Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.158
Filter
1.
BMC Genomics ; 25(1): 446, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714962

ABSTRACT

BACKGROUND: Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS: The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION: In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.


Subject(s)
Brain , Gene Regulatory Networks , Inflammation , MicroRNAs , Oxidative Stress , RNA, Messenger , Salinity , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Brain/metabolism , Animals , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling , Air , Transcriptome
2.
Indian J Ophthalmol ; 72(6): 916-918, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38767550

ABSTRACT

Phacoemulsification in hard cataracts is a challenge. The use of dispersive ophthalmic viscosurgical devices (OVDs) to protect the endothelium is a routine step in such scenarios. However, as OVD is transparent, it is difficult to spot within the anterior chamber. Therefore, surgeons may not be aware when the OVD coating of the endothelium disappears during surgery. Consequently, there may be too frequent OVD injections, resulting in a waste of resources. On the contrary, the surgeon may fail to inject OVD at an appropriate time, leading to greater endothelial damage. We propose a novel technique of using an air bubble as a guide that helps in identifying the time when OVD disappears from the anterior chamber, thereby suggesting the surgeon to reinject before proceeding further.


Subject(s)
Air , Phacoemulsification , Viscosupplements , Humans , Phacoemulsification/methods , Viscosupplements/administration & dosage , Hyaluronic Acid/administration & dosage , Endothelium, Corneal/pathology , Anterior Chamber
3.
Nat Commun ; 15(1): 4151, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755154

ABSTRACT

Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for atmospheric methane. Still, the physiological basis allowing atmMOB to grow on air is not well understood. Here we assess the ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, and nitrogen source. Four species, including three outside the canonical atmMOB group USCα, enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months of growth on air. These four species exhibited distinct substrate preferences implying the existence of multiple metabolic strategies to grow on air. The estimated energy yields of the atmMOB were substantially lower than previously assumed necessary for cellular maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also covered their nitrogen requirements from air. During growth on air, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation. Furthermore, we confirm that a high apparent specific affinity for methane is a key characteristic of atmMOB. Our work shows that atmMOB grow on the trace concentrations of methane, carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that enable atmMOB to mitigate greenhouse gases.


Subject(s)
Carbon Monoxide , Hydrogen , Methane , Oxidation-Reduction , Methane/metabolism , Carbon Monoxide/metabolism , Hydrogen/metabolism , Atmosphere/chemistry , Air , Nitrogen/metabolism , Greenhouse Gases/metabolism
4.
Proc Natl Acad Sci U S A ; 121(23): e2322674121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768327

ABSTRACT

Predators and prey benefit from detecting sensory cues of each other's presence. As they move through their environment, terrestrial animals accumulate electrostatic charge. Because electric charges exert forces at a distance, a prey animal could conceivably sense electrical forces to detect an approaching predator. Here, we report such a case of a terrestrial animal detecting its predators by electroreception. We show that predatory wasps are charged, thus emit electric fields, and that caterpillars respond to such fields with defensive behaviors. Furthermore, the mechanosensory setae of caterpillars are deflected by these electrostatic forces and are tuned to the wingbeat frequency of their insect predators. This ability unveils a dimension of the sensory interactions between prey and predators and is likely widespread among terrestrial animals.


Subject(s)
Predatory Behavior , Wasps , Animals , Predatory Behavior/physiology , Wasps/physiology , Air , Static Electricity
5.
Chemosphere ; 358: 142211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697573

ABSTRACT

This paper investigates the effects of argon (Ar) and that of Ar mixed with ambient air (Ar-Air) cold plasma jets (CPJs) on 4-nitrophenol (4-NP) degradation using low input power. The introduction of ambient air into the Ar-Air plasma jet enhances ionization-driven processes during high-voltage discharge by utilizing nitrogen and oxygen molecules from ambient air, resulting in increased reactive oxygen and nitrogen species (RONS) production, which synergistically interacts with argon. This substantial generation of RONS establishes Ar-Air plasma jet as an effective method for treating 4-NP contamination in deionized water (DW). Notably, the Ar-Air plasma jet treatment outperforms that of the Ar jet. It achieves a higher degradation rate of 97.2% and a maximum energy efficiency of 57.3 gkW-1h-1, following a 6-min (min) treatment with 100 mgL-1 4-NP in DW. In contrast, Ar jet treatment yielded a lower degradation rate and an energy efficiency of 75.6% and 47.8 gkW-1h-1, respectively, under identical conditions. Furthermore, the first-order rate coefficient for 4-NP degradation was measured at 0.23 min-1 for the Ar plasma jet and significantly higher at 0.56 min-1 for the Ar-Air plasma jet. Reactive oxygen species, such as hydroxyl radical and ozone, along with energy from excited species and plasma-generated electron transfers, are responsible for CPJ-assisted 4-NP breakdown. In summary, this study examines RONS production from Ar and Ar-Air plasma jets, evaluates their 4-NP removal efficacy, and investigates the biocompatibility of 4-NP that has been degraded after plasma treatment.


Subject(s)
Argon , Nitrophenols , Plasma Gases , Nitrophenols/chemistry , Argon/chemistry , Plasma Gases/chemistry , Air , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity
6.
J Transl Med ; 22(1): 468, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760813

ABSTRACT

BACKGROUND: Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies. METHOD: The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells. RESULT: Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway. CONCLUSION: The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.


Subject(s)
Metaplasia , Humans , Air , Models, Biological , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Stomach/pathology , Organoids/pathology , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Transcriptome/genetics , Intestines/pathology
7.
Int J Biol Macromol ; 267(Pt 1): 131470, 2024 May.
Article in English | MEDLINE | ID: mdl-38599425

ABSTRACT

Hot air (HA) drying caused quality damage of grains with long treatment time. Radio frequency (RF) heating as an emerging technology was applied to improve drying quality of cereals effectively. The effects of HA-RF drying (50 °C, 70 °C, 90 °C) of corn kernels on the morphology, structure, and physicochemical properties of starch were investigated and compared with HA drying. The surface of treated starch became rough, along with fragments and pores. Drying treatments increased the amylose content from 10.59 % to 23.88 % and the residual protein content of starch from 0.58 % to 1.23 %, and reduced the crystallinity from 31.95 % to 17.15 % and short-range order structures of starch from 0.918 to 0.868. The change of structures in turn resulted in the increase of pasting viscosity, gelatinization temperature, storage modulus and loss modulus. Furthermore, the HA-RF dried starch displayed stronger thermal stability, higher gelatinization degree and better gelation properties than the HA-treated starch at the same temperature. The data proved that the synergistic effects of HA and RF were more effective in modulating the starch structure and improving the functional characteristics of corn starch. This paper would like to provide potential reference for better application of HA-RF technologies to corn.


Subject(s)
Hot Temperature , Starch , Zea mays , Zea mays/chemistry , Starch/chemistry , Amylose/chemistry , Radio Waves , Viscosity , Desiccation/methods , Air
8.
Int J Biol Macromol ; 268(Pt 1): 131583, 2024 May.
Article in English | MEDLINE | ID: mdl-38621554

ABSTRACT

This study evaluated the foaming properties, the dynamic adsorption behavior at the air/water (A/W) interface and the foam rheological characteristics of complexes formed by soy protein isolate (SPI) and different charged polysaccharides, including chitosan (CS), guar gum (GUG) and gellan gum (GEG). The results showed that the SPI/CS10 had the highest initial foam volume (26.67 mL), which were 3.89 %, 100.08 % and 70.19 % higher than that of single SPI, SPI/GUG and SPI/GEG complexes, respectively. Moreover, three charged polysaccharides could all significantly improve the foam stability of complexes. Among them, foams stabilized by SPI/GEG10 were the most stable that the foam volume slightly changed (approximately 1 mL) and no drainage occurred throughout the whole recording process. The interfacial behavior analysis showed that SPI/CS10 had higher diffusion (Kdiff) and rearrangement rate (KR) but lower penetration rate (KP) at the A/W interface compared with single SPI, while SPI/GUG10 and all SPI/GEG complexes showed higher KR and KP but lower Kdiff. In addition, SPI/CS10 was beneficial to concurrently enhance the elastic strength and solid-like behavior of foam system, while all SPI/GEG complexes could improve the elastic strength of foam system but was not conducive to the solid-like behavior.


Subject(s)
Air , Polysaccharides , Rheology , Soybean Proteins , Water , Soybean Proteins/chemistry , Water/chemistry , Polysaccharides/chemistry , Plant Gums/chemistry , Galactans/chemistry , Polysaccharides, Bacterial/chemistry , Chitosan/chemistry , Adsorption , Mannans/chemistry
9.
Chemosphere ; 356: 141874, 2024 May.
Article in English | MEDLINE | ID: mdl-38575079

ABSTRACT

Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Esters/analysis , Organophosphates/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Air/analysis , Water/chemistry , Wastewater/chemistry , Atmosphere/chemistry , Ecosystem
10.
Biomed Phys Eng Express ; 10(3)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507785

ABSTRACT

The aim of this study was to use computer simulation to analyze the impact of the aluminum fixing support on the Reference Air Kerma (RAK), a physical quantity obtained in a calibration system that was experimentally developed in the Laboratory of Radiological Sciences of the University of the State of Rio de Janeiro (LCR-UERJ). Correction factors due to scattered radiation and the geometry of the192Ir sources were also sought to be determined. The computational simulation was validated by comparing some parameters of the experimental results with the computational results. These parameters were: verification of the inverse square law of distance, determination of (RAKR), analysis of the source spectrum with and without encapsulation, and the sensitivity curve of the Sourcecheck 4PI ionization chamber response, as a function of the distance from the source along the axial axis, using the microSelectron-v2 (mSv2) and GammaMedplus (GMp) sources. Kerma was determined by activity in the Reference air, with calculated values of 1.725 × 10-3U. Bq-1and 1.710 × 10-3U. Bq-1for the ionization chamber NE 2571 and TN 30001, respectively. The expanded uncertainty for these values was 0.932% and 0.919%, respectively, for a coverage factor (k = 2). The correction factor due to the influence of the aluminum fixing support for measurements at 1 cm and 10 cm from the source was 0.978 and 0.969, respectively. The geometric correction factor of the sources was ksg= 1.005 with an expanded uncertainty of 0.7% for a coverage factor (k = 2). This value has a difference of approximately 0.2% compared to the experimental values.


Subject(s)
Computer Simulation , Iridium Radioisotopes , Radiometry , Calibration , Radiometry/methods , Iridium Radioisotopes/therapeutic use , Humans , Air , Aluminum , Monte Carlo Method , Radiation Dosage , Brachytherapy/methods , Brachytherapy/standards , Radiotherapy Dosage , Scattering, Radiation
11.
Biotechnol Bioeng ; 121(6): 1927-1936, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501733

ABSTRACT

Understanding the reaction mechanisms involved in the enzymatic hydrolysis of cellulose is important because it is kinetically the most limiting step of the bioethanol production process. The present work focuses on the enzymatic deactivation at the air-liquid interface, which is one of the aspects contributing to this global deactivation. This phenomenon has already been experimentally proven, but this is the first time that a model has been proposed to describe it. Experiments were performed by incubating Celluclast cocktail solutions on an orbital stirring system at different enzyme concentrations and different surface-to-volume ratios. A 5-day follow-up was carried out by measuring the global FPase activity of cellulases for each condition tested. The activity loss was proven to depend on both the air-liquid surface area and the enzyme concentration. Both observations suggest that the loss of activity takes place at the air-liquid surface, the total amount of enzymes varying with volume or enzyme concentration. Furthermore, tests performed using five individual enzymes purified from a Trichoderma reesei cocktail showed that the only cellulase that is deactivated at the air-liquid interface is cellobiohydrolase II. From the experimental data collected by varying the initial enzyme concentration and the ratio surface to volume, it was possible to develop, for the first time, a model that describes the loss of activity at the air-liquid interface for this configuration.


Subject(s)
Cellulases , Cellulases/metabolism , Cellulases/chemistry , Hypocreales/enzymology , Enzyme Activation , Cellulose/metabolism , Cellulose/chemistry , Hydrolysis , Air
12.
Electrophoresis ; 45(9-10): 933-947, 2024 May.
Article in English | MEDLINE | ID: mdl-38416600

ABSTRACT

Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Touch or trace DNA samples from surfaces and objects deemed to have been contacted are frequently collected. However, a person of interest may not leave any traces on contacted surfaces, for example, if wearing gloves. A novel means of sampling human DNA from air offers additional avenues for DNA collection. In the present study, we report on the results of a pilot study into the prevalence and persistence of human DNA in the air. The first aspect of the pilot study investigates air conditioner units that circulate air around a room, by sampling units located in four offices and four houses at different time frames post-cleaning. The second aspect investigates the ability to collect human DNA from the air in rooms, with and without people, for different periods of time and with different types of collection filters. Results of this pilot study show that human DNA can be collected on air conditioner unit surfaces and from the air, with air samples representing the more recent occupation while air conditioner units showing historic use of the room.


Subject(s)
DNA , Specimen Handling , Humans , DNA/analysis , Pilot Projects , Specimen Handling/methods , Air/analysis , Air Conditioning
13.
Electrophoresis ; 45(9-10): 916-932, 2024 May.
Article in English | MEDLINE | ID: mdl-38419135

ABSTRACT

Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Improvements in DNA technologies allow collection and profiling of trace samples, comprised of few cells, significantly expanding the types of exhibits targeted for DNA analysis to include touched surfaces. However, success rates from trace and touch DNA samples tend to be poorer compared to other biological materials such as blood. Simultaneously, there have been recent advances in the utility of environmental DNA collection (eDNA) in identification and tracking of different biological organisms and species from bacteria to naked mole rats in different environments, including, soil, ice, snow, air and aquatic. This paper examines the emerging methods and research into eDNA collection, with a special emphasis on the potential forensic applications of human DNA collection from air including challenges and further studies required to progress implementation.


Subject(s)
DNA, Environmental , Humans , Animals , DNA, Environmental/analysis , Forensic Genetics/methods , Specimen Handling/methods , Air/analysis , Forensic Sciences/methods
14.
Radiol Phys Technol ; 17(2): 347-359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38351260

ABSTRACT

The work investigates the implementation of personalized radiotherapy boluses by means of additive manufacturing technologies. Boluses materials that are currently used need an excessive amount of human intervention which leads to reduced repeatability in terms of dosimetry. Additive manufacturing can solve this problem by eliminating the human factor in the process of fabrication. Planar boluses with fixed geometry and personalized boluses printed starting from a computed tomography scan of a radiotherapy phantom were produced. First, a dosimetric characterization study on planar bolus designs to quantify the effects of print parameters such as infill density and geometry on the radiation beam was made. Secondly, a volumetric quantification of air gap between the bolus and the skin of the patient as well as dosimetric analyses were performed. The optimization process according to the obtained dosimetric and airgap results allowed us to find a combination of parameters to have the 3D-printed bolus performing similarly to that in conventional use. These preliminary results confirm those in the relevant literature, with 3D-printed boluses showing a dosimetric performance similar to conventional boluses with the additional advantage of being perfectly conformed to the patient geometry.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Radiometry , Humans , Radiotherapy Dosage , Tomography, X-Ray Computed , Air , Radiotherapy/methods , Radiotherapy/instrumentation
15.
Bioelectrochemistry ; 157: 108666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38346369

ABSTRACT

The oxygen evolution reaction (OER) is an important half-reaction in electrochemical hydrogen production (EHP) and rechargeable metal-air batteries. However, the sluggish OER kinetics has seriously impeded their performance. Herein, we report a bioelectrochemical cascade system composed of glucose oxidase (GOx)-functionalized N-doped porous carbon nanofibers to replace OER in EHP and rechargeable Zn-air batteries (ZABs) applications. In this cascade system, GOx catalyzes oxidation of glucose to produce value-added gluconic acid accompanied with the generation of H2O2 under aerobic conditions. The subsequent electrocatalytic oxidation of H2O2 replacing the OER results in an onset voltage below 1.10 V for EHP, and a low charging voltage of 1.35 V as well as a small charging/discharging voltage gap of âˆ¼ 280 mV over 170 h for ZABs in neutral aqueous electrolytes. The advantages of employing the innovative bioelectrochemical cascade reaction are demonstrated in EHP and ZABs, achieving the full utilization of biomass energy in energy-saving electrochemical systems for energy storage and conversion.


Subject(s)
Air , Hydrogen Peroxide , Carbon , Glucose Oxidase , Oxygen , Hydrogen , Zinc
16.
Macromol Rapid Commun ; 45(4): e2300548, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37972570

ABSTRACT

Influences of subphase pH and temperature on the interfacial aggregation behavior of two double hydrophilic hyperbranched copolymers of poly[oligo(ethylene glycol) methacrylate-co-(2-diisopropylamino)ethyl methacrylate] (P(OEGMA-co-DIPAEMA)) at the air/water interface are studied by the Langmuir film balance technique. Morphologies of their Langmuir-Blodgett (LB) films are characterized by atomic force microscopy (AFM). At the interface, P(OEGMA-co-DIPAEMA) copolymers tend to form a dense network structure of circular micelles composed of branching agent-connected carbon backbone cores and mixed shells of OEGMA and DIPAEMA segments (pendant groups). This network structure containing many honeycomb-like holes with diameters of 6-8 nm is identified for the first time and clearly observed in the enlarged AFM images of their LB films. Under acidic conditions, surface pressure versus molecular area isotherms of the two copolymers in the low-pressure region show larger mean molecular area than those under neutral and alkaline conditions due to the lack of impediment from DIPAEMA segments. Upon further compression, each isotherm exhibits a wide pseudo-plateau, which corresponds to OEGMA segments being pressed into the subphase. Furthermore, the isotherms under neutral and alkaline conditions exhibit the lower critical solution temperature behavior of OEGMA segments, and the critical temperature is lower when the hyperbranched copolymer contains higher OEGMA content.


Subject(s)
Air , Water , Water/chemistry , Polymers/chemistry , Microscopy, Atomic Force , Methacrylates/chemistry
17.
Acta Paul. Enferm. (Online) ; 37: eAPE002191, 2024. tab, graf
Article in Portuguese | LILACS, BDENF - Nursing | ID: biblio-1527574

ABSTRACT

Resumo Objetivo Avaliar a eficácia antimicrobiana de um dispositivo fixo emissor de luz UV-C na desinfecção de diferentes superfícies do ambiente hospitalar e sua eficácia antifúngica na qualidade do ar. Métodos Estudo quase-experimental realizado em uma unidade de internação hospitalar, que utilizou o Bioamostrador de ar Andersen® de seis estágios para análise do ar; e na avaliação das superfícies, utilizaram-se três suspensões de microrganismos (Acinetobacter sp. MDR, Escherichia coli e Klebsiella pneumoniae produtora de KPC) para contaminar o ambiente. Para ambos foram feitas coletas pré (controle) e pós-acionamento da luz UV-C (teste). Resultados Na avaliação do ar houve uma redução importante da contagem de colônias após a luz UV-C e não foram encontrados fungos patogênicos ou toxigênicos em nenhum dos dois momentos. Em relação à desinfecção das superfícies, nenhum crescimento bacteriano foi observado após a intervenção da luz, demonstrando 100% de inativação bacteriana nas condições testadas. Conclusão A utilização da tecnologia com emissão de luz UV-C fixa foi eficaz e pode ser considerada uma intervenção promissora para protocolos de desinfecção de superfícies hospitalares.


Resumen Objetivo Evaluar la eficacia antimicrobiana de un dispositivo fijo emisor de luz UV-C para la desinfección de diferentes superficies del ambiente hospitalario y su eficacia antifúngica en la calidad del aire. Métodos Estudio cuasi experimental realizado en una unidad de internación hospitalaria, en que se utilizó el biomuestreador de aire Andersen® de seis etapas para el análisis del aire. En el análisis de las superficies, se utilizaron tres suspensiones de microorganismos (Acinetobacter sp. MDR, Escherichia coli y Klebsiella pneumoniae productora de KPC) para contaminar el ambiente. En ambos se tomó una muestra antes (control) y después de accionar la luz UV-C (prueba). Resultados En el análisis del aire hubo una reducción importante del recuento de colonias después de la luz UV-C y no se encontraron hongos patógenos ni toxigénicos en ninguno de los dos momentos. Con relación a la desinfección de las superficies, no se observó ningún crecimiento bacteriano después de la intervención de la luz, lo que demuestra un 100 % de inactivación bacteriana en las condiciones analizadas. Conclusión El uso de la tecnología con emisión de luz UV-C fija fue eficaz y puede ser considerada una intervención prometedora para protocolos de desinfección de superficies hospitalarias.


Abstract Objective To evaluate a fixed UV-C light emitting device for its antimicrobial effectiveness in the disinfection of distinct surfaces and its antifungal effectiveness on air quality in the hospital environment. Methods This quasi-experimental study was conducted in a hospital inpatient unit, in which a six-stage air Biosampler (Andersen®) was used for air analysis. In the evaluation of surfaces, three suspensions of microorganisms (Acinetobacter sp. multidrug-resistant, Escherichia coli, and KPC-producing Klebsiella pneumoniae) were used to contaminate the environment. In both evaluations, pre- (control) and post-activation of UV-C light (test) collections were made. Results In the air evaluation, an important reduction was observed in the colony count after irradiation with UV-C light, and pathogenic or toxigenic fungi were not found in either of the two moments. Regarding the disinfection of surfaces, no bacterial growth was observed after the application of UV-C light, showing 100% bacterial inactivation under the tested conditions. Conclusion The use of fixed UV-C light emission technology was effective and can be considered a promising intervention for hospital surface disinfection protocols.


Subject(s)
Ultraviolet Rays , Disinfection/methods , Infection Control , Air/parasitology , Air Microbiology , Hospitalization , Evaluation Studies as Topic , Non-Randomized Controlled Trials as Topic
18.
Health Phys ; 126(2): 96-98, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38147634

ABSTRACT

ABSTRACT: A surprisingly large amount of variance reduction has been observed when filtering International Organization for Standardization (ISO) "ISO Method" continuous particulate air monitor (CPAM) airborne radioactivity concentration estimates with a simple three-point moving average. This processing has relatively little lag relative to the amount of variance reduction obtained. The key factor producing this effect is the specific autocorrelation structure of the estimated concentrations, which are based on taking first differences of integrated-count data; this scheme results in successive count differences that contain a common count value between them. The observed variance reduction factor has also been derived analytically.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Particulate Matter/analysis , Dust , Air
19.
Proc Biol Sci ; 290(2013): 20231763, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38087922

ABSTRACT

In everyday life during terrestrial locomotion our body interacts with two media opposing the forward movement of the body: the ground and the air. Whereas the work done to overcome the ground reaction force has been extensively studied, the work done to overcome still air resistance has been only indirectly estimated by means of theoretical studies and by measurements of the force exerted on puppets simulating the geometry of the human body. In this study, we directly measured the force exerted by still air resistance on eight male subjects during walking and running on an instrumented treadmill with a belt moving at the same speed of a flow of laminar air facing the subject. Overall, the coefficient of proportionality between drag and velocity squared (Aeff) was smaller during running than walking. During running Aeff decreased progressively with increasing average velocity up to an apparently constant, velocity independent value, similar to that predicted in the literature using indirect methods. A predictive equation to estimate drag as a function of the speed and the height of the running subject is provided.


Subject(s)
Locomotion , Running , Walking , Humans , Male , Biomechanical Phenomena , Gait , Mechanical Phenomena , Air
20.
Sci Rep ; 13(1): 21929, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081973

ABSTRACT

This study aimed to evaluate and compare the effects of oil- and air-heat treatments on the durability of Paulownia tomentosa and Pinus koraiensis woods against Fomitopsis palustris and Trametes versicolor. The wood samples were treated in palm oil and air at 180, 200, and 220 °C for 2 h. The weight loss, morphology, crystalline properties, and chemical compounds of untreated and heat-treated wood after fungal attack were investigated. The significant difference in weight loss between oil- and air-heat-treated samples was shown at 220 °C. Heat-treated wood exposed to white-rot fungus showed a lower weight loss than that exposed to brown-rot fungus. The cell components in the untreated- and heat-treated Paulownia tomentosa and Pinus koraiensis at 180 °C were severely damaged due to fungal exposure compared to those at 220 °C. A fungal effect on the relative crystallinity was observed in heat-treated wood at 180 °C, whereas the effect was not observed at 220 °C. Following brown-rot fungus exposure, untreated- and heat-treated wood at 180 °C showed a notable change in the Fourier transform infrared (FTIR) peaks of polysaccharides, whereas no noticeable change in lignin peaks was observed. Heat-treated wood at 220 °C showed no noticeable change in the FTIR spectra owing to brown-rot fungus exposure. Exposure to white-rot fungus did not noticeably change the FTIR spectra of untreated and heat-treated wood.


Subject(s)
Hot Temperature , Magnoliopsida , Pinus , Plant Diseases , Wood , Fungi , Lignin/analysis , Palm Oil , Pinus/microbiology , Trametes , Weight Loss , Wood/chemistry , Wood/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Magnoliopsida/microbiology , Air
SELECTION OF CITATIONS
SEARCH DETAIL
...