Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 22(2): 154-165, 2021 02.
Article in English | MEDLINE | ID: mdl-33398185

ABSTRACT

Inflammatory caspase sensing of cytosolic lipopolysaccharide (LPS) triggers pyroptosis and the concurrent release of damage-associated molecular patterns (DAMPs). Collectively, DAMPs are key determinants that shape the aftermath of inflammatory cell death. However, the identity and function of the individual DAMPs released are poorly defined. Our proteomics study revealed that cytosolic LPS sensing triggered the release of galectin-1, a ß-galactoside-binding lectin. Galectin-1 release is a common feature of inflammatory cell death, including necroptosis. In vivo studies using galectin-1-deficient mice, recombinant galectin-1 and galectin-1-neutralizing antibody showed that galectin-1 promotes inflammation and plays a detrimental role in LPS-induced lethality. Mechanistically, galectin-1 inhibition of CD45 (Ptprc) underlies its unfavorable role in endotoxin shock. Finally, we found increased galectin-1 in sera from human patients with sepsis. Overall, we uncovered galectin-1 as a bona fide DAMP released as a consequence of cytosolic LPS sensing, identifying a new outcome of inflammatory cell death.


Subject(s)
Alarmins/metabolism , Endotoxemia/immunology , Galectin 1/metabolism , Inflammation Mediators/metabolism , Inflammation/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Phosphate-Binding Proteins/metabolism , Adult , Aged , Aged, 80 and over , Alarmins/deficiency , Alarmins/genetics , Animals , Case-Control Studies , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxemia/metabolism , Endotoxemia/pathology , Female , Galectin 1/blood , Galectin 1/deficiency , Galectin 1/genetics , HeLa Cells , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Leukocyte Common Antigens/metabolism , Lipopolysaccharides , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Necroptosis , Phosphate-Binding Proteins/deficiency , Phosphate-Binding Proteins/genetics , RAW 264.7 Cells , Sepsis/blood , Sepsis/diagnosis , Signal Transduction , Up-Regulation
2.
J Am Soc Nephrol ; 29(4): 1272-1288, 2018 04.
Article in English | MEDLINE | ID: mdl-29436517

ABSTRACT

Inflammation is a prominent feature of ischemia-reperfusion injury (IRI), which is characterized by leukocyte infiltration and renal tubular injury. However, signals that initiate these events remain poorly understood. We examined the role of the nuclear alarmin IL-33 in tissue injury and innate immune response triggered by experimental kidney ischemia-reperfusion. In wild-type mice, we found that IL-33 was constitutively expressed throughout the kidney in peritubular and periglomerular spaces, mainly by microvascular endothelial cells, from which it was released immediately during IRI. Compared with wild-type mice, mice lacking IL-33 (IL-33Gt/Gt) exhibited reductions in early tubular cell injury and subsequent renal infiltration of IFN-γ/IL-17A-producing neutrophils, with preservation of renal functions. This protection associated with decreased renal recruitment of myeloid dendritic cells, natural killer (NK) cells, and invariant natural killer T (iNKT) cells, the latter of which were reported as deleterious in IRI. Increases in the level of circulating IL-12, a key IL-33 cofactor, and the expression of ST2, an IL-33-specific receptor, on the surface of iNKT cells preceded the IL-33- and iNKT cell-dependent phase of neutrophil infiltration. Furthermore, IL-33 directly targeted iNKT cells in vitro, inducing IFN-γ and IL-17A production. We propose that endogenous IL-33 is released as an alarmin and contributes to kidney IRI by promoting iNKT cell recruitment and cytokine production, resulting in neutrophil infiltration and activation at the injury site. Our findings show a novel molecular mediator contributing to innate immune cell recruitment induced by renal ischemia-reperfusion and may provide therapeutic insights into AKI associated with renal transplantation.


Subject(s)
Alarmins/physiology , Interleukin-33/physiology , Kidney/blood supply , Reperfusion Injury/metabolism , Alarmins/deficiency , Alarmins/genetics , Animals , Cytokines/biosynthesis , Cytokines/genetics , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Immunity, Innate , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interleukin-1 Receptor-Like 1 Protein/deficiency , Interleukin-1 Receptor-Like 1 Protein/physiology , Interleukin-12/blood , Interleukin-17/biosynthesis , Interleukin-17/genetics , Interleukin-33/biosynthesis , Interleukin-33/deficiency , Interleukin-33/genetics , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Activation , Neutrophils/immunology , Reperfusion Injury/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...