Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.396
Filter
1.
J Cardiothorac Surg ; 19(1): 314, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824534

ABSTRACT

BACKGROUND: Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and mechanism of lncRNA MEG3 in asthma. METHODS: We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. MTT, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of proliferation-related marker PCNA in HASMCs. RESULTS: The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating FGF9. CONCLUSION: LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.


Subject(s)
Asthma , Cell Movement , Cell Proliferation , Fibroblast Growth Factor 9 , MicroRNAs , Myocytes, Smooth Muscle , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Movement/physiology , Cell Proliferation/physiology , Cell Proliferation/genetics , Asthma/genetics , Asthma/metabolism , Myocytes, Smooth Muscle/metabolism , Fibroblast Growth Factor 9/genetics , Fibroblast Growth Factor 9/metabolism , Cells, Cultured , Airway Remodeling/physiology , Airway Remodeling/genetics
2.
Respir Res ; 25(1): 230, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824593

ABSTRACT

BACKGROUND: Airway epithelium is an important component of airway structure and the initiator of airway remodeling in asthma. The changes of extracellular matrix (ECM), such as collagen deposition and structural disturbance, are typical pathological features of airway remodeling. Thus, identifying key mediators that derived from airway epithelium and capable of modulating ECM may provide valuable insights for targeted therapy of asthma. METHODS: The datasets from Gene Expression Omnibus database were analyzed to screen differentially expressed genes in airway epithelium of asthma. We collected bronchoscopic biopsies and serum samples from asthmatic and healthy subjects to assess lysyl oxidase like 2 (LOXL2) expression. RNA sequencing and various experiments were performed to determine the influences of LOXL2 knockdown in ovalbumin (OVA)-induced mouse models. The roles and mechanisms of LOXL2 in bronchial epithelial cells were explored using LOXL2 small interfering RNA, overexpression plasmid and AKT inhibitor. RESULTS: Both bioinformatics analysis and further experiments revealed that LOXL2 is highly expressed in airway epithelium of asthmatics. In vivo, LOXL2 knockdown significantly inhibited OVA-induced ECM deposition and epithelial-mesenchymal transition (EMT) in mice. In vitro, the transfection experiments on 16HBE cells demonstrated that LOXL2 overexpression increases the expression of N-cadherin and fibronectin and reduces the expression of E-cadherin. Conversely, after silencing LOXL2, the expression of E-cadherin is up-regulated. In addition, the remodeling and EMT process that induced by transforming growth factor-ß1 could be enhanced and weakened after LOXL2 overexpression and silencing in 16HBE cells. Combining the RNA sequencing of mouse lung tissues and experiments in vitro, LOXL2 was involved in the regulation of AKT signaling pathway. Moreover, the treatment with AKT inhibitor in vitro partially alleviated the consequences associated with LOXL2 overexpression. CONCLUSIONS: Taken together, the results demonstrated that epithelial LOXL2 plays a role in asthmatic airway remodeling partly via the AKT signaling pathway and highlighted the potential of LOXL2 as a therapeutic target for airway remodeling in asthma.


Subject(s)
Airway Remodeling , Amino Acid Oxidoreductases , Asthma , Ovalbumin , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Amino Acid Oxidoreductases/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/biosynthesis , Ovalbumin/toxicity , Airway Remodeling/physiology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Humans , Asthma/pathology , Asthma/metabolism , Asthma/enzymology , Asthma/genetics , Signal Transduction/physiology , Female , Mice, Inbred BALB C , Male , Epithelial-Mesenchymal Transition/physiology
3.
Eur J Med Res ; 29(1): 309, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831471

ABSTRACT

The long non-coding RNA (lncRNA) Small Nucleolar RNA Host Gene 4 (SNHG4) has been demonstrated to be significantly downregulated in various inflammatory conditions, yet its role in chronic obstructive pulmonary disease (COPD) remains elusive. This study aims to elucidate the biological function of SNHG4 in COPD and to unveil its potential molecular targets. Our findings reveal that both SNHG4 and Four and a Half LIM Domains 1 (FHL1) were markedly downregulated in COPD, whereas microRNA-409-3p (miR-409-3p) was upregulated. Importantly, SNHG4 exhibited a negative correlation with inflammatory markers in patients with COPD, but a positive correlation with forced expiratory volume in 1s percentage (FEV1%). SNHG4 distinguished COPD patients from non-smokers with high sensitivity, specificity, and accuracy. Overexpression of SNHG4 ameliorated cigarette smoke extract (CSE)-mediated inflammation, apoptosis, oxidative stress, and airway remodeling in 16HBE bronchial epithelial cells. These beneficial effects of SNHG4 overexpression were reversed by the overexpression of miR-409-3p or the silencing of FHL1. Mechanistically, SNHG4 competitively bound to miR-409-3p, mediating the expression of FHL1, and consequently improving inflammation, apoptosis, oxidative stress, and airway remodeling in 16HBE cells. Additionally, SNHG4 regulated the miR-409-3p/FHL1 axis to inhibit the activation of the mitogen-activated protein kinase (MAPK) pathway induced by CSE. In a murine model of COPD, knockdown of SNHG4 exacerbated CSE-induced pulmonary inflammation, apoptosis, and oxidative stress. In summary, our data affirm that SNHG4 mitigates pulmonary inflammation, apoptosis, and oxidative damage mediated by COPD through the regulation of the miR-409-3p/FHL1 axis.


Subject(s)
Airway Remodeling , Apoptosis , Cell Proliferation , MicroRNAs , Pulmonary Disease, Chronic Obstructive , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Airway Remodeling/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Cell Proliferation/genetics , Animals , Mice , Male , MAP Kinase Signaling System/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Inflammation/metabolism , Inflammation/genetics , Female , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Middle Aged , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice, Inbred C57BL
4.
Zhonghua Yi Xue Za Zhi ; 104(20): 1860-1867, 2024 May 28.
Article in Chinese | MEDLINE | ID: mdl-38782755

ABSTRACT

Objective: To investigate the effects of the epidermal growth factor receptor(EGFR) inhibitor Gefitinib on airway inflammation and airway remodelling in asthmatic C57BL/6 mice, and to analyze its possible mechanisms. Methods: Male C57BL/6 mice, aged 6-8 weeks, were randomly assigned into five groups: Group A (control group), Group B (asthma group), Group C (asthma+20 mg/kg gefitinib group), Group D (asthma+40 mg/kg gefitinib group), and Group E (40 mg/kg gefitinib group), with seven mice per group. Mice were sensitized by intraperitoneal injection of a mixture of 0.2 ml solution containing OVA and Al(OH)3 [20 µg OVA+2 mg Al(OH)3 dissolved in 0.2 ml of physiological saline] at Day 0 and 14. Starting from Day 25 to 31, Group B, C, and D were challenged with nebulization of 1% OVA solution (8 ml) to induce asthma, once a day for approximately 40 minutes, with continuous aerosolization for 7 days. Group C and D were given 0.2 ml of Gefitinib dissolved in 0.5% carboxymethylcellulose sodium (CMCNa) by gavage half an hour before challenging, and Group E was simultaneously given with 0.2 ml of Gefitinib dissolved in 0.5% CMCNa only. Group A and B were given an equivalent volume of 0.5% CMCNa by gavage. After 24 h of final challenge, the bronchoalveolar lavage fluid (BALF) was prepared for the determination of total cell count and eosinophil count. The levels of total immune globulin E (IgE) in serum and interleukin (IL)-4, IL-5 and IL-13 in BALF and lung tissue homogenates were measured by ELISA. The mRNA expression levels of IL-4, IL-5, IL-13 in lung were measured. Immunohistochemistry and Western blot experiments were used to detect the expression levels of EGFR in lung tissues. Results: In Group B, the level of total IgE in serum, total cell count, eosinophil count, the levels of IL-4, IL-5, IL-13 in BALF and the phosphorylation of EGFR and its downstream activation in lung were higher than those in Group A (all P<0.05). The levels of total IgE in serum [(261.32±44.38) ng/ml, (194.09±52.39) ng/ml vs (1 023.70±105.51) ng/ml], total cell count [(23.70±4.08)×105/ml, (14.92±4.06)×105/ml vs (35.36±6.30)×105/ml], eosinophil count [(108.00±13.69)×104/ml, (67.00±17.28)×104/ml vs (147.86±20.06)×104/ml], IL-4 [(36.42±4.48) pg/ml, (30.45±8.12) pg/ml vs (58.72±7.17) pg/ml], IL-5 [(16.20±4.62) pg/ml, (13.38±5.14) pg/ml vs (23.46±5.38) pg/ml], IL-13 [(18.45±7.28) pg/ml, (14.33±7.70) pg/ml vs (104.12±24.66) pg/ml] in BALF of Group C and D were lower than those in Group B (all P<0.05). The levels of IL-4, IL-5, and IL-13 as well as their mRNA levels in the lung tissue of Group C and D were lower than those in Group B (all P<0.05). In Group C and D, the positive expression rate of phosphorylated epidermal growth factor receptor (p-EGFR) in lung tissue [(40.53±6.80)%, (23.60±4.42)% vs (70.78±5.36)%], p-EGFR/EGFR (61.68±7.48, 51.13±5.19 vs 105.90±11.66), phosphorylated extracellular regulated protein kinase (p-Erk)/extracellular regulated protein kinase (Erk) (75.28±7.11, 47.54±4.83 vs 98.76±4.71), and phosphorylated protein kinase B (p-Akt)/protein kinase B (Akt) (96.24±5.40, 68.52±2.73 vs 103.30±4.52) was lower than those of Group B (all P<0.05). There was no statistically significant difference in the relevant indicators between Group A and E (all P>0.05). Conclusion: Gefitinib may alleviate airway inflammation and airway remodeling in asthmatic mice by inhibiting EGFR phosphorylation and affecting the activation of downstream Erk and Akt.


Subject(s)
Airway Remodeling , Asthma , Gefitinib , Mice, Inbred C57BL , Animals , Asthma/drug therapy , Asthma/metabolism , Mice , Gefitinib/pharmacology , Airway Remodeling/drug effects , Male , Bronchoalveolar Lavage Fluid , Inflammation , Interleukin-4/metabolism , Quinazolines/pharmacology , ErbB Receptors/metabolism , Ovalbumin , Lung/metabolism , Lung/pathology , Interleukin-5/metabolism , Interleukin-13/metabolism , Eosinophils , Disease Models, Animal
5.
Front Immunol ; 15: 1384697, 2024.
Article in English | MEDLINE | ID: mdl-38807596

ABSTRACT

Background: Asthma is a common obstructive airway disease with an inflammatory etiology. The main unmet need in the management of asthma is inadequate adherence to pharmacotherapy, leading to a poorly-controlled disease state, necessitating the development of novel therapies. Bronchom is a calcio-herbal formulation, which is purported to treat chronic asthma. The objective of the current study was to examine the in-vivo efficacy of Bronchom in mouse model of allergic asthma. Methods: Ultra high performance liquid chromatography was utilized to analyze the phytocompounds in Bronchom. Further, the in-vivo efficacy of Bronchom was evaluated in House dust mite (HDM)-induced allergic asthma in mice. Mice were challenged with aerosolized methacholine to assess airway hyperresponsiveness. Subsequently, inflammatory cell influx was evaluated in bronchoalveolar lavage fluid (BALF) followed by lung histology, wherein airway remodeling features were studied. Simultaneously, the levels of Th2 cytokines and chemokines in the BALF was also evaluated. Additionally, the mRNA expression of pro-inflammatory and Th2 cytokines was also assessed in the lung along with the oxidative stress markers. Results: Phytocompounds present in Bronchom included, gallic acid, protocatechuic acid, methyl gallate, rosmarinic acid, glycyrrhizin, eugenol, 6-gingerol and piperine. Bronchom effectively suppressed HDM-induced airway hyperresponsiveness along with the influx of leukocytes in the BALF. Additionally, Bronchom reduced the infiltration of inflammatory cells in the lung and it also ameliorated goblet cell metaplasia, sub-epithelial fibrosis and increase in α-smooth muscle actin. Bronchom decreased Th2 cytokines (IL-4 and IL-5) and chemokines (Eotaxin and IP-10) in the BALF. Likewise, it could also suppress the mRNA expression of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-6 and IL-33), and IL-13. Moreover, Bronchom restored the HDM-induced diminution of endogenous anti-oxidants (GSH and SOD) and the increase in pro-oxidants (GSSG and MDA). Furthermore, Bronchom could also decrease the nitrosative stress by lowering the observed increase in nitrite levels. Conclusion: Taken together, the results of the present study data convincingly demonstrate that Bronchom exhibits pharmacological effects in an animal model of allergic asthma. Bronchom mitigated airway hyperresponsiveness, inflammation and airway remodeling evoked by a clinically relevant allergen and accordingly it possesses therapeutic potential for the treatment of asthma.


Subject(s)
Asthma , Chemokines , Cytokines , Disease Models, Animal , Goblet Cells , Metaplasia , Pyroglyphidae , Th2 Cells , Animals , Asthma/drug therapy , Asthma/immunology , Mice , Cytokines/metabolism , Goblet Cells/pathology , Goblet Cells/immunology , Goblet Cells/drug effects , Pyroglyphidae/immunology , Th2 Cells/immunology , Chemokines/metabolism , Fibrosis , Mice, Inbred BALB C , Airway Remodeling/drug effects , Female , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Lung/pathology , Lung/immunology , Lung/drug effects
6.
Respir Res ; 25(1): 158, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594707

ABSTRACT

BACKGROUND: Airway remodelling plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Epithelial-mesenchymal transition (EMT) is a significant process during the occurrence of airway remodelling. Increasing evidence suggests that glucose transporter 3 (GLUT3) is involved in the epithelial mesenchymal transition (EMT) process of various diseases. However, the role of GLUT3 in EMT in the airway epithelial cells of COPD patients remains unclear. METHODS: We detected the levels of GLUT3 in the peripheral lung tissue of COPD patients and cigarette smoke (CS)-exposed mice. Two Gene Expression Omnibus GEO datasets were utilised to analyse GLUT3 gene expression profiles in COPD. Western blot and immunofluorescence were used to detect GLUT3 expression. In addition, we used the AAV9-GLUT3 inhibitor to reduce GLUT3 expression in the mice model. Masson's staining and lung function measurement were used detect the collagen deposition and penh in the mice. A cell study was performed to confirm the regulatory effect of GLUT3. Inhibition of GLUT3 expression with siRNA, Western blot, and immunofluorescence were used to detect the expression of E-cadherin, N-cadherin, vimentin, p65, and ZEB1. RESULTS: Based on the GEO data set analysis, GLUT3 expression in COPD patients was higher than in non-smokers. Moreover, GLUT3 was highly expressed in COPD patients, CS exposed mice, and BEAS-2B cells treated with CS extract (CSE). Further research revealed that down-regulation of GLUT3 significantly alleviated airway remodelling in vivo and in vitro. Lung function measurement showed that GLUT3 reduction reduced airway resistance in experimental COPD mice. Mechanistically, our study showed that reduction of GLUT3 inhibited CSE-induced EMT by down-regulating the NF-κB/ZEB1 pathway. CONCLUSION: We demonstrate that CS enhances the expression of GLUT3 in COPD and further confirm that GLUT3 may regulate airway remodelling in COPD through the NF-κB/ZEB1 pathway; these findings have potential value in the diagnosis and treatment of COPD. The down-regulation of GLUT3 significantly alleviated airway remodelling and reduced airway resistance in vivo. Our observations uncover a key role of GLUT3 in modulating airway remodelling and shed light on the development of GLUT3-targeted therapeutics for COPD.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Humans , Mice , Animals , NF-kappa B/metabolism , Airway Remodeling , Cigarette Smoking/adverse effects , Glucose Transporter Type 3/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Epithelial-Mesenchymal Transition , Epithelial Cells/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics
7.
J Biomech Eng ; 146(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38581378

ABSTRACT

Wildland firefighters (WLFFs) experience lung function decline due to occupational exposure to fire smoke. WLFFs typically do not wear respiratory personal protective equipment, and if they do, it is a simple bandana, which is not effective at filtering smoke. To pinpoint the biological underpinnings of abnormal respiratory function following 3-7 years of WLFF service, we exposed mice to Douglas fir smoke (DFS) over 8 weeks. Following exposure, we assessed changes in lung structure through Magnetic Resonance Imaging (MRI) and histological analysis, which was supported by immunohistochemistry staining. With MRI, we found that the signal decay time, T2*, from ultrashort echo time (UTE) images was significantly shorter in mice exposed to DFS compared to air controls. In addition, the variation in T2* was more heterogeneously distributed throughout the left lung in DFS-exposed mice, compared to air controls. As confirmed by histological analysis, shorter T2* was caused by larger parenchyma airspace sizes and not fibrotic remodeling. Destruction of the alveolar spaces was likely due to inflammation, as measured by an influx of CD68+ macrophages and destruction due to enhanced neutrophil elastase. In addition, measurements of airspace dimensions from histology were more heterogeneously distributed throughout the lung, corroborating the enhanced relative dispersion of T2*. Findings from this study suggest that the decline in lung function observed in WLFFs may be due to emphysema-like changes in the lung, which can be quantified with MRI.


Subject(s)
Lung , Magnetic Resonance Imaging , Smoke , Animals , Mice , Lung/diagnostic imaging , Lung/pathology , Smoke/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Male , Airway Remodeling
8.
Article in English | MEDLINE | ID: mdl-38633565

ABSTRACT

Background: Airway remodeling is a significant pathological characteristic of chronic obstructive pulmonary disease (COPD). In recent years, hypoxia-inducible factor 1-α (HIF-1α), a member of the hypoxia-inducible factor protein family, has gained attention. However, the potential correlation between HIF-1α and COPD airway remodeling remains unclear. Objective: This study explored the expression patterns of HIF-1α in patients with COPD and its association with airway remodelling. This investigation aims to furnish novel insights for the clinical identification of prospective therapeutic targets for ameliorating COPD-related airway remodelling. Patients and Methods: A total of 88 subjects were included, consisting of 28 controls and 60 COPD patients. Various staining methods were employed to observe the pathological changes in airway tissues. Immunohistochemistry was utilized to detect the expression of HIF-1α and MMP9 (matrix metalloproteinase 9) in airway tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure the concentration in serum of HIF-1α and MMP9. Computed tomography (CT) airway parameters were measured in all participants to assess airway remodeling. The relationship between serum HIF-1α and MMP9 concentrations and airway parameters was analyzed. Results: Staining of airway structures in COPD patients revealed significant pathological changes associated with airway remodelling, including mixed cilia and subepithelial fibrosis. The expression of HIF-1α and MMP9 was significantly higher in both human airway tissue and serum compared to controls. Chest CT scans exhibited typical imaging features of airway remodeling and increased airway parameters. Conclusion: The findings suggest a correlation between increased HIF-1α expression and COPD airway remodelling. This study provides novel evidence that HIF-1α may be a potential biomarker for airway remodelling in COPD patients.


Subject(s)
Airway Remodeling , Hypoxia-Inducible Factor 1, alpha Subunit , Pulmonary Disease, Chronic Obstructive , Humans , Airway Remodeling/genetics , Biomarkers , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Matrix Metalloproteinase 9 , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology
9.
Aging (Albany NY) ; 16(7): 6478-6487, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579176

ABSTRACT

Stigmasterol is a common dietary phytosterol with high nutritional value and physiological activity. In this study, we evaluated the effects of stigmasterol on inflammatory cytokines and the TGF-ß1/Smad2 and IL-17A signaling pathway in an ovalbumin (OVA)-induced asthma mouse model. Stigmasterol treatment improved airway remodeling. In addition, it significantly attenuated the symptoms of asthma attacks, reduced the number of macrophages, lymphocytes, neutrophils, and eosinophils in BALF and inflammatory cytokines, including IL-1ß, IL-5, IL-6, and IL-13. It further decreased the level of IL-17A in BALF, serum and spleen. Spleen single-cell suspension analysis via flow cytometry showed that IL-17A level was consistent with the results obtained in BALF, serum and spleen. Stigmasterol decreased the protein expression levels of TGF-ß, p-Smad2 and IL-17A in the spleen, by increasing the protein expression level of IL-10. After 24 h of co-culture of TGF-ß, IL-6 and stigmasterol, the level of IL-17 in CD4+ T cell supernatant was lower relative to levels in the group without stigmasterol. Meanwhile, stigmasterol treatment attenuated the expression level of TGF- ß, p-Smad2 and IL-17A proteins in CD4+ T cells and enhanced the expression levels of IL-10 protein. These data suggested that stigmasterol inhibited the TGF-ß1/Smad2 and IL-17A signaling pathway to achieve anti-asthmatic effects in the OVA-induced asthma mouse model. Collectively, the results of this study are that stigmasterol has achieved preliminary efficacy in the non-clinical laboratory, further studies are needed to consider the clinical application of stigmasterol.


Subject(s)
Asthma , Interleukin-17 , Ovalbumin , Signal Transduction , Smad2 Protein , Stigmasterol , Transforming Growth Factor beta1 , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/chemically induced , Asthma/immunology , Smad2 Protein/metabolism , Mice , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Interleukin-17/metabolism , Stigmasterol/pharmacology , Disease Models, Animal , Mice, Inbred BALB C , Female , Airway Remodeling/drug effects , Inflammation/metabolism , Inflammation/drug therapy
10.
Clin Immunol ; 263: 110228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663494

ABSTRACT

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Subject(s)
Airway Remodeling , Asthma , Bronchi , Eosinophil Peroxidase , Epithelial Cells , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta1 , Humans , Asthma/metabolism , Asthma/pathology , Asthma/physiopathology , Asthma/immunology , Male , Female , Epithelial Cells/metabolism , Eosinophil Peroxidase/metabolism , Transforming Growth Factor beta1/metabolism , Middle Aged , Adult , Bronchi/pathology , Interleukin-5/metabolism , Chromones/pharmacology , Cytokines/metabolism , Cell Line , Thymic Stromal Lymphopoietin , Cell Proliferation , Cell Movement , Morpholines/pharmacology , ADAM Proteins
12.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 730-739, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38655617

ABSTRACT

Bronchial thermoplasty (BT), an effective treatment for severe asthma, requires heat to reach the airway to reduce the mass of airway smooth muscle cells (ASMCs). Autophagy is involved in the pathological process of airway remodeling in patients with asthma. However, it remains unclear whether autophagy participates in controlling airway remodeling induced by BT. In this study, we aim to elucidate the autophagy-mediated molecular mechanisms in BT. Our study reveal that the number of autophagosomes and the level of alpha-smooth muscle actin (α-SMA) fluorescence are significantly decreased in airway biopsy tissues after BT. As the temperature increased, BT causes a decrease in cell proliferation and a concomitant increase in the apoptosis of human airway smooth muscle cells (HASMCs). Furthermore, increase in temperature significantly downregulates cellular autophagy, autophagosome accumulation, the LC3II/LC3I ratio, and Beclin-1 expression, upregulates p62 expression, and inhibits the AMPK/mTOR pathway. Furthermore, cotreatment with AICAR (an AMPK agonist) or RAPA (an mTOR antagonist) abolishes the inhibition of autophagy and attenuates the increase in the apoptosis rate of HASMCs induced by the thermal effect. Therefore, we conclude that BT decreases airway remodeling by blocking autophagy induced by the AMPK/mTOR signaling pathway in HASMCs.


Subject(s)
AMP-Activated Protein Kinases , Airway Remodeling , Apoptosis , Autophagy , Bronchial Thermoplasty , Myocytes, Smooth Muscle , Signal Transduction , TOR Serine-Threonine Kinases , TOR Serine-Threonine Kinases/metabolism , Humans , Autophagy/drug effects , AMP-Activated Protein Kinases/metabolism , Bronchial Thermoplasty/methods , Myocytes, Smooth Muscle/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Asthma/metabolism , Asthma/pathology , Male , Cells, Cultured , Bronchi/metabolism , Bronchi/pathology , Aminoimidazole Carboxamide/analogs & derivatives , Ribonucleotides
13.
Eur Respir J ; 63(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38609094

ABSTRACT

Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known collectively as airway remodelling. In response to environmental insults, including pathogens, allergens and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of mediators that have downstream effects on both structural and immune cells. These mediators include the epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway smooth muscle cells, as well as through signalling with immune cells such as macrophages. The epithelium can also initiate airway remodelling independently of inflammation in response to the mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to epithelial components are believed to influence remodelling. Here, we review recent advances in our understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling, facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.


Subject(s)
Airway Remodeling , Asthma , Humans , Cytokines , Thymic Stromal Lymphopoietin , Epithelium
14.
Exp Lung Res ; 50(1): 53-64, 2024.
Article in English | MEDLINE | ID: mdl-38509754

ABSTRACT

OBJECTIVE: The aim of this study is to assess the impact of Liver X receptors (LXRs) on airway inflammation, airway remodeling, and lipid deposition induced by cigarette smoke and lipopolysaccharide (LPS) exposure in the lung. METHODS: Wild mice and LXR-deficient mice were exposed to cigarette smoke and LPS to induce airway inflammation and remodeling. In addition, some wild mice received intraperitoneal treatment with the LXR agonist GW3965 before exposure to cigarette smoke and LPS. Lung tissue and bronchoalveolar lavage fluid were collected to evaluate airway inflammation, airway remodeling and lipid deposition. RESULTS: Exposure to cigarette smoke and LPS resulted in airway inflammation, emphysema and lipid accumulation in wild mice. These mice also exhibited downregulated LXRα and ABCA1 in the lung. Treatment with GW3965 mitigated inflammation, remodeling and lipid deposition, while the deletion of LXRs exacerbated these effects. Furthermore, GW3965 treatment following exposure to cigarette smoke and LPS increased LXRα and ABCA1 expression and attenuated MyD88 expression in wild mice. CONCLUSION: LXRs demonstrate the potential to mitigate cigarette smoke and LPS- induced airway inflammation, emphysema and lipid disposition in mice.


Subject(s)
Benzoates , Benzylamines , Cigarette Smoking , Emphysema , Pulmonary Emphysema , Animals , Mice , Airway Remodeling , Bronchoalveolar Lavage Fluid , Cigarette Smoking/adverse effects , Emphysema/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Liver X Receptors/metabolism , Lung/metabolism , Mice, Inbred C57BL
15.
Int Immunopharmacol ; 130: 111739, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38442574

ABSTRACT

Persistent type (T) 2 airway inflammation plays an important role in the development of severe asthma. However, the molecular mechanisms leading to T2 severe asthma have yet to be fully clarified. Human normal lung epithelial cells (BEAS-2B cells) were transfected with LINC00158/BCL11B plasmid/small interfering RNA (siRNA). Levels of epithelial-mesenchymal transition (EMT)-related markers were measured using real-time qPCR (RT-qPCR) and western blot. A dual luciferase reporter assay was used to validate the targeting relationship between LINC00158 and BCL11B. The effects of LINC00158-lentivirus vector-mediated overexpression and dexamethasone on ovalbumin (OVA)/lipopolysaccharide (LPS)-induced severe asthma were investigated in mice in vivo. Our study showed that overexpression of LINC00158/BCL11B inhibited the levels of EMT-related proteins, apoptosis, and promoted the proliferation of BEAS-2B cells. BCL11B was a direct target of LINC00158. And LINC00158 targeted BCL11B to regulate EMT, apoptosis, and cell proliferation of BEAS-2B cells. Compared with severe asthma mice, LINC00158 overexpression alleviated OVA/LPS-induced airway hyperresponsiveness and airway inflammation, including reductions in T helper 2 cells factors in lung tissue and BALF, serum total- and OVA-specific IgE, inflammatory cell infiltration, and goblet cells hyperplasia. In addition, LINC00158 overexpression alleviated airway remodeling, including reduced plasma TGF-ß1 and collagen fiber deposition, as well as suppression of EMT. Additionally, overexpression of LINC00158 enhanced the therapeutic effect of dexamethasone in severe asthmatic mice models. LINC00158 regulates BEAS-2B cell biological function by targeting BCL11B. LINC00158 ameliorates T2 severe asthma in vivo and provides new insights into the clinical treatment of severe asthma.


Subject(s)
Airway Remodeling , Asthma , RNA, Long Noncoding , Repressor Proteins , Tumor Suppressor Proteins , Animals , Humans , Mice , Asthma/immunology , Asthma/therapy , Dexamethasone/therapeutic use , Disease Models, Animal , Inflammation/drug therapy , Lipopolysaccharides , Lung/metabolism , Mice, Inbred BALB C , Ovalbumin , Repressor Proteins/genetics , Transforming Growth Factor beta1/metabolism , Tumor Suppressor Proteins/genetics , RNA, Long Noncoding/administration & dosage , RNA, Long Noncoding/genetics , Transfection
16.
Respir Res ; 25(1): 148, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555458

ABSTRACT

BACKGROUND: Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and antifibrotic effects. Small airway remodeling is the main pathology of chronic obstructive pulmonary disease (COPD) and is caused by epithelial-to-mesenchymal transition (EMT) and fibroblast differentiation and proliferation. Effective therapies are still lacking. This study aimed to investigate the role of AXT in small airway remodeling in COPD and its underlying mechanisms. METHODS: First, the model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The effects of AXT on the morphology of CS combined with CSE -induced emphysema, EMT, and small airway remodeling by using Hematoxylin-eosin (H&E) staining, immunohistochemical staining, and western blot. In addition, in vitro experiments, the effects of AXT on CSE induced-EMT and fibroblast function were further explored. Next, to explore the specific mechanisms underlying the protective effects of AXT in COPD, potential targets of AXT in COPD were analyzed using network pharmacology. Finally, the possible mechanism was verified through molecular docking and in vitro experiments. RESULTS: AXT alleviated pulmonary emphysema, EMT, and small airway remodeling in a CS combined with CSE -induced mouse model. In addition, AXT inhibited the EMT process in airway cells and the differentiation and proliferation of fibroblasts. Mechanistically, AXT inhibited myofibroblast activation by directly binding to and suppressing the phosphorylation of AKT1. Therefore, our results show that AXT protects against small airway remodeling by inhibiting AKT1. CONCLUSIONS: The present study identified and illustrated a new food function of AXT, indicating that AXT could be used in the therapy of COPD-induced small airway remodeling.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Mice , Animals , Cigarette Smoking/adverse effects , Airway Remodeling , Molecular Docking Simulation , Signal Transduction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/drug therapy , Nicotiana/toxicity , Xanthophylls
17.
Front Immunol ; 15: 1324552, 2024.
Article in English | MEDLINE | ID: mdl-38524119

ABSTRACT

Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate the inflammatory response of airways to these irritants by secreting various lipid mediators, growth factors, chemokines, and cytokines. Studies suggest that PM plays an important role in the pathogenesis of chronic airway diseases by impairing mucociliary function, deteriorating epithelial barrier integrity, and inducing the production of inflammatory mediators while modulating the proliferation and death of airway epithelial cells. Furthermore, PM can modulate epithelial plasticity and airway remodeling, which play central roles in asthma and COPD. This review focuses on the effects of PM on airway injury and epithelial plasticity, and the underlying mechanisms involving mucociliary activity, epithelial barrier function, airway inflammation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and airway remodeling.


Subject(s)
Air Pollution , Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Airway Remodeling , Irritants , Air Pollution/adverse effects , Asthma/etiology , Pulmonary Disease, Chronic Obstructive/etiology , Particulate Matter/adverse effects , Inflammation/pathology , Dust
18.
Environ Pollut ; 347: 123674, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458517

ABSTRACT

Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Rats , Animals , Airway Remodeling , Senescence-Associated Secretory Phenotype , Myocytes, Smooth Muscle , Asthma/metabolism , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/metabolism , Collagen Type I , Cell Proliferation , Particulate Matter/metabolism , Cells, Cultured
19.
Medicine (Baltimore) ; 103(10): e37309, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457591

ABSTRACT

To explore the effect of probiotics combined with budesonide and ipratropium bromide in the treatment of chronic obstructive pulmonary disease (COPD) on lung function and gut microbiota. This was a retrospective study of prospectively collected clinical data of 118 patients with COPD admitted to our hospital between January 2020 and December 2022. According to the treatment records, 59 patients received budesonide and irpratropium bromide (control group), and 59 patients received probiotics combined with budesonide and irpratropium bromide (observation group). The lung function, inflammatory factor levels, airway remodeling, and gut microbiota before and after treatment were compared between the 2 groups. After treatment, FVC, MMEF, PEF, and FEV1 in the 2 groups were higher than before treatment, and the values in the observation group were higher than those in the control group (P < .05). After treatment, the serum levels of TNF-α, IL-6, and PCT in the 2 groups were lower than before treatment, and the levels in the observation group were lower than those in the control group (P < .05). After treatment, the levels of serum MMP-9, VEGF, basic fibroblast growth factor, and NGF in the 2 groups were lower than before treatment, and the levels in the observation group were lower than those in the control group (P < .05). After treatment, the levels of lactobacilli and bifidobacteria in the 2 groups increased compared to those before treatment, and the observation group had a higher level, while the levels of Enterobacteriaceae and Enterococcus were lower in the observation group than those before treatment (P < .05). Based on budesonide and irpratropium bromide, probiotic treatment of COPD is more conducive to reducing the degree of inflammatory reactions, inhibiting airway remodeling, regulating the level of gut microbiota, and promoting the recovery of lung function.


Subject(s)
Budesonide , Pulmonary Disease, Chronic Obstructive , Humans , Budesonide/therapeutic use , Ipratropium/therapeutic use , Retrospective Studies , Airway Remodeling , Bromides/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Bronchodilator Agents/therapeutic use
20.
J Innate Immun ; 16(1): 203-215, 2024.
Article in English | MEDLINE | ID: mdl-38471488

ABSTRACT

INTRODUCTION: TNFα-inducible matrix metalloproteinases play a critical role in the process of airway remodeling in respiratory inflammatory disease including asthma. The cationic host defense peptide LL-37 is elevated in the lungs during airway inflammation. However, the impact of LL-37 on TNFα-driven processes is not well understood. Here, we examined the effect of LL-37 on TNFα-mediated responses in human bronchial epithelial cells (HBECs). METHODS: We used a slow off-rate modified aptamer-based proteomics approach to define the HBEC proteome altered in response to TNFα. Abundance of selected protein candidates and signaling intermediates was examined using immunoassays, ELISA and Western blots, and mRNA abundance was examined by qRT-PCR. RESULTS: Proteomics analysis revealed that 124 proteins were significantly altered, 12 proteins were enhanced by ≥2-fold compared to unstimulated cells, in response to TNFα. MMP9 was the topmost increased protein in response to TNFα, enhanced by ∼10-fold, and MMP13 was increased by ∼3-fold, compared to unstimulated cells. Furthermore, we demonstrated that LL-37 significantly suppressed TNFα-mediated MMP9 and MMP13 in HBEC. Mechanistic data revealed that TNFα-mediated MMP9 and MMP13 production is controlled by SRC kinase and that LL-37 enhances related upstream negative regulators, namely, phospho-AKT (T308) and TNFα-mediated TNFAIP3 or A20. CONCLUSIONS: The findings of this study suggest that LL-37 may play a role in intervening in the process of airway remodeling in chronic inflammatory respiratory disease such as asthma.


Subject(s)
Airway Remodeling , Antimicrobial Cationic Peptides , Asthma , Bronchi , Cathelicidins , Epithelial Cells , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 9 , Tumor Necrosis Factor-alpha , Humans , Antimicrobial Cationic Peptides/metabolism , Asthma/immunology , Asthma/metabolism , Cells, Cultured , Epithelial Cells/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/metabolism , Proteomics , Respiratory Mucosa/immunology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...