Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727988

ABSTRACT

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Subject(s)
Akkermansia , Glucagon-Like Peptide 1 , Lactococcus lactis , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/genetics , Akkermansia/genetics , Akkermansia/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Humans , L Cells , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Mice , Cell Line , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Nat Commun ; 15(1): 4582, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811534

ABSTRACT

The intestinal anaerobic bacterium Akkermansia muciniphila is specialized in the degradation of mucins, which are heavily O-glycosylated proteins that constitute the major components of the mucus lining the intestine. Despite that adhesion to mucins is considered critical for the persistence of A. muciniphila in the human intestinal tract, our knowledge of how this intestinal symbiont recognizes and binds to mucins is still limited. Here, we first show that the mucin-binding properties of A. muciniphila are independent of environmental oxygen concentrations and not abolished by pasteurization. We then dissected the mucin-binding properties of pasteurized A. muciniphila by use of a recently developed cell-based mucin array that enables display of the tandem repeats of human mucins with distinct O-glycan patterns and structures. We found that A. muciniphila recognizes the unsialylated LacNAc (Galß1-4GlcNAcß1-R) disaccharide selectively on core2 and core3 O-glycans. This disaccharide epitope is abundantly found on human colonic mucins capped by sialic acids, and we demonstrated that endogenous A. muciniphila neuraminidase activity can uncover the epitope and promote binding. In summary, our study provides insights into the mucin-binding properties important for colonization of a key mucin-foraging bacterium.


Subject(s)
Akkermansia , Mucins , Polysaccharides , Akkermansia/metabolism , Humans , Mucins/metabolism , Polysaccharides/metabolism , Neuraminidase/metabolism , Protein Binding , Glycosylation , Disaccharides/metabolism , Verrucomicrobia/metabolism , Epitopes/metabolism , Bacterial Adhesion
3.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732613

ABSTRACT

Carrageenan is a widely used food additive and is seen as a potential candidate in the pharmaceutical industry. However, there are two faces to carrageenan that allows it to be used positively for therapeutic purposes. Carrageenan can be used to create edible films and for encapsulating drugs, and there is also interest in the use of carrageenan for food printing. Carrageenan is a naturally occurring polysaccharide gum. Depending on the type of carrageenan, it is used in regulating the composition of intestinal microflora, including the increase in the population of Bifidobacterium bacteria. On the other hand, the studies have demonstrated the harmfulness of carrageenan in animal and human models, indicating a direct link between diet and intestinal inflammatory states. Carrageenan changes the intestinal microflora, especially Akkermansia muciniphilia, degrades the mucous barrier and breaks down the mucous barrier, causing an inflammatory reaction. It directly affects epithelial cells by activating the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. The mechanism is based on activation of the TLR4 receptor, alterations in macrophage activity, production of proinflammatory cytokines and activation of innate immune pathways. Carrageenan increases the content of Bacteroidetes bacteria, also causing a reduction in the number of short chain fatty acid (SCFA)-producing bacteria. The result is damage to the integrity of the intestinal membrane and reduction of the mucin layer. The group most exposed to the harmful effects of carrageenan are people suffering from intestinal inflammation, including Crohn disease (CD) and ulcerative colitis (UC).


Subject(s)
Carrageenan , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/drug therapy , Akkermansia , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
4.
Gut Microbes ; 16(1): 2338947, 2024.
Article in English | MEDLINE | ID: mdl-38717824

ABSTRACT

The gut microbiota has coevolved with the host for hundreds of millions of years, playing a beneficial role in host health. Human parasitic helminths are widespread and pose a pervasive global public health issue. Although Type 2 immunity provides partial resistance to helminth infections, the composition of the gut microbiota can change correspondingly. Therefore, it raises the question of what role the gut microbiota plays during helminth infection. Akkermansia muciniphila has emerged as a notable representative of beneficial microorganisms in the gut microbiota. Recent studies indicate that A. muciniphila is not merely associated with helminth infection but is also causally linked to infection. Here, we provide an overview of the crosstalk between A. muciniphila and enteric helminth infection. Our goal is to enhance our understanding of the interplay among A. muciniphila, helminths, and their hosts while also exploring the potential underlying mechanisms.


Subject(s)
Akkermansia , Gastrointestinal Microbiome , Humans , Animals , Helminths/immunology , Helminths/genetics , Helminthiasis/immunology , Verrucomicrobia/genetics , Verrucomicrobia/immunology
5.
Cell ; 187(11): 2687-2689, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788691

ABSTRACT

In this issue of Cell, Nie and co-authors report that the microbe-derived bile acid (BA) 3-succinylated cholic acid protects against the progression of metabolic dysfunction-associated liver disease. Intriguingly, its protective mechanism does not involve traditional BA signaling pathways but is instead linked to the proliferation of the commensal microbe Akkermansia muciniphila.


Subject(s)
Akkermansia , Bile Acids and Salts , Periodicals as Topic , Animals , Humans , Mice , Akkermansia/metabolism , Bile Acids and Salts/metabolism , Cholic Acid/metabolism , Gastrointestinal Microbiome , Liver/metabolism , Liver Diseases/metabolism , Liver Diseases/microbiology , Verrucomicrobia/metabolism
6.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791314

ABSTRACT

Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Isoflavones , Liver , Obesity , Receptors, Cytoplasmic and Nuclear , Animals , Isoflavones/pharmacology , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Receptors, Cytoplasmic and Nuclear/metabolism , Mice , Obesity/metabolism , Obesity/drug therapy , Liver/metabolism , Liver/drug effects , Male , Dysbiosis , Mice, Obese , Mice, Inbred C57BL , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/metabolism , Symporters/genetics , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Akkermansia
7.
Food Funct ; 15(9): 4763-4772, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38590256

ABSTRACT

Inulins, galacto-oligosaccharides (GOS) and polyphenols are considered to stimulate the growth of Akkermansia muciniphila (A. muciniphila) in the gut. We performed a meta-analysis of six microbiome studies (821 stool samples from 451 participants) to assess the effects of inulin, GOS, and polyphenols on the abundance of A. muciniphila in the gut. The intervention of GOS increased the relative abundance of A. muciniphila in healthy participants. Additionally, metabolic pathways associated with carbohydrate metabolism and short-chain fatty acid release were enriched following the GOS intervention. Furthermore, after the GOS intervention, the coexisting microbial communities of A. muciniphila, such as Eubacterium hallii and Bacteroides, exhibited an enhanced correlation with A. muciniphila. In conclusion, our findings suggest that GOS may promote the growth of A. muciniphila in the gut by modulating the gut microbiota composition.


Subject(s)
Akkermansia , Gastrointestinal Microbiome , Inulin , Oligosaccharides , Polyphenols , Gastrointestinal Microbiome/drug effects , Polyphenols/pharmacology , Inulin/pharmacology , Humans , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Feces/microbiology , Verrucomicrobia , Prebiotics , Galactose
8.
Appl Microbiol Biotechnol ; 108(1): 300, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619710

ABSTRACT

The gut microbiota (GM) and its potential functions play a crucial role in maintaining host health and longevity. The aim of this study was to investigate the potential relationship between GM and longevity. We collected fecal samples from 92 healthy volunteers (middle-aged and elderly: 43-79 years old; longevity: ≥ 90 years old) from Changshou Town, Zhongxiang City, Hubei, China. In addition, we collected samples from 30 healthy middle-aged and elderly controls (aged 51-70 years) from Wuhan, Hubei. The 16S rDNA V3 + V4 region of the fecal samples was sequenced using high-throughput sequencing technology. Diversity analysis results showed that the elderly group with longevity and the elderly group with low body mass index (BMI) exhibited higher α diversity. However, no significant difference was observed in ß diversity. The results of the microbiome composition indicate that Firmicutes, Proteobacteria, and Bacteroidota are the core phyla in all groups. Compared to younger elderly individuals, Akkermansia and Lactobacillus are significantly enriched in the long-lived elderly group, while Megamonas is significantly reduced. In addition, a high abundance of Akkermansia is a significant characteristic of elderly populations with low BMI values. Furthermore, the functional prediction results showed that the elderly longevity group had higher abilities in short-chain fatty acid metabolism, amino acid metabolism, and xenobiotic biodegradation. Taken together, our study provides characteristic information on GM in the long-lived elderly population in Changshou Town. This study can serve as a valuable addition to the current research on age-related GM. KEY POINTS: • The gut microbiota of elderly individuals with longevity and low BMI exhibit higher alpha diversity • Gut microbiota diversity did not differ significantly between genders in the elderly population • Several potentially beneficial bacteria (e.g., Akkermansia and Lactobacillus) are enriched in long-lived individuals.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Middle Aged , Humans , Aged , Female , Male , Adult , Aged, 80 and over , China , Akkermansia , Bacteroidetes , Lactobacillus
9.
BMC Microbiol ; 24(1): 119, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580930

ABSTRACT

Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.


Subject(s)
Clostridiales , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Metagenome , Obesity/microbiology , Bacteria/genetics , Feces/microbiology , Akkermansia
10.
Nat Commun ; 15(1): 2983, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582860

ABSTRACT

Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/ß-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/ß-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.


Subject(s)
Verrucomicrobia , beta Catenin , Male , Mice , Animals , beta Catenin/metabolism , Verrucomicrobia/metabolism , Intestines , Cadherins/metabolism , Akkermansia
11.
Front Immunol ; 15: 1370658, 2024.
Article in English | MEDLINE | ID: mdl-38571945

ABSTRACT

Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Verrucomicrobia/metabolism , Intestines , Obesity , Akkermansia
12.
Redox Biol ; 72: 103153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608580

ABSTRACT

Carbon monoxide (CO), a gaseous signaling molecule, has shown promise in preventing body weight gain and metabolic dysfunction induced by high fat diet (HFD), but the mechanisms underlying these effects are largely unknown. An essential component in response to HFD is the gut microbiome, which is significantly altered during obesity and represents a target for developing new therapeutic interventions to fight metabolic diseases. Here, we show that CO delivered to the gut by oral administration with a CO-releasing molecule (CORM-401) accumulates in faeces and enriches a variety of microbial species that were perturbed by a HFD regimen. Notably, Akkermansia muciniphila, which exerts salutary metabolic effects in mice and humans, was strongly depleted by HFD but was the most abundant gut species detected after CORM-401 treatment. Analysis of bacterial transcripts revealed a restoration of microbial functional activity, with partial or full recovery of the Krebs cycle, ß-oxidation, respiratory chain and glycolysis. Mice treated with CORM-401 exhibited normalization of several plasma and fecal metabolites that were disrupted by HFD and are dependent on Akkermansia muciniphila's metabolic activity, including indoles and tryptophan derivatives. Finally, CORM-401 treatment led to an improvement in gut morphology as well as reduction of inflammatory markers in colon and cecum and restoration of metabolic profiles in these tissues. Our findings provide therapeutic insights on the efficacy of CO as a potential prebiotic to combat obesity, identifying the gut microbiota as a crucial target for CO-mediated pharmacological activities against metabolic disorders.


Subject(s)
Carbon Monoxide , Diet, High-Fat , Gastrointestinal Microbiome , Obesity , Animals , Gastrointestinal Microbiome/drug effects , Mice , Obesity/metabolism , Obesity/drug therapy , Obesity/microbiology , Carbon Monoxide/metabolism , Diet, High-Fat/adverse effects , Administration, Oral , Akkermansia/drug effects , Male , Feces/microbiology , Disease Models, Animal , Mice, Inbred C57BL
13.
Nat Microbiol ; 9(5): 1176-1188, 2024 May.
Article in English | MEDLINE | ID: mdl-38684911

ABSTRACT

Matching donor and recipient blood groups based on red blood cell (RBC) surface ABO glycans and antibodies in plasma is crucial to avoid potentially fatal reactions during transfusions. Enzymatic conversion of RBC glycans to the universal group O is an attractive solution to simplify blood logistics and prevent ABO-mismatched transfusions. The gut symbiont Akkermansia muciniphila can degrade mucin O-glycans including ABO epitopes. Here we biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions. Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analyses of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module. This study demonstrates the potential utility of mucin-degrading gut bacteria as valuable sources of enzymes for production of universal blood for transfusions.


Subject(s)
ABO Blood-Group System , Akkermansia , Glycoside Hydrolases , ABO Blood-Group System/immunology , Humans , Glycoside Hydrolases/metabolism , Mucins/metabolism , Erythrocytes/immunology , Polysaccharides/metabolism , Gastrointestinal Microbiome , Blood Group Antigens/metabolism , Blood Group Antigens/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/immunology
14.
FASEB J ; 38(8): e23603, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648368

ABSTRACT

Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.


Subject(s)
Analgesics, Opioid , Dysbiosis , Fentanyl , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Inbred C57BL , Morphine , Animals , Morphine/pharmacology , Mice , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Male , Fentanyl/pharmacology , Analgesics, Opioid/pharmacology , Brain-Gut Axis/drug effects , Fecal Microbiota Transplantation , Pancreatitis-Associated Proteins/metabolism , Akkermansia/drug effects , Antimicrobial Peptides/pharmacology , Bacteroidetes/drug effects
15.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38653239

ABSTRACT

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Subject(s)
Akkermansia , Bacteroides , Bile Acids and Salts , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Humans , Male , Mice , Akkermansia/metabolism , Bacteroides/metabolism , beta-Lactamases/metabolism , Bile Acids and Salts/metabolism , Biosynthetic Pathways/genetics , Fatty Liver/metabolism , Liver/metabolism , Mice, Inbred C57BL , Verrucomicrobia/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology
16.
Sci Prog ; 107(1): 368504241231159, 2024.
Article in English | MEDLINE | ID: mdl-38490164

ABSTRACT

The common gastrointestinal commensal Akkermansia muciniphila is a mucin-degrading bacterium that is greatly reduced in individuals consuming a high-fat diet. Increasing evidence from a variety of clinical and pre-clinical studies suggests that oral supplementation with Akkermansia can improve metabolic health and moderate systemic inflammation. We and others have demonstrated a role for Akkermansia administration in protection against infectious disease and the outcome from sepsis. Very recent studies have indicated the molecular mechanisms by which A. muciniphila may interact with the host to influence systemic immune-regulation and control of microbial pathogenesis. Here we consider recent studies which demonstrate the efficacy of this potential next-generation probiotic in animal models of Salmonella Typhimurium, Listeria monocytogenes and Clostridioides difficile as well as influenza virus and phlebovirus. The potential mechanisms by which A. muciniphila may influence local and systemic immune responses are discussed.


Subject(s)
Communicable Diseases , Probiotics , Animals , Humans , Verrucomicrobia/metabolism , Akkermansia , Probiotics/therapeutic use
17.
Food Funct ; 15(6): 3122-3129, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38426554

ABSTRACT

Little is known regarding the effects of xylooligosaccharides (XOS) on insulin resistance (IR) in gestational diabetes mellitus (GDM). We aimed to investigate this issue and its mechanism. Sixty female mice were randomly allotted to 4 groups (n = 15): control, high fat diet (HFD), GDM, and GDM + XOS. The control mice were fed an AIN-93 diet, while the mice in the other groups were fed 45% HFD. After pregnancy, mice in GDM and GDM + XOS groups were intraperitoneally injected with 30 mg kg-1 streptozocin for 3 days from the first day of pregnancy. Mice in the GDM + XOS group were then fed an HFD containing 2% XOS. Fasting glucose and insulin levels were monitored. The fecal Akkermansia muciniphila (Akk. muciniphila) and Bifidobacterium were measured by qPCR. The Chiu scores were calculated from hematoxylin-eosin (HE)-stained ileal tissues. Phosphorylated Akt in the liver and occludin and ZO-1 in the intestinal tissues were determined by western blotting. XOS reduced (p < 0.05) fasting blood glucose and insulin and HOMA-IR, and increased (p < 0.05) Akt phosphorylation in the livers of GDM mice. Moreover, XOS decreased (p < 0.05) TNFα, IL-1ß, IL-15 and LPS in the serum, increased (p < 0.05) fecal Akk. muciniphila abundance, lowered (p < 0.05) Chiu's scores, and enhanced (p < 0.05) occludin and ZO-1 expression. XOS ameliorate IR by increasing Akk. muciniphila and improving intestinal barrier dysfunction in GDM mice.


Subject(s)
Diabetes, Gestational , Gastrointestinal Diseases , Glucuronates , Insulin Resistance , Intestinal Diseases , Oligosaccharides , Pregnancy , Humans , Female , Animals , Mice , Diabetes, Gestational/drug therapy , Diabetes, Gestational/metabolism , Proto-Oncogene Proteins c-akt , Occludin , Insulin , Akkermansia
18.
Biomed Pharmacother ; 173: 116416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471272

ABSTRACT

Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.


Subject(s)
Akkermansia , Colorectal Neoplasms , Humans , Calgranulin B , Disease Progression , Colorectal Neoplasms/therapy
19.
Sci Rep ; 14(1): 7152, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38531966

ABSTRACT

Constipation is a major health problem worldwide that requires effective and safe treatment options. Increasing evidence indicates that disturbances in gut microbiota may be a risk factor for constipation. Administration of lacidophilin tablets shows promising therapeutic potential in the treatment of inflammatory bowel disease owing to their immunomodulatory properties and regulation of the gut microbiota. The focus of this study was on investigating the ability of lacidophilin tablets to relieve constipation by modulating the gut microbiome. Rats with loperamide hydrochloride induced constipation were treated with lacidophilin tablets via intragastric administration for ten days. The laxative effect of lacidophilin tablets was then evaluated by investigating the regulation of intestinal microflora and the possible underlying molecular mechanism. Our results reveal that treatment with lacidophilin tablets increased the intestinal advancement rate, fecal moisture content, and colonic AQP3 protein expression. It also improved colonic microflora structure in the colonic contents of model rats mainly by increasing Akkermansia muciniphila and decreasing Clostridium_sensu_stricto_1. Transcriptome analysis indicated that treatment with lacidophilin tablets maintains the immune response in the intestine and promotes recovery of the intestinal mechanical barrier in the constipation model. Our study shows that lacidophilin tablets improve constipation, possibly by promoting Akkermansia colonization and by modulating the intestinal immune response.


Subject(s)
Gastrointestinal Microbiome , Rats , Animals , Akkermansia , Constipation/drug therapy , Intestines , Loperamide
20.
Microbiol Res ; 283: 127677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490028

ABSTRACT

Akkermansia muciniphila, a bacterium found in the human microbiota, has gained interest due to its potential health benefits. Previous studies have linked its absence to inflammatory disorders, while also suggesting its role in maintaining a healthy gut barrier. However, there is limited information on its specific effects on the immune system. Therefore, the aim of this research was to analyze the in vitro response triggered by A. muciniphila employing RAW 264.7 macrophages. The study focused on investigating the production of cytokines and nitric oxide, along with evaluating the expression of inflammatory surface cellular markers. Additionally, we assessed its potential to protect against intestinal infections, using Salmonella enterica serovar Enteritidis as a model. Our findings reveal a modulation effect of A. muciniphila with pro-inflammatory features, including the release of pro-inflammatory cytokines and upregulation of CD40 and CD80 surface markers, in contrast with previous reported data. Importantly, A. muciniphila could protect against Salmonella infection by promoting macrophage activation, appearing as a promising probiotic candidate for the control of intestinal infections.


Subject(s)
Probiotics , Verrucomicrobia , Humans , Verrucomicrobia/metabolism , Cytokines , Akkermansia , Probiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...