Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 720: 150102, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759302

ABSTRACT

The emergence of drug-resistant bacteria, facilitated by metallo-beta-lactamases (MBLs), presents a significant obstacle to the effective use of antibiotics in the management of clinical drug-resistant bacterial infections. AFM-1 is a MBL derived from Alcaligenes faecalis and shares 86% homology with the NDM-1 family. Both AFM-1 and NDM-1 demonstrate the ability to hydrolyze ampicillin and other ß-lactam antibiotics, however, their substrate affinities vary, and the specific reason for this variation remains unknown. We present the high-resolution structure of AFM-1. The active center of AFM-1 binds two zinc ions, and the conformation of the key amino acid residues in the active center is in accordance with that of NDM-1. However, the substrate-binding pocket of AFM-1 is considerably smaller than that of NDM-1. Additionally, the mutation of amino acid residues in the Loop3 region, as compared to NDM-1, results in the formation of a dense hydrophobic patch comprised of hydrophobic amino acid residues in this area, which facilitates substrate binding. Our findings lay the foundation for understanding the molecular mechanism of AFM-1 with a high affinity for substrates and provide a novel theoretical foundation for addressing the issue of drug resistance caused by B1 MBLs.


Subject(s)
Models, Molecular , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/metabolism , beta-Lactamases/ultrastructure , beta-Lactamases/genetics , Alcaligenes faecalis/enzymology , Alcaligenes faecalis/chemistry , Protein Conformation , Zinc/chemistry , Zinc/metabolism , Crystallography, X-Ray , Catalytic Domain , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acid Sequence , Binding Sites
2.
Environ Microbiol ; 25(3): 675-688, 2023 03.
Article in English | MEDLINE | ID: mdl-36527381

ABSTRACT

Microbial ammonia oxidation is vital to the nitrogen cycle. A biological process, called Dirammox (direct ammonia oxidation, NH3 →NH2 OH→N2 ), has been recently identified in Alcaligenes ammonioxydans and Alcaligenes faecalis. However, its transcriptional regulatory mechanism has not yet been fully elucidated. The present study characterized a new MocR-like transcription factor DnfR that is involved in the Dirammox process in A. faecalis strain JQ135. The entire dnf cluster was composed of 10 genes and transcribed as five transcriptional units, that is, dnfIH, dnfR, dnfG, dnfABCDE and dnfF. DnfR activates the transcription of dnfIH, dnfG and dnfABCDE genes, and represses its own transcription. The intact 1506-bp dnfR gene was required for activation of Dirammox. Electrophoretic mobility shift assays and DNase I footprinting analyses showed that DnfR has one binding site in the dnfH-dnfR intergenic region and two binding sites in the dnfG-dnfA intergenic region. Three binding sites of DnfR shared a 6-bp repeated conserved sequence 5'-GGTCTG-N17 -GGTCTG-3' which was essential for the transcription of downstream target genes. Cysteine and glutamate act as possible effectors of DnfR to activate the transcription of transcriptional units of dnfG and dnfABCDE, respectively. This study provided new insights in the transcriptional regulation mechanism of Dirammox by DnfR in A. faecalis JQ135.


Subject(s)
Alcaligenes faecalis , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/genetics , Alcaligenes faecalis/metabolism , Ammonia/metabolism , Binding Sites , Transcription Factors/genetics , Transcription, Genetic , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
3.
Appl Environ Microbiol ; 88(14): e0036022, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35766505

ABSTRACT

Dipicolinic acid (DPA), an essential pyridine derivative biosynthesized in Bacillus spores, constitutes a major proportion of global biomass carbon pool. Alcaligenes faecalis strain JQ135 could catabolize DPA through the "3HDPA (3-hydroxydipicolinic acid) pathway." However, the genes involved in this 3HDPA pathway are still unknown. In this study, a dip gene cluster responsible for DPA degradation was cloned from strain JQ135. The expression of dip genes was induced by DPA and negatively regulated by DipR. A novel monooxygenase gene, dipD, was crucial for the initial hydroxylation of DPA into 3HDPA and proposed to encode the key catalytic component of the multicomponent DPA monooxygenase. The heme binding protein gene dipF, ferredoxin reductase gene dipG, and ferredoxin genes dipJ/dipK/dipL were also involved in the DPA hydroxylation and proposed to encode other components of the multicomponent DPA monooxygenase. The 18O2 stable isotope labeling experiments confirmed that the oxygen atom in the hydroxyl group of 3HDPA came from dioxygen molecule rather than water. The protein sequence of DipD exhibits no significant sequence similarities with known oxygenases, suggesting that DipD was a new member of oxygenase family. Moreover, bioinformatic survey suggested that the dip gene cluster was widely distributed in many Alpha-, Beta-, and Gammaproteobacteria, including soil bacteria, aquatic bacteria, and pathogens. This study provides new molecular insights into the catabolism of DPA in bacteria. IMPORTANCE Dipicolinic acid (DPA) is a natural pyridine derivative that serves as an essential component of the Bacillus spore. DPA accounts for 5 to 15% of the dry weight of spores. Due to the huge number of spores in the environment, DPA is also considered to be an important component of the global biomass carbon pool. DPA could be decomposed by microorganisms and enter the global carbon cycling; however, the underlying molecular mechanisms are rarely studied. In this study, a DPA catabolic gene cluster (dip) was cloned and found to be widespread in Alpha-, Beta-, and Gammaproteobacteria. The genes responsible for the initial hydroxylation of DPA to 3-hydroxyl-dipicolinic acid were investigated in Alcaligenes faecalis strain JQ135. The present study opens a door to elucidate the mechanism of DPA degradation and its possible role in DPA-based carbon biotransformation on earth.


Subject(s)
Alcaligenes faecalis , Bacillus , Alcaligenes faecalis/chemistry , Bacillus/genetics , Bacillus/metabolism , Carbon/metabolism , Ferredoxins/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Multigene Family , Oxygenases/metabolism , Picolinic Acids/metabolism , Pyridines/metabolism , Spores, Bacterial/metabolism
4.
Appl Environ Microbiol ; 88(11): e0017222, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35604228

ABSTRACT

Picolinic acid (PA) is a natural toxic pyridine derivative as well as an important intermediate used in the chemical industry. In a previous study, we identified a gene cluster, pic, that responsible for the catabolism of PA in Alcaligenes faecalis JQ135. However, the transcriptional regulation of the pic cluster remains known. This study showed that the entire pic cluster was composed of 17 genes and transcribed as four operons: picR, picCDEF, picB4B3B2B1, and picT1A1A2A3T2T3MN. Deletion of picR, encoding a putative MarR-type regulator, greatly shortened the lag phase of PA degradation. An electrophoretic mobility shift assay and DNase I footprinting showed that PicR has one binding site in the picR-picC intergenic region and two binding sites in the picB-picT1 intergenic region. The DNA sequences of the three binding sites have the palindromic characteristics of TCAG-N4-CTNN: the space consists of four nonspecific bases, and the four palindromic bases on the left and the first two palindromic bases on the right are strictly conserved, while the last two bases on the right vary among the three binding sites. An in vivo ß-galactosidase activity reporter assay indicated that 6-hydroxypicolinic acid but not PA acted as a ligand of PicR, preventing PicR from binding to promoter regions and thus derepressing the transcription of the pic cluster. This study revealed the negative transcriptional regulation mechanism of PA degradation by PicR in A. faecalis JQ135 and provides new insights into the structure and function of the MarR-type regulator. IMPORTANCE The pic gene cluster was found to be responsible for PA degradation and widely distributed in Alpha-, Beta-, and Gammaproteobacteria. Thus, it is very necessary to understand the regulation mechanism of the pic cluster in these strains. This study revealed that PicR binds to three sites of the promoter regions of the pic cluster to multiply regulate the transcription of the pic cluster, which enables A. faecalis JQ135 to efficiently utilize PA. Furthermore, the study also found a unique palindrome sequence for binding of the MarR-type regulator. This study enhanced our understanding of microbial catabolism of environmental toxic pyridine derivatives.


Subject(s)
Alcaligenes faecalis , Alcaligenes faecalis/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , DNA, Intergenic , Gene Expression Regulation, Bacterial , Multigene Family , Picolinic Acids , Protein Binding , Pyridines/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Biotechnol Appl Biochem ; 69(2): 587-595, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33650215

ABSTRACT

Nitrilases can directly hydrolyze nitrile compounds into carboxylic acids and ammonium. To solve the current problems of bioconversions using nitrilases, including the difficult separation of products from the resting cells used as the catalyst and high costs of chemical inducers, a nitrilase from Alcaligenes faecalis was heterologously expressed in Pichia pastoris X33. The stable nitrilase-expressing strain No.39-6-4 was obtained after three rounds of screening based on a combined detection method including dot-blot, SDS-PAGE, and western blot analyses, which confirmed the presence of recombinant nitrilase with a molecular mass of about 50 kDa. The temperature and pH optima of the nitrilase were 45°C and pH 7.5, respectively. Cu2+ , Zn2+ , and Tween 80 strongly inhibited the enzyme activity, but the optical purity of the product R-mandelic acid (R-MA) was stable, with practically 100% enantiomeric excess (ee). The nitrilase-producing P. pastoris strain developed in this study provides a basis for further research on the enzyme.


Subject(s)
Alcaligenes faecalis , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/genetics , Aminohydrolases/genetics , Aminohydrolases/metabolism , Hydrogen-Ion Concentration , Mandelic Acids/chemistry , Mandelic Acids/metabolism , Pichia/genetics , Pichia/metabolism , Saccharomycetales
6.
Cienc. tecnol. salud ; 9(2): 189-198, 2022. il^c27
Article in Spanish | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1415975

ABSTRACT

La contaminación por plásticos petroquímicos es una grave amenaza para el medio ambiente que requiere im-plementar alternativas como los bioplásticos para lograr un desarrollo sostenible. Los polihidroxialcanoatos (PHA) son polímeros utilizados para la producción de plásticos biodegradables y que han llamado la atención como sustitutos de los plásticos de base fósil. Sin embargo, el costo de producción de los PHA constituye una barrera para su producción industrial a gran escala. Las de bacterias de hábitats salinos son microorganismos prometedores para la síntesis de PHA debido a sus características tales como altos requisitos de salinidad que previenen la contaminación microbiana, la alta presión osmótica intracelular que permite una fácil lisis celular para purificar los PHA y la capacidad para usar un amplio espectro de sustratos. La presente investigación planteó determinar las cepas nativas de bacterias halófilas y halotolerantes de la Laguna de Ayarza capaces de producir PHA, establecer la capacidad que tienen de utilizar residuos agrícolas para la producción de PHA y determinar su eficiencia. Esto se logró a través de la inoculación de las cepas productoras de PHA en medios de fermentación con pulpa de café, cáscaras de plátanos y salvado de trigo lo que permitió determinar las cepas más eficientes. Se encontró que las bacterias productoras de PHA pertenecen a las especies: Alcaligenes faecalis, Bacillus idriensis, Bacillus megaterium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis y Sta-phylococcus capitis y que las cepas AP21-14, AP21-10 y AP21-03 mostraron los mejores resultados que podrían ser prometedores para la producción a nivel industrial.


Pollution by petrochemical plastics is a serious threat to the environment that requires the implementation of al-ternatives such as bioplastics to achieve sustainable development. Polyhydroxyalkanoates (PHAs) are polymers used for the production of biodegradable plastics and have drawn attention as substitutes for fossil-based plastics. However, the cost of producing PHAs constitutes a barrier to their large-scale industrial production. Bacteria from saline environments bacteria are promising microorganisms for PHA synthesis due to their characteristics such as high salinity requirements that prevent microbial contamination, high intracellular osmotic pressure that allows easy cell lysis to purify PHAs, and the ability to use a broad spectrum of substrates. This research project aimed to determine the native strains of halophilic and halotolerant bacteria from Laguna de Ayarza capable of producing PHA, establish their ability to use agricultural residues for the production of PHA, and determine their efficiency. This was achieved through the inoculation of the PHA-producing strains in fermentation media with coffee pulp, banana peels and wheat bran, which allowed determining the most efficient strains. It was found that the PHA-producing bacteria belong to the species: Alcaligenes faecalis, Bacillus idriensis, Bacillus mega-terium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis and Staphylococcus capitis and that the strains AP21-14, AP21-10 and AP21-03 showed the best results that could be promising for production at an industrial level.


Subject(s)
Humans , Halomonas , Polyhydroxyalkanoates/analysis , Biodegradable Plastics/chemistry , Pseudomonas/chemistry , Bacillus megaterium/chemistry , Coastal Lagoon , Alcaligenes faecalis/chemistry , Fermentation , Staphylococcus capitis , Exiguobacterium/chemistry , Guatemala , Industrial Waste/adverse effects
7.
J Invertebr Pathol ; 183: 107597, 2021 07.
Article in English | MEDLINE | ID: mdl-33945817

ABSTRACT

AfIP-1A/1B is a two-component insecticidal protein identified from the soil bacterium Alcaligenes faecalis that has high activity against western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). Previous results revealed that AfIP-1A/1B is cross-resistant to the binary protein from Bacillus thuringiensis (Bt), Cry34Ab1/Cry35Ab1 (also known as Gpp34Ab1/Tpp35Ab1; Crickmore et al., 2020), which was attributed to shared binding sites in WCR gut tissue (Yalpani et al., 2017). To better understand the interaction of AfIP-1A/1B with its receptor, we have systematically evaluated the binding of these proteins with WCR brush border membrane vesicles (BBMVs). Our findings show that AfIP-1A binds directly to BBMVs, while AfIP-1B does not; AfIP-1B binding only occurred in the presence of AfIP-1A which was accompanied by the presence of stable, high molecular weight oligomers of AfIP-1B observed on denaturing protein gels. Additionally, we show that AfIP-1A/1B forms pores in artificial lipid membranes. Finally, binding of AfIP-1A/1B was found to be reduced in BBMVs from Cry34Ab1/Cry35Ab1-resistant WCR where Cry34Ab1/Cry35Ab1 binding was also reduced. The reduced binding of both proteins is consistent with recognition of a shared receptor that has been altered in the resistant strain. The coordination of AfIP-1B binding by AfIP-1A, the similar structures between AfIP-1A and Cry34Ab1, along with their shared binding sites and cross-resistance, suggest a similar role for AfIP1A and Cry34Ab1 in receptor recognition and docking site for their cognate partners, AfIP-1B and Cry35Ab1, respectively.


Subject(s)
Alcaligenes faecalis/genetics , Bacterial Proteins/genetics , Insecticides/pharmacology , Moths/genetics , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/metabolism , Animals , Bacterial Proteins/metabolism , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Gastrointestinal Tract/microbiology , Insect Control , Insecticides/chemistry , Larva/genetics , Larva/growth & development , Larva/microbiology , Moths/growth & development , Moths/microbiology , Pest Control, Biological
8.
Angew Chem Int Ed Engl ; 60(18): 10023-10031, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33522128

ABSTRACT

Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4'-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate.


Subject(s)
Alcaligenes faecalis/chemistry , Lipid A/chemistry , Lipopolysaccharides/chemistry , Animals , Carbohydrate Conformation , Cell Line , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Lipid A/pharmacology , Lipopolysaccharides/isolation & purification , Lipopolysaccharides/pharmacology , Mice , Toll-Like Receptor 4/agonists
9.
Microb Pathog ; 139: 103914, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31811889

ABSTRACT

This study aimed at evaluating the antagonistic activity of 16 bacterial strains for the control of brown rot disease caused by Monilinia fructigena, and M. laxa under in vitro and a semi-commercial large-scale trial. These bacterial antagonists' belonging to the genera Alcaligenes, Bacillus, Brevibacterium, Pantoea, Pseudomonas, and Serratia were previously proven effective for control of fire blight of apple. The in vitro dual culture bioassay showed the highest inhibition rates of mycelial growth ranging from 55 to 95% and from 43 to 94% for M. fructigena and M. laxa, respectively. The in vivo bioassay showed moderate and strong inhibition for M. fructigena and M. laxa, respectively. The inhibition rates were dependent on incubation time as well as pathogen virulence. The free-cell bacterial filtrate revealed substantial mycelial growth inhibition ranging from 66 to 86%. The inhibition of conidial germination was from 32 to 78%, suggesting the involvement of metabolites in their biocontrol activity. The antifungal effect of the volatile compounds (VCOs) was observed for all bacteria with mycelial inhibition varying from 12 to 70%. Overall, their efficacy was substantially affected by the nature of the bacterial strains and the modes of action. Taken together, these results underscore that ACBC1 and SF14 for M. fructigena and SP10 and ACBP1 for M. laxa were the most effective bacterial strains. These strains were confirmed effective in a semi-commercial large-scale trial. Interestingly, their efficacies were found to be comparable to those of both commercial BCAs (B. subtilis Y1336 and P. agglomerans P10c), but slightly lower than thiophanate-methyl fungicide. The ability of most bacterial strains to produce lytic enzymes (Amylase, Protease or Cellulase) and lipopeptides (bacillomycin, fengycin, iturin and surfactin) was demonstrated by biochemical and molecular analyzes. Therefore, our findings suggest that the bacterial antagonists ACBC1, SF14, SP10 and ACBP1, have the potential to prevent brown rot disease.


Subject(s)
Alcaligenes faecalis/chemistry , Ascomycota/physiology , Bacillus amyloliquefaciens/chemistry , Fungicides, Industrial/pharmacology , Pantoea/chemistry , Plant Diseases/microbiology , Alcaligenes faecalis/metabolism , Bacillus amyloliquefaciens/metabolism , Fruit/microbiology , Fungicides, Industrial/chemistry , Fungicides, Industrial/metabolism , Malus/microbiology , Pantoea/metabolism
10.
J Bacteriol ; 201(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31160400

ABSTRACT

Picolinic acid (PA) is a natural toxic pyridine derivative. Microorganisms can degrade and utilize PA for growth. However, the full catabolic pathway of PA and its physiological and genetic foundation remain unknown. In this study, we identified a gene cluster, designated picRCEDFB4B3B2B1A1A2A3, responsible for the degradation of PA from Alcaligenes faecalis JQ135. Our results suggest that PA degradation pathway occurs as follows: PA was initially 6-hydroxylated to 6-hydroxypicolinic acid (6HPA) by PicA (a PA dehydrogenase). 6HPA was then 3-hydroxylated by PicB, a four-component 6HPA monooxygenase, to form 3,6-dihydroxypicolinic acid (3,6DHPA), which was then converted into 2,5-dihydroxypyridine (2,5DHP) by the decarboxylase PicC. 2,5DHP was further degraded to fumaric acid through PicD (2,5DHP 5,6-dioxygenase), PicE (N-formylmaleamic acid deformylase), PicF (maleamic acid amidohydrolase), and PicG (maleic acid isomerase). Homologous pic gene clusters with diverse organizations were found to be widely distributed in Alpha-, Beta-, and Gammaproteobacteria Our findings provide new insights into the microbial catabolism of environmental toxic pyridine derivatives.IMPORTANCE Picolinic acid is a common metabolite of l-tryptophan and some aromatic compounds and is an important intermediate in organic chemical synthesis. Although the microbial degradation/detoxification of picolinic acid has been studied for over 50 years, the underlying molecular mechanisms are still unknown. Here, we show that the pic gene cluster is responsible for the complete degradation of picolinic acid. The pic gene cluster was found to be widespread in other Alpha-, Beta-, and Gammaproteobacteria These findings provide a new perspective for understanding the catabolic mechanisms of picolinic acid in bacteria.


Subject(s)
Alcaligenes faecalis/genetics , Alcaligenes faecalis/metabolism , Bacterial Proteins/metabolism , Multigene Family , Picolinic Acids/metabolism , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/enzymology , Bacterial Proteins/genetics , Biodegradation, Environmental , Metabolic Networks and Pathways , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Picolinic Acids/chemistry
11.
Appl Environ Microbiol ; 84(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29802182

ABSTRACT

5-Hydroxypicolinic acid (5HPA), a natural pyridine derivative, is microbially degraded in the environment. However, the physiological, biochemical, and genetic foundations of 5HPA metabolism remain unknown. In this study, an operon (hpa), responsible for 5HPA degradation, was cloned from Alcaligenes faecalis JQ135. HpaM was a monocomponent flavin adenine dinucleotide (FAD)-dependent monooxygenase and shared low identity (only 28 to 31%) with reported monooxygenases. HpaM catalyzed the ortho decarboxylative hydroxylation of 5HPA, generating 2,5-dihydroxypyridine (2,5DHP). The monooxygenase activity of HpaM was FAD and NADH dependent. The apparent Km values of HpaM for 5HPA and NADH were 45.4 µM and 37.8 µM, respectively. The genes hpaX, hpaD, and hpaF were found to encode 2,5DHP dioxygenase, N-formylmaleamic acid deformylase, and maleamate amidohydrolase, respectively; however, the three genes were not essential for 5HPA degradation in A. faecalis JQ135. Furthermore, the gene maiA, which encodes a maleic acid cis-trans isomerase, was essential for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135, indicating that it might be a key gene in the metabolism of pyridine derivatives. The genes and proteins identified in this study showed a novel degradation mechanism of pyridine derivatives.IMPORTANCE Unlike the benzene ring, the uneven distribution of the electron density of the pyridine ring influences the positional reactivity and interaction with enzymes; e.g., the ortho and para oxidations are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylations of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA gene coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives.


Subject(s)
Alcaligenes faecalis/metabolism , Pyridines/metabolism , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/enzymology , Alcaligenes faecalis/genetics , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amidohydrolases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Flavin-Adenine Dinucleotide/metabolism , Hydroxylation , Kinetics , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Operon , Phylogeny , Pyridines/chemistry
12.
Biosens Bioelectron ; 106: 21-28, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29414084

ABSTRACT

Bioelectrochemical systems use microbes as catalysts for current production or consumption. Up to now only a few microbes have been demonstrated to be capable of both outward and inward extracellular electron transfer (EET) (i.e. bidirectional electron transfer). However, the mechanisms of electron exchange between microbes and extracellular solids remain uncertain. Here, we showed that Alcaligenes faecalis catalyzed an outward EET and generated electricity at a poised potential of +0.3V vs. SHE, whereas it conducted an inward EET for autotrophic denitrification at -0.5V vs. SHE. Both cyclic voltammetry and in situ electrochemical FTIR spectroscopy revealed that different redox components were utilized during the outward and inward EET. Electron transport inhibitor experiments indicated for the first time that complex I, II, III, and the quinone pool on the plasma membrane were involved in the bidirectional EET. Comparative proteomics showed that the protein expression profile of outward-EET biofilms differed greatly from those of inward-EET biofilms, implying that the pili and outer membrane proteins might be responsible for the interfacial outward and inward EET, respectively. These results suggest different electron transport conduits of A. faecalis biofilms could be used for bidirectional EET.


Subject(s)
Alcaligenes faecalis/isolation & purification , Biosensing Techniques , Proteomics , Alcaligenes faecalis/chemistry , Bioelectric Energy Sources , Biofilms/growth & development , Electron Transport , Electrons , Quinones/chemistry
13.
J Plant Physiol ; 214: 64-73, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28448840

ABSTRACT

In our previous study we showed that volatile organic compounds (VOCs) from Alcaligenes faecalis JBCS1294 (JBCS1294) induced tolerance to salt stress in Arabidopsis thaliana by influencing the auxin and gibberellin pathways and upregulating the expression of key ion transporters. The aim of this study was to evaluate the contribution of each VOC and blends of the VOCs on the induction of salt tolerance and signaling pathways. The key VOCs emitted from JBCS1294 were dissolved in lanolin and applied to one side of bipartite I-plates that contained Arabidopsis seeds on Murashige and Skoog (MS) media supplemented with NaCl on the other side. Changes in plant growth were investigated using Arabidopsis mutant lines and hormone inhibitors, and gene expression was assessed by real-time PCR (qPCR). Among the VOCs, butyric acid conferred salt tolerance over a concentration range of 5.6µM (10ng)-56mM (100µg), whereas propionic and benzoic acid were effective at micromolar doses. Intriguingly, the optimized cocktail of the three VOCs increased fresh weight of Arabidopsis under salt stress compared to that achieved with each single compound. However, Arabidopsis growth was not promoted by the VOCs without salt stress. Exogenous indole-3-acetic acid (IAA) application arrested salt tolerance or growth promotion of Arabidopsis induced by volatiles from propionic acid, but not from butyric acid and an optimized volatile mixture of butyric acid, propionic acid, and benzoic acid (1PBB). High and intense auxin-responsive DR5:GUS activity was observed in the roots of Arabidopsis grown on media without salt via 1PBB, butyric acid, and benzoic acid. Growth promotion by the cocktail was inhibited in the eir1 mutant and in Col-0 plants treated with inhibitors of auxin and gibberellin. The present study clearly demonstrated the effects of individual VOCs and blends of VOCs from a rhizobacterial strain on the induction of salt stress. The results with the blend of VOCs, which mimics bacterial emissions in nature, may lead to a deeper understanding of the interaction between rhizobacteria and plants.


Subject(s)
Alcaligenes faecalis/chemistry , Arabidopsis/drug effects , Arabidopsis/metabolism , Volatile Organic Compounds/pharmacology , Gene Expression Regulation, Plant/drug effects , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Salt Tolerance/drug effects , Volatile Organic Compounds/chemistry
14.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 3): 159-166, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28291752

ABSTRACT

Pseudoazurin from the denitrifying bacterium Alcaligenes faecalis (AfPAz) is a blue copper protein and functions as an electron donor to copper-containing nitrite reductase (CuNIR). Conventionally, AfPAz has been crystallized using highly concentrated ammonium sulfate as a precipitant. Here, a needle-like crystal of AfPAz grown in a solution containing a macromolecular precipitant, polyethylene glycol 8000 (PEG 8000), is reported. The crystal belonged to space group P61, with unit-cell parameters a = b = 68.7, c = 94.2 Å. The structure has been determined and refined at 2.6 Šresolution. The asymmetric unit contained two AfPAz molecules contacting each other on negatively charged surfaces. The molecular packing of the crystal showed a right-handed double-helical arrangement of AfPAz molecules and hence of blue copper sites. This structure provides insight into the excluded-volume effect of PEG and the manner of assembly of AfPAz.


Subject(s)
Alcaligenes faecalis/chemistry , Azurin/chemistry , Copper/chemistry , Metalloproteins/chemistry , Alcaligenes faecalis/metabolism , Amino Acid Sequence , Azurin/genetics , Azurin/metabolism , Binding Sites , Cations, Divalent , Chemical Precipitation , Cloning, Molecular , Copper/metabolism , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Metalloproteins/genetics , Metalloproteins/metabolism , Models, Molecular , Plasmids/chemistry , Plasmids/metabolism , Polyethylene Glycols/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 7): 507-15, 2016 07.
Article in English | MEDLINE | ID: mdl-27380367

ABSTRACT

D-3-Hydroxybutyrate dehydrogenase catalyzes the reversible conversion of acetoacetate and D-3-hydroxybutyrate. These ketone bodies are both energy-storage forms of acetyl-CoA. In order to clarify the structural mechanisms of the catalytic reaction with the cognate substrate D-3-hydroxybutyrate and of the inhibition of the reaction by inhibitors, the enzyme from Alcaligenes faecalis has been analyzed by X-ray crystallography in liganded states with the substrate and with two types of inhibitor: malonate and methylmalonate. In each subunit of the tetrameric enzyme, the substrate is trapped on the nicotinamide plane of the bound NAD(+). An OMIT map definitively shows that the bound ligand is D-3-hydroxybutyrate and not acetoacetate. The two carboxylate O atoms form four hydrogen bonds to four conserved amino-acid residues. The methyl group is accommodated in the nearby hydrophobic pocket so that the formation of a hydrogen bond from the OH group of the substrate to the hydroxy group of Tyr155 at the active centre is facilitated. In this geometry, the H atom attached to the C(3) atom of the substrate in the sp(3) configuration is positioned at a distance of 3.1 Šfrom the nicotinamide C(4) atom in the direction normal to the plane. In addition, the donor-acceptor relationship of the hydrogen bonds suggests that the Tyr155 OH group is allowed to ionize by the two donations from the Ser142 OH group and the ribose OH group. A comparison of the protein structures with and without ligands indicates that the Gln196 residue of the small movable domain participates in the formation of additional hydrogen bonds. It is likely that this situation can facilitate H-atom movements as the trigger of the catalytic reaction. In the complexes with inhibitors, however, their principal carboxylate groups interact with the enzyme in a similar way, while the interactions of other groups are changed. The crucial determinant for inhibition is that the inhibitors have no active H atom at C(3). A second determinant is the Tyr155 OH group, which is perturbed by the inhibitors to donate its H atom for hydrogen-bond formation, losing its nucleophilicity.


Subject(s)
3-Hydroxybutyric Acid/chemistry , Alcaligenes faecalis/chemistry , Bacterial Proteins/chemistry , Enzyme Inhibitors/chemistry , Hydroxybutyrate Dehydrogenase/chemistry , Protein Subunits/chemistry , 3-Hydroxybutyric Acid/metabolism , Alcaligenes faecalis/enzymology , Amino Acid Motifs , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Gene Expression , Glutamine/chemistry , Glutamine/metabolism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Hydroxybutyrate Dehydrogenase/antagonists & inhibitors , Hydroxybutyrate Dehydrogenase/genetics , Hydroxybutyrate Dehydrogenase/metabolism , Malonates/chemistry , Methylmalonic Acid/chemistry , Models, Molecular , NAD/chemistry , NAD/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Tyrosine/chemistry , Tyrosine/metabolism
16.
J Biotechnol ; 218: 73-4, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26656226

ABSTRACT

Root-knot nematodes (RKNs) can infect almost all crops, and result in huge economic losses in agriculture. There is no effective and environmentally safe means available to control RKNs. Alcaligenes faecalis ZD02 isolated from free living nematode Caenorhabditis elegans cadavers shows toxicity against RKN Meloidogyne incognita, that makes this strain to be a good bionematicide candidate for controlling of RKNs. Here, we firstly report the complete genome of A. faecalis ZD02 and describe its features. Additionally, we found two potential virulence factors in this genome, which play important roles for the nematocidal activity of A. faecalis ZD02.


Subject(s)
Alcaligenes faecalis/genetics , Genome, Bacterial , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/isolation & purification , Animals , Antinematodal Agents/isolation & purification , Biological Control Agents/isolation & purification , Caenorhabditis elegans , Tylenchoidea , Virulence Factors/isolation & purification
17.
Biomacromolecules ; 16(12): 3889-96, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26566664

ABSTRACT

Mimicking a concept of nature for the hydrolysis of biopolymers, the Thermobifida cellulosilytica cutinase 1 (Thc_Cut1) was fused to a polymer binding module (PBM) to enhance the hydrolysis of the polyester poly(1,4-butylene adipate) (PBA). Namely, the binding module of a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (Thc_Cut1_PBM) was attached to the cutinase via two different linker sequences varying in length. In order to investigate the adsorption behavior, catalytically inactive mutants both of Thc_Cut1 and Thc_Cut1_PBM were successfully constructed by site-directed mutagenesis of serine 131 to alanine. Quartz crystal microbalance with dissipation monitoring (QCM-D) analysis revealed that the initial mass increase during enzyme adsorption was larger for the inactive enzymes linked with the PBM as compared to the enzyme without the PBM. The hydrolysis rates of PBA were significantly enhanced when incubated with the active, engineered Thc_Cut1_PBM as compared to the native Thc_Cut1. Thc_Cut1_PBM completely hydrolyzed PBA thin films on QCM-D sensors within approximately 40 min, whereas twice as much time was required for the complete hydrolysis by the native Thc_Cut1.


Subject(s)
Bacterial Proteins/chemistry , Biomimetics/methods , Butylene Glycols/chemistry , Carboxylic Ester Hydrolases/chemistry , Polymers/chemistry , Actinobacteria/chemistry , Actinobacteria/enzymology , Alanine/chemistry , Alanine/genetics , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/enzymology , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Butylene Glycols/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrolysis , Kinetics , Mutagenesis, Site-Directed , Mutation , Polymers/metabolism , Protein Engineering , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/chemistry , Serine/genetics , Structure-Activity Relationship
18.
Angew Chem Int Ed Engl ; 54(16): 4904-8, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25706244

ABSTRACT

A powerful strategy for long-term and diffusional-resistance-minimized whole-cell biocatalysis in biphasic systems is reported where individually encapsulated bacteria are employed as robust and recyclable Pickering interfacial biocatalysts. By individually immobilizing bacterial cells and optimizing the hydrophobic/hydrophilic balance of the encapsulating magnetic mineral shells, the encased bacteria became interfacially active and locate at the Pickering emulsion interfaces, leading to dramatically enhanced bioconversion performances by minimizing internal and external diffusional resistances. Moreover, in situ product separation and biocatalyst recovery was readily achieved using a remote magnetic field. Importantly, the mineral shell effectively protected the entire cell from long-term organic-solvent stress, as shown by the reusability of the biocatalysts for up to 30 cycles, while retaining high stereoselective catalytic activities, cell viabilities, and proliferative abilities.


Subject(s)
Bacteria/metabolism , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/drug effects , Alcaligenes faecalis/metabolism , Bacteria/chemistry , Bacteria/drug effects , Biocatalysis , Cells, Immobilized/chemistry , Cells, Immobilized/metabolism , Emulsions/chemistry , Fluoresceins/pharmacology , Hydrophobic and Hydrophilic Interactions , Magnetics , Microscopy, Confocal , Nanostructures/chemistry
19.
J Inorg Biochem ; 137: 57-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24813397

ABSTRACT

We report on a high-frequency electron-paramagnetic-resonance study of the type 1 copper site of pseudoazurin. The spectra fully resolve the contribution of a nearly axial spectrum besides the rhombic spectrum, which unequivocally proves the existence of two conformations of the copper site. Pseudoazurins have been considered from Achromobacter cycloclastes including eight mutants and from Alcaligenes faecalis. The two conformations are virtually the same for all pseudoazurins, but the rhombic/axial population varies largely, between 91/9 and 33/67. These observations are discussed in relation to optical absorption spectra and X-ray diffraction structures. A similar observation for fern plastocyanin from Dryopteris crassirhizoma suggests that dual conformations of type 1 copper sites are more common.


Subject(s)
Azurin/chemistry , Copper/chemistry , Plastocyanin/chemistry , Protein Conformation , Achromobacter cycloclastes/chemistry , Alcaligenes faecalis/chemistry , Azurin/metabolism , Binding Sites , Electron Spin Resonance Spectroscopy , Plastocyanin/metabolism , Spectrum Analysis, Raman , X-Ray Diffraction
20.
J Agric Food Chem ; 62(20): 4685-94, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24766313

ABSTRACT

Nitrilases have recently received considerable attention as the biocatalysts for stereospecific production of carboxylic acids. To improve the activity, the nitrilase from Alcaligenes faecalis was selected for further modification by the gene site saturation mutagenesis method (GSSM), based on homology modeling and previous reports about mutations. After mutagenesis, the positive mutants were selected using a convenient two-step high-throughput screening method based on product formation and pH indicator combined with the HPLC method. After three rounds of GSSM, Mut3 (Gln196Ser/Ala284Ile) with the highest activity and ability of tolerance to the substrate was selected. As compared to the wild-type A. faecalis nitrilase, Mut3 showed 154% higher specific activity. Mut3 could retain 91.6% of its residual activity after incubation at pH 6.5 for 6 h. In a fed-batch reaction with 800 mM mandelonitrile as the substrate, the cumulative production of (R)-(-)-mandelic acid after 7.5 h of conversion reached 693 mM with an enantiomeric excess of 99%, and the space-time productivity of Mut3 was 21.50-fold higher than that of wild-type nitrilase. The Km, Vmax, and k(cat) of wild-type and Mut3 for mandelonitrile were 20.64 mM, 33.74 µmol mg(-1) min(-1), 24.45 s(-1), and 9.24 mM, 47.68 µmol mg(-1) min(-1), and 34.55 s(-1), respectively. A homology modeling and molecular docking study showed that the diameter of the catalytic tunnel of Mut3 became longer and that the tunnel volume was smaller. These structural changes are proposed to improve the hydrolytic activity and pH stability of Mut3. Mut3 has the potential for industrial applications in the upscale production of (R)-(-)-mandelic acid.


Subject(s)
Alcaligenes faecalis/enzymology , Aminohydrolases/genetics , Aminohydrolases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mandelic Acids/metabolism , Alcaligenes faecalis/chemistry , Alcaligenes faecalis/genetics , Aminohydrolases/chemistry , Bacterial Proteins/chemistry , Biotransformation , Enzyme Stability , Industrial Microbiology , Kinetics , Mandelic Acids/chemistry , Molecular Docking Simulation , Mutagenesis, Site-Directed , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...