron transport chain proteins in the cerebellum. Behavioral tests showed that older (33 weeks old) AdipoR2 knockout mice are hyperactive and anxious compared to control mice of a similar age. Also, in contrast to control mice, the AdipoR2 knockout mice do not gain weight in old age but do have normal lifespans. We conclude that an excess fatty acid saturation in brain phospholipids is accompanied by hyperactivity but seems otherwise well tolerated.


Subject(s)
Aging , Brain , Fatty Acids , Mice, Knockout , Receptors, Adiponectin , Animals , Mice , Brain/metabolism , Fatty Acids/metabolism , Aging/metabolism , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Male , Mice, Inbred C57BL , Phosphatidylcholines/metabolism , Phospholipids/metabolism
12.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3002-3011, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041160

ABSTRACT

This study aims to observe the effects of the traditional Chinese medicine prescription Dahuang Zhechong Pills(DHZCP on renal aging and explore its potential multi-target effects. Rats were assigned into the normal, model, DHZCP, and vitamin E(VE)groups. Firstly, the rat model of D-galactose(D-gal)-induced renal aging was established. During the modeling period, the rats in the 4 groups were administrated with double distilled water, double distilled water, DHZCP suspension, and VE suspension, respectively,by gavage every day. On day 60 of intervention, the indicators of renal aging and injury in rats were measured, including the function,histopathological characteristics, senescence-associated ß-galactosidase( SA-ß-gal) staining, and expression levels of Klotho and proteins associated with cell cycle arrest and senescence-associated secretory phenotype(SASP) in the renal tissue. Moreover, nontargeted metabolomic analysis of the renal tissue was performed for the 4 groups of rats to screen out the potential biomarkers and metabolic pathways. Finally, the signaling pathways of key targets were preliminarily validated. The results showed that DHZCP and VE significantly improved the renal function, histopathological features of renal tubular/interstitial tissue, and degree of SA-ß-gal staining, up-regulated the expression level of Klotho, and down-regulated the expression levels of proteins associated with cell cycle arrest and SASP in the renal tissue of the aging rats. In addition, DHZCP and VE regulated the metabolites in the renal tissue of the aging rats. There were 21 common differential metabolites. Among them, 5 differential metabolites were significantly increased in the aging rats and recovered after DHZCP or VE treatment, and they were involved in the lipid metabolism and energy metabolism pathways. The areas under the curves of the groups in comparison varied within the range of 0. 88-1. DHZCP regulated multiple signaling pathways, such as the adenosine monophosphate-activated protein kinase(AMPK), cyclic guanosine monophosphate-protein kinase G( c GMP-PKG), cyclic adenylic acid( c AMP), phosphatidylinositol-3-kinase-protein kinase B( PI3K-Akt), mammalian target of rapamycin(mTOR), and autophagy signaling pathways. In addition, it affected the multiple metabolic pathways, such as renin secretion, longevity regulation pathway, diabetic cardiomyopathy, and niacin and nicotinamide metabolism. DHZCP and VE significantly up-regulated the expression level of the key proteins in the AMPK signaling pathway in the renal tissue of the aging rats. In all, DHZCP and VE could mitigate renal aging and injury. DHZCP exerted multi-target effects via multiple signaling pathways and metabolic pathways in the kidney, in which the AMPK signaling pathway may be one of the key targets for action.


Subject(s)
Aging , Drugs, Chinese Herbal , Kidney , Metabolomics , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Rats , Kidney/drug effects , Kidney/metabolism , Aging/drug effects , Aging/metabolism , Male , Signal Transduction/drug effects
13.
Front Endocrinol (Lausanne) ; 15: 1417007, 2024.
Article in English | MEDLINE | ID: mdl-38952389

ABSTRACT

Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.


Subject(s)
Aging , Mitochondria , Ovary , Humans , Female , Mitochondria/metabolism , Aging/physiology , Aging/metabolism , Ovary/metabolism , Ovary/physiology , Animals , Antioxidants/therapeutic use , Oocytes/metabolism , Oocytes/physiology , Mitophagy/physiology
14.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Article in English | MEDLINE | ID: mdl-38960479

ABSTRACT

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Subject(s)
Aging , Organoids , Humans , Organoids/metabolism , Aging/metabolism , Membrane Proteins/metabolism , Cellular Senescence , Female , Tissue Scaffolds/chemistry , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology
15.
PLoS One ; 19(7): e0299975, 2024.
Article in English | MEDLINE | ID: mdl-38959242

ABSTRACT

Skeletal muscle growth is an economically important trait in the cattle industry. Secreted muscle-derived proteins, referred to as myokines, have important roles in regulating the growth, metabolism, and health of skeletal muscle in human and biomedical research models. Accumulating evidence supports the importance of myokines in skeletal muscle and whole-body health, though little is known about the potential presence and functional significance of these proteins in cattle. This study evaluates and confirms that secreted proteins acidic and rich in cysteine (SPARC), fibroblast growth factor 21 (FGF-21), myostatin (MSTN), and decorin (DCN) are expressed and SPARC, FGF-21, and DCN are secreted by primary bovine satellite cells from 3- (BSC3; n = 3) and 11- (BSC11; n = 3) month -old commercial angus steers. Cells were cultured and collected at zero, 12, 24, and 48 hours to characterize temporal expression and secretion from undifferentiated and differentiated cells. The expression of SPARC was higher in the undifferentiated (p = 0.04) and differentiated (p = 0.07) BSC11 than BSC3. The same was observed with protein secretion from undifferentiated (p <0.0001) BSC11 compared to BSC3. Protein secretion of FGF-21 was higher in undifferentiated BSC11 (p < 0.0001) vs. BSC3. DCN expression was higher in differentiated BSC11 (p = 0.006) vs. BSC3. Comparing undifferentiated vs. differentiated BSC, MSTN expression was higher in differentiated BSC3 (p ≤ 0.001) for 0, 12, and 24 hours and in BSC11 (p ≤ 0.03) for 0, 12, 24, and 48 hours. There is also a change over time for SPARC expression (p ≤ 0.03) in undifferentiated and differentiated BSC and protein secretion (p < 0.0001) in undifferentiated BSC, as well as FGF-21 expression (p = 0.007) in differentiated BSC. This study confirms SPARC, FGF-21, and DCN are secreted, and SPARC, FGF-21, MSTN, and DCN are expressed in primary bovine muscle cells with age and temporal differences.


Subject(s)
Cell Differentiation , Decorin , Fibroblast Growth Factors , Osteonectin , Animals , Cattle , Osteonectin/metabolism , Osteonectin/genetics , Fibroblast Growth Factors/metabolism , Decorin/metabolism , Cells, Cultured , Male , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Aging/metabolism , Myostatin/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
16.
Oxid Med Cell Longev ; 2024: 4887877, 2024.
Article in English | MEDLINE | ID: mdl-38962180

ABSTRACT

Approximately 70% of all strokes occur in patients over 65 years old, and stroke increases the risk of developing dementia. The circle of Willis (CoW), the ring of arteries at the base of the brain, links the intracerebral arteries to one another to maintain adequate cerebral perfusion. The CoW proteome is affected in cerebrovascular and neurodegenerative diseases, but changes related to aging have not been described. Here, we report on a quantitative proteomics analysis comparing the CoW from five young (2-3-month-old) and five aged male (18-20-month-old) mice using gene ontology (GO) enrichment, ingenuity pathway analysis (IPA), and iPathwayGuide tools. This revealed 242 proteins that were significantly dysregulated with aging, among which 189 were upregulated and 53 downregulated. GO enrichment-based analysis identified blood coagulation as the top biological function that changed with age and integrin binding and extracellular matrix constituents as the top molecular functions. Consistent with these findings, iPathwayGuide-based impact analysis revealed associations between aging and the complement and coagulation, platelet activation, ECM-receptor interaction, and metabolic process pathways. Furthermore, IPA analysis revealed the enrichment of 97 canonical pathways that contribute to inflammatory responses, as well as 59 inflammation-associated upstream regulators including 39 transcription factors and 20 cytokines. Thus, aging-associated changes in the CoW proteome in male mice demonstrate increases in metabolic, thrombotic, and inflammatory processes.


Subject(s)
Aging , Circle of Willis , Proteome , Animals , Circle of Willis/pathology , Aging/metabolism , Male , Proteome/metabolism , Mice , Vascular Diseases/metabolism , Vascular Diseases/pathology , Mice, Inbred C57BL , Proteomics/methods
17.
BMC Neurosci ; 25(1): 31, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965498

ABSTRACT

BACKGROUND: Most vocal learning species exhibit an early critical period during which their vocal control neural circuitry facilitates the acquisition of new vocalizations. Some taxa, most notably humans and parrots, retain some degree of neurobehavioral plasticity throughout adulthood, but both the extent of this plasticity and the neurogenetic mechanisms underlying it remain unclear. Differential expression of the transcription factor FoxP2 in both songbird and parrot vocal control nuclei has been identified previously as a key pattern facilitating vocal learning. We hypothesize that the resilience of vocal learning to cognitive decline in open-ended learners will be reflected in an absence of age-related changes in neural FoxP2 expression. We tested this hypothesis in the budgerigar (Melopsittacus undulatus), a small gregarious parrot in which adults converge on shared call types in response to shifts in group membership. We formed novel flocks of 4 previously unfamiliar males belonging to the same age class, either "young adult" (6 mo - 1 year) or "older adult" (≥ 3 year), and then collected audio-recordings over a 20-day learning period to assess vocal learning ability. Following behavioral recording, immunohistochemistry was performed on collected neural tissue to measure FoxP2 protein expression in a parrot vocal learning center, the magnocellular nucleus of the medial striatum (MMSt), and its adjacent striatum. RESULTS: Although older adults show lower vocal diversity (i.e. repertoire size) and higher absolute levels of FoxP2 in the MMSt than young adults, we find similarly persistent downregulation of FoxP2 and equivalent vocal plasticity and vocal convergence in the two age cohorts. No relationship between individual variation in vocal learning measures and FoxP2 expression was detected. CONCLUSIONS: We find neural evidence to support persistent vocal learning in the budgerigar, suggesting resilience to aging in the open-ended learning program of this species. The lack of a significant relationship between FoxP2 expression and individual variability in vocal learning performance suggests that other neurogenetic mechanisms could also regulate this complex behavior.


Subject(s)
Aging , Forkhead Transcription Factors , Learning , Vocalization, Animal , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Vocalization, Animal/physiology , Male , Aging/physiology , Aging/metabolism , Learning/physiology , Melopsittacus/physiology , Neurons/metabolism , Neurons/physiology
18.
Geriatr Psychol Neuropsychiatr Vieil ; 22(2): 137-144, 2024 Jun 01.
Article in French | MEDLINE | ID: mdl-39023148

ABSTRACT

p-glycoprotein (P-gp) is an efflux transporter of xenobiotic and endogenous compounds across the blood-brain barrier (BBB). P-gp plays an essential role by limiting passage of these compounds into the brain tissue. It is susceptible to drug-drug interactions when interactors drugs are co-administrated. The efficiency of P-gp may be affected by the aging process and the development of neurodegenerative diseases. Studying this protein in older adults is therefore highly relevant for all these reasons. Understanding P-gp activity in vivo is essential when considering the physiological, pathophysiological, and pharmacokinetic perspectives, as these aspects seem to be interconnected to some extent. In vivo exploration in humans is based on neuroimaging techniques, which have been improving over the last years. The advancement of exploration and diagnostic tools is opening up new prospects for understanding P-gp activity at the BBB.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Blood-Brain Barrier/metabolism , Humans , Aged , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Aging/metabolism , Aging/physiology , Aged, 80 and over , Brain/metabolism , Pharmacokinetics
19.
Ageing Res Rev ; 99: 102403, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964507

ABSTRACT

Cellular senescence is a cell fate driven by different types of stress, where damaged cells exit from the cell cycle and, in many cases, develop an inflammatory senescence-associated secretory phenotype (SASP). Senescence has often been linked to driving aging and the onset of multiple diseases conferred by the harmful SASP, which disrupts tissue homeostasis and impairs the regular function of many tissues. This phenomenon was first observed in vitro when fibroblasts halted replication after approximately 50 population doublings. In addition to replication-induced senescence, factors such as DNA damage and oncogene activation can induce cellular senescence both in culture and in vivo. Despite their contribution to aging and disease, identifying senescent cells in vivo has been challenging due to their heterogeneity. Although senescent cells can express the cell cycle inhibitors p16Ink4a and/or p21Cip1 and exhibit SA-ß-gal activity and evidence of a DNA damage response, there is no universal biomarker for these cells, regardless of inducer or cell type. Recent studies have analyzed the transcriptomic characteristics of these cells, leading to the identification of signature gene sets like CellAge, SeneQuest, and SenMayo. Advancements in single-cell and spatial RNA sequencing now allow for analyzing senescent cell heterogeneity within the same tissue and the development of machine learning algorithms, e.g., SenPred, SenSig, and SenCID, to discover cellular senescence using RNA sequencing data. Such insights not only deepen our understanding of the genetic pathways driving cellular senescence, but also promote the development of its quantifiable biomarkers. This review summarizes the current knowledge of transcriptomic signatures of cellular senescence and their potential as in vivo biomarkers.


Subject(s)
Biomarkers , Cellular Senescence , Transcriptome , Cellular Senescence/genetics , Cellular Senescence/physiology , Humans , Biomarkers/metabolism , Animals , Aging/genetics , Aging/metabolism , Senescence-Associated Secretory Phenotype/genetics , Gene Expression Profiling/methods
20.
J Biomed Mater Res B Appl Biomater ; 112(8): e35456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031923

ABSTRACT

Tissue engineered scaffolds aimed at the repair of critical-sized bone defects lack adequate consideration for our aging society. Establishing an effective aged in vitro model that translates to animals is a significant unmet challenge. The in vivo aged environment is complex and highly nuanced, making it difficult to model in the context of bone repair. In this work, 3D nanofibrous scaffolds generated by the thermally-induced self-agglomeration (TISA) technique were functionalized with polydopamine nanoparticles (PD NPs) as a tool to improve drug binding capacity and scavenge reactive oxygen species (ROS), an excessive build-up that dampens the healing process in aged tissues. PD NPs were reduced by ascorbic acid (rPD) to further improve hydrogen peroxide (H2O2) scavenging capabilities, where we hypothesized that these functionalized scaffolds could rescue ROS-affected osteoblastic differentiation in vitro and improve new bone formation in an aged mouse model. rPDs demonstrated improved H2O2 scavenging activity compared to neat PD NPs, although both NP groups rescued the alkaline phosphatase activity (ALP) of MC3T3-E1 cells in presence of H2O2. Additionally, BMP2-induced osteogenic differentiation, both ALP and mineralization, was significantly improved in the presence of PD or rPD NPs on TISA scaffolds. While in vitro data showed favorable results aimed at improving osteogenic differentiation by PD or rPD NPs, in vivo studies did not note similar improvements in ectopic bone formation an aged model, suggesting that further nuance in material design is required to effectively translate to improved in vivo results in aged animal models.


Subject(s)
Bone Regeneration , Indoles , Nanoparticles , Osteogenesis , Polymers , Reactive Oxygen Species , Tissue Scaffolds , Animals , Mice , Indoles/chemistry , Indoles/pharmacology , Osteogenesis/drug effects , Polymers/chemistry , Polymers/pharmacology , Tissue Scaffolds/chemistry , Bone Regeneration/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Nanofibers/chemistry , Hydrogen Peroxide/chemistry , Aging/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Cell Differentiation/drug effects , Cell Line , Osteoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...