Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet C Semin Med Genet ; 178(4): 423-431, 2018 12.
Article in English | MEDLINE | ID: mdl-30536540

ABSTRACT

Aicardi syndrome is a rare, severe neurodevelopmental disorder classically characterized by the triad of infantile spasms, central chorioretinal lacunae, and agenesis of the corpus callosum. Aicardi syndrome only affects females, with the exception of a few males with a 47, XXY chromosome constitution. All cases are de novo and the only cases of definitive recurrence in families are in identical twins. It is now recognized that individuals with Aicardi syndrome commonly exhibit a variety of other neuronal migration defects, eye anomalies, and other somatic features, including skin, skeletal, and craniofacial systems. The etiology of Aicardi syndrome remains unknown despite an international effort exploring different genetic mechanisms. Although various technologies examining candidate genes, copy number variation, skewing of X-chromosome inactivation, and whole-exome sequences have been explored, no strong genetic candidates have been identified to date. New technologies that can detect low-level mosaicism and balanced rearrangements, as well as platforms examining changes at the DNA and chromatin level affecting regulatory regions are all potential avenues for future studies that may one day solve the mystery of the etiology of Aicardi syndrome.


Subject(s)
Aicardi Syndrome/diagnosis , Aicardi Syndrome/genetics , Genetic Markers , Genetic Testing , Genetic Variation , Aicardi Syndrome/classification , DNA Copy Number Variations , Humans , Prognosis
2.
Neurology ; 76(4): 373-82, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21263138

ABSTRACT

OBJECTIVE: We sought to create a classification system for pediatric corpus callosal abnormalities (CCA) based upon midline sagittal brain MRI. We used the term CCA for patients with structural variants of the corpus callosum, excluding patients with interhemispheric cyst variant or pure dysplasia without hypoplasia. Currently, no system exists for nonsyndromic forms of CCA, and attempts to create such a system have been hampered by highly variable morphology in patients with sporadic CCA. We reasoned that any useful strategy should classify affected family members within the same type, and that phenotypic variability should be minimized in patients with recessive disease. METHODS: We focused recruitment toward multiplex consanguineous families, ascertained 30 patients from 19 consanguineous families, and analyzed clinical features together with brain imaging. RESULTS: We identified 3 major CCA classes, including hypoplasia, hypoplasia with dysplasia, and complete agenesis. Affected individuals within a given multiplex family usually displayed the same variant of the class of abnormality and they always displayed the same class of abnormality within each family, or they displayed complete agenesis. The system was validated among a second cohort of 10 sporadic patients with CCA. CONCLUSIONS: The data suggest that complete agenesis may be a common end-phenotype, and implicate multiple overlapping pathways in the etiology of CCA.


Subject(s)
Agenesis of Corpus Callosum , Consanguinity , Nervous System Malformations/classification , Aicardi Syndrome/classification , Child , Humans , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...