Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.814
Filter
1.
Sci Rep ; 14(1): 13825, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879601

ABSTRACT

The purpose of this study was to investigate the causal association between unhealthy lifestyle style factors and the risk of colorectal cancer, with the aim of preventing the occurrence of colorectal cancer by modifying unhealthy lifestyles. A two-sample Mendelian randomization (MR) approach was employed in this study, utilizing the inverse-variance weighted method as the primary research method. This MR analysis analyzed data of 3022 colorectal cancer cases and 174,006 controls from the FinnGen database. Single nucleotide polymorphisms (SNPs) associated with unhealthy lifestyle factors were selected as instrumental variables (IVs), including two obesity-related indicators, BMI (body mass index) and WHR (waist-to-hip ratio). Four phenotypes of smoking (smoking initiation, ever smoked, smoking per day, smoking cessation) and one phenotype of alcohol consumption (drinks per week). Four phenotypes of physical activity (accelerometer-based physical activity, moderate-to-vigorous physical activity, vigorous physical activity, strenuous sports or other exercises). All SNPs were obtained from published genome-wide association studies. The study found that the obesity-related indicator, higher WHR (OR = 1.38, 95% CI 1.12-1.70; P = 0.002) were associated with an increased risk of colorectal cancer, and two smoking phenotypes, cigarettes per day(OR = 1.30, 95% CI 1.01-1.68; P = 0.042)and smoking initiation (OR = 3.48, 95% CI 1.15-10.55; P = 0.028), were potentially associated with an increased risk of colorectal cancer. However, there was no evidence to suggest that physical activities and alcohol consumption were associated with colorectal cancer (all p > 0.05). In addition, the study detected no pleiotropy (all p > 0.05). This MR analysis indicates a causal association between a higher waist-to-hip ratio and the risk of colorectal cancer and a suggestive association between smoking and the risk of colorectal cancer among Europeans. These findings contribute to the understanding of the etiology of colorectal cancer and have potential implications for its prevention.


Subject(s)
Colorectal Neoplasms , Life Style , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Smoking , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Risk Factors , Smoking/adverse effects , Exercise , Genome-Wide Association Study , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Male , Body Mass Index , Female , Obesity/genetics , Obesity/epidemiology , Waist-Hip Ratio
2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 384-389, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38864121

ABSTRACT

OBJECTIVE: To explore the association between polymorphisms of transforming growth factor-ß (TGF-ß) signaling pathway and non-syndromic cleft lip with or without cleft palate (NSCL/P) among Asian populations, while considering gene-gene interaction and gene-environment interaction. METHODS: A total of 1 038 Asian NSCL/P case-parent trios were ascertained from an international consortium, which conducted a genome-wide association study using a case-parent trio design to investigate the genes affec-ting risk to NSCL/P. After stringent quality control measures, 343 single nucleotide polymorphism (SNP) spanning across 10 pivotal genes in the TGF-ß signaling pathway were selected from the original genome-wide association study(GWAS) dataset for further analysis. The transmission disequilibrium test (TDT) was used to test for SNP effects. The conditional Logistic regression models were used to test for gene-gene interaction and gene-environment interaction. Environmental factors collected for the study included smoking during pregnancy, passive smoking during pregnancy, alcohol intake during pregnancy, and vitamin use during pregnancy. Due to the low rates of exposure to smoking during pregnancy and alcohol consumption during pregnancy (<3%), only the interaction between maternal smoking during pregnancy and multivitamin supplementation during pregnancy was analyzed. The threshold for statistical significance was rigorously set at P =1.46×10-4, applying Bonferroni correction to account for multiple testing. RESULTS: A total of 23 SNPs in 4 genes yielded nominal association with NSCL/P (P<0.05), but none of these associations was statistically significant after Bonferroni' s multiple test correction. However, there were 6 pairs of SNPs rs4939874 (SMAD2) and rs1864615 (TGFBR2), rs2796813 (TGFB2) and rs2132298 (TGFBR2), rs4147358 (SMAD3) and rs1346907 (TGFBR2), rs4939874 (SMAD2) and rs1019855 (TGFBR2), rs4939874 (SMAD2) and rs12490466 (TGFBR2), rs2009112 (TGFB2) and rs4075748 (TGFBR2) showed statistically significant SNP-SNP interaction (P<1.46×10-4). In contrast, the analysis of gene-environment interactions did not yield any significant results after being corrected by multiple testing. CONCLUSION: The comprehensive evaluation of SNP associations and interactions within the TGF-ß signaling pathway did not yield any direct associations with NSCL/P risk in Asian populations. However, the significant gene-gene interactions identified suggest that the genetic architecture influencing NSCL/P risk may involve interactions between genes within the TGF-ß signaling pathway. These findings underscore the necessity for further investigations to unravel these results and further explore the underlying biological mechanisms.


Subject(s)
Cleft Lip , Cleft Palate , Gene-Environment Interaction , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Signal Transduction , Transforming Growth Factor beta , Humans , Cleft Palate/genetics , Cleft Lip/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Female , Asian People/genetics , Pregnancy , Male , Genetic Predisposition to Disease , Smad3 Protein/genetics , Risk Factors , Smad2 Protein/genetics , Smad2 Protein/metabolism , Epistasis, Genetic , Tobacco Smoke Pollution/adverse effects , Alcohol Drinking/genetics
3.
Skin Res Technol ; 30(6): e13765, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881049

ABSTRACT

BACKGROUND: Controversy persists regarding the causal relationship between Cigarette smoking, alcohol consumption, and Rosacea. This paper employs the Mendelian randomization (MR) method to elucidate the correlation between Cigarette smoking, alcohol consumption, and Rosacea. The aim is to contribute valuable insights to aid in the prevention and early treatment of Rosacea. METHOD: Summary datasets for cigarette smoking parameters (Cigarettes smoked per day, Smoking status: Previous, smoking status: Current) and alcohol consumption (Alcoholic drinks per week) were selected alongside data for Rosacea from genome-wide association studies (GWAS). The Two-sample MR method was employed to analyze the correlation between cigarette smoking, alcohol consumption, and Rosacea. Various MR analysis methods, including inverse variance weighting (IVW), MR-Egger, Simple Mode, Weighted Mode, and Weighted Median, were chosen. IVW served as the primary analysis method. RESULTS: The results indicate a significant negative association between Cigarettes smoked per day and Rosacea. Moreover, a significant positive correlation was observed between Smoking status: Previous and Rosacea. However, no significant associations were found between Smoking status: Current, Alcoholic drinks per week, and Rosacea. CONCLUSION: This study provides further clarity on the association between cigarette smoking, drinking, and Rosacea through a two-sample MR analysis. Notably, the number of cigarettes smoked per day appears to be associated with a reduced incidence of Rosacea, while cigarette smoking cessation may increase the risk. Surprisingly, alcohol consumption does not emerge as a significant risk factor for Rosacea. These findings contribute to a nuanced understanding of the complex relationship between lifestyle factors and the occurrence of Rosacea, offering potential insights for preventive measures and early intervention.


Subject(s)
Alcohol Drinking , Cigarette Smoking , Mendelian Randomization Analysis , Rosacea , Humans , Rosacea/epidemiology , Rosacea/genetics , Mendelian Randomization Analysis/methods , Alcohol Drinking/epidemiology , Alcohol Drinking/genetics , Alcohol Drinking/adverse effects , Cigarette Smoking/epidemiology , Cigarette Smoking/genetics , Cigarette Smoking/adverse effects , Genome-Wide Association Study , Risk Factors
4.
Sci Prog ; 107(2): 368504241260375, 2024.
Article in English | MEDLINE | ID: mdl-38860295

ABSTRACT

In a recent publication, we applied a novel model to address phenotypic heterogeneity in genetic research on alcohol misuse by stratifying individuals based on their patterns of alcohol use behaviours and comorbid psychopathology. In this Commentary, we provide further descriptions of the subtypes of alcohol misuse that emerged from the empirical mixture modelling approach and present new results comparing these groups on sociodemographic characteristics and additional alcohol use outcomes. We take a broad perspective to discuss how these results fit with existing typologies of alcohol misuse and how the results inform future genetic research. Our findings add further evidence that conceptualisations of a binary distinction between 'internalising' (relief-seeking) versus 'externalising' (reward-seeking) subtypes does not fully capture the complexity of alcohol misuse. However, accounting for individual differences in these dimensions is a promising means to reduce heterogeneity and thereby improve power for gene discovery and, eventually, personalised medicine applications. We argue that more detailed, person-specific assessment of alcohol misuse measures, particularly with attention to longitudinal trajectories, is needed to further advance this important line of research.


Subject(s)
Alcoholism , Humans , Alcoholism/genetics , Alcoholism/epidemiology , Alcoholism/psychology , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology
5.
Nutrients ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892689

ABSTRACT

Dietary intake and alcohol consumption might be influenced by genetic variations in taste receptor genes. The objectives of this study were to examine the relationship between polymorphisms in the bitter taste receptor genes TAS2R13 (rs1015443) and TAS2R38 (rs1726866, rs10246939, and rs713598) as well as alcohol consumption and body fat percentage in college students. Four hundred and two students with a mean age of 20.2 years participated in this study. An NIH Diet History Questionnaire (DHQ II) was used to collect data on their dietary intake, while an AUDIT survey was used to determine their level of alcohol consumption. Bitter taste receptor gene polymorphisms were assessed by TaqMan allelic discrimination assays. Despite significant associations between TAS2R13 (rs1015443) and certain aspects of alcohol consumption, including the frequency of alcohol intake, no significant associations were found between TAS2R13 (rs1015443) and alcohol consumption after accounting for confounding variables in the regression model. Neither association was found regarding percent of body fat. In contrast, ethnicity and gender significantly influenced percent of body fat (p < 0.001), while no significant association was observed between TAS2R13 (rs1015443) and percent of body fat. Likewise, TAS2R38 (rs1726866, rs10246939, and rs713598) demonstrated no significant association with alcohol consumption and percent of body fat. These results were controlled for confounding factors, such as ethnicity and gender. Body fat percentage and alcohol consumption may be influenced by ethnicity, gender, and age rather than SNPs of TAS2R13 and TAS2R38 genes. Assessing taste genes' interactions with diet and body composition might be useful in identifying human disease risk.


Subject(s)
Adipose Tissue , Alcohol Drinking , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled , Taste , Humans , Male , Female , Alcohol Drinking/genetics , Receptors, G-Protein-Coupled/genetics , Young Adult , Taste/genetics , Adipose Tissue/metabolism , Adolescent , Adult
6.
Alcohol Alcohol ; 59(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38832907

ABSTRACT

AIMS: Alcohol drinking is associated with central obesity, hypertension, and hyperlipidemia, which further causes metabolic syndrome (MetS). However, prior epidemiological studies on such associations lack experimental evidence for a causal relationship. This study aims to explore the causal relationship between drinking behavior and MetS in Taiwan population by using Mendelian randomization (MR) analysis. METHODS: A cross-sectional study was conducted using the Taiwan Biobank database, which comprised 50 640 Han Chinese who were 30-70 years old without cancer from 2008 to 2020. In MR analysis, we constructed weighted and unweighted genetic risk scores by calculating SNP alleles significantly associated with alcohol drinking. We calculated odds ratios and 95% confidence interval (CI) by using a two-stage regression model. RESULTS: A total of 50 640 participants were included with a mean age of 49.5 years (SD: 1.67 years), 36.6% were men. The adjusted odds ratio (aOR) of MetS per 5% increase in the likelihood of genetic predisposition to drink based on weighted genetic risk score with adjustment was 1.11 (95% CI: 1.10, 1.12, P < .001). Analysis was also conducted by grouping the likelihood of genetic predisposition to drink based on quartiles with multivariate adjustment. Using Q1 as the reference group, the aORs of MetS for Q2, Q3, and Q4 were 1.19 (1.12, 1.27, p < .001), 1.31 (1.23, 1.40, p < .001), and 1.87 (1.75, 2.00, p < .001), respectively, for the weighted genetic risk score. CONCLUSIONS: This study shows a modest relationship between drinking behavior and MetS by using MR analysis.


Subject(s)
Alcohol Drinking , Mendelian Randomization Analysis , Metabolic Syndrome , Humans , Metabolic Syndrome/genetics , Metabolic Syndrome/epidemiology , Male , Middle Aged , Female , Cross-Sectional Studies , Adult , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology , Alcohol Drinking/psychology , Taiwan/epidemiology , Aged , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics
7.
J Affect Disord ; 359: 287-299, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788859

ABSTRACT

BACKGROUND: Studies have been conducted on the relationship between depression and thyroid diseases and function, its causal relationship remains unclear. METHODS: Using summary statistics of genome-wide association studies of European and East Asian ancestry, we conducted 2-sample bidirectional Mendelian randomization to estimate the association between MDD and thyroid function (European: normal range TSH, T4, T3, fT4, TPOAb levels and TPOAb-positives; East Asian: T4) and thyroid diseases (hypothyroidism, hyperthyroidism, and Hashimoto's thyroiditis), and used Mediation analysis to evaluate potential mediators (alcohol intake, antidepressant) of the association and calculate the mediated proportions. RESULTS: It was observed a significant causal association between MDD on hypothyroidism (P = 8.94 × 10-5), hyperthyroidism (P = 8.68 × 10-3), and hashimoto's thyroiditis (P = 3.97 × 10-5) among European ancestry, which was mediated by Alcohol intake (alcohol intake versus 10 years previously for hypothyroidism (P = 0.026), hashimoto's thyroiditis (P = 0.042), and alcohol intake frequency for hypothyroidism (P = 0.015)) and antidepressant (for hypothyroidism (P = 0.008), hashimoto's thyroiditis (P = 0.010)), but not among East Asian ancestry (PMDD-hypothyroidism = 0.016, but ß direction was different; PMDD-hyperthyroidism = 0.438; PMDD-hashimoto's thyroiditis = 0.496). There was no evidence for bidirectional causal association between thyroid function mentioned above and MDD among both ancestry (all P > 0.05). CONCLUSION: We importantly observed a significant causal association between MDD on risk of hypothyroidism, hyperthyroidism, and hashimoto's thyroiditis among European ancestry, and Alcohol intake and antidepressant as mediators for prevention of hypothyroidism, hashimoto's thyroiditis attributable to MDD.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Mendelian Randomization Analysis , Thyroid Diseases , White People , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Thyroid Diseases/genetics , Thyroid Diseases/epidemiology , White People/genetics , White People/statistics & numerical data , Mediation Analysis , Asian People/genetics , Asian People/statistics & numerical data , Alcohol Drinking/epidemiology , Alcohol Drinking/genetics , Hypothyroidism/genetics , Hypothyroidism/epidemiology , Antidepressive Agents/therapeutic use , Hashimoto Disease/genetics , Hashimoto Disease/epidemiology , Hyperthyroidism/genetics , Hyperthyroidism/epidemiology , Hyperthyroidism/complications , Male , Female
8.
Neuropharmacology ; 255: 110019, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810926

ABSTRACT

The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.


Subject(s)
Alcohol Drinking , Mice, Knockout , Quinine , Receptors, Opioid, mu , Reward , Animals , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Male , Female , Mice , Quinine/pharmacology , Quinine/administration & dosage , Alcohol Drinking/genetics , Alcohol Drinking/psychology , Nicotine/pharmacology , Ethanol/pharmacology , Ethanol/administration & dosage , Cholinergic Neurons/drug effects , Cholinergic Neurons/physiology , Cholinergic Neurons/metabolism , Self Administration , Sucrose/administration & dosage , Avoidance Learning/drug effects , Avoidance Learning/physiology , Interneurons/drug effects , Interneurons/physiology , Interneurons/metabolism
9.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38727677

ABSTRACT

BACKGROUND: Polygenic Risk Scores (PRS) based on results from genome-wide association studies offer the prospect of risk stratification for many common and complex diseases. We developed a PRS for alcohol-associated cirrhosis by comparing single-nucleotide polymorphisms among patients with alcohol-associated cirrhosis (ALC) versus drinkers who did not have evidence of liver fibrosis/cirrhosis. METHODS: Using a data-driven approach, a PRS for ALC was generated using a meta-genome-wide association study of ALC (N=4305) and an independent cohort of heavy drinkers with ALC and without significant liver disease (N=3037). It was validated in 2 additional independent cohorts from the UK Biobank with diagnosed ALC (N=467) and high-risk drinking controls (N=8981) and participants in the Indiana Biobank Liver cohort with alcohol-associated liver disease (N=121) and controls without liver disease (N=3239). RESULTS: A 20-single-nucleotide polymorphisms PRS for ALC (PRSALC) was generated that stratified risk for ALC comparing the top and bottom deciles of PRS in the 2 validation cohorts (ORs: 2.83 [95% CI: 1.82 -4.39] in UK Biobank; 4.40 [1.56 -12.44] in Indiana Biobank Liver cohort). Furthermore, PRSALC improved the prediction of ALC risk when added to the models of clinically known predictors of ALC risk. It also stratified the risk for metabolic dysfunction -associated steatotic liver disease -cirrhosis (3.94 [2.23 -6.95]) in the Indiana Biobank Liver cohort -based exploratory analysis. CONCLUSIONS: PRSALC incorporates 20 single-nucleotide polymorphisms, predicts increased risk for ALC, and improves risk stratification for ALC compared with the models that only include clinical risk factors. This new score has the potential for early detection of heavy drinking patients who are at high risk for ALC.


Subject(s)
Genome-Wide Association Study , Liver Cirrhosis, Alcoholic , Multifactorial Inheritance , Polymorphism, Single Nucleotide , White People , Humans , Liver Cirrhosis, Alcoholic/genetics , Male , Female , Middle Aged , White People/genetics , Aged , Risk Assessment , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Adult , Risk Factors , Genetic Predisposition to Disease , United Kingdom , Genetic Risk Score
10.
Nutrients ; 16(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794754

ABSTRACT

Alcohol consumption significantly impacts disease burden and has been linked to various diseases in observational studies. However, comprehensive meta-analyses using Mendelian randomization (MR) to examine drinking patterns are limited. We aimed to evaluate the health risks of alcohol use by integrating findings from MR studies. A thorough search was conducted for MR studies focused on alcohol exposure. We utilized two sets of instrumental variables-alcohol consumption and problematic alcohol use-and summary statistics from the FinnGen consortium R9 release to perform de novo MR analyses. Our meta-analysis encompassed 64 published and 151 de novo MR analyses across 76 distinct primary outcomes. Results show that a genetic predisposition to alcohol consumption, independent of smoking, significantly correlates with a decreased risk of Parkinson's disease, prostate hyperplasia, and rheumatoid arthritis. It was also associated with an increased risk of chronic pancreatitis, colorectal cancer, and head and neck cancers. Additionally, a genetic predisposition to problematic alcohol use is strongly associated with increased risks of alcoholic liver disease, cirrhosis, both acute and chronic pancreatitis, and pneumonia. Evidence from our MR study supports the notion that alcohol consumption and problematic alcohol use are causally associated with a range of diseases, predominantly by increasing the risk.


Subject(s)
Alcohol Drinking , Genetic Predisposition to Disease , Mendelian Randomization Analysis , Humans , Male , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Alcoholism/genetics , Arthritis, Rheumatoid/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/epidemiology , Parkinson Disease/genetics , Parkinson Disease/epidemiology , Parkinson Disease/etiology , Risk Factors , Female
11.
Anticancer Res ; 44(6): 2699-2707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821577

ABSTRACT

BACKGROUND/AIM: Organs of the digestive system are frequent sites of cancer development, and digestive tract cancers are the leading causes of death worldwide, including in Japan. Most of these cancers are associated with smoking or drinking habits. This study focused on the clinical and genomic characteristics of patients with these cancers using the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, which comprises a large volume of data on Japanese patients who have undergone tumor profiling gene panel tests. PATIENTS AND METHODS: The genomic and clinical data from patients with digestive tract cancers registered in C-CAT between 2019 and 2023 were retrospectively reviewed. The data were derived from 412 patients with esophageal squamous cell carcinoma, 558 with gastric adenocarcinoma, 3,368 with colorectal adenocarcinoma, 139 with hepatocellular carcinoma, 2,050 with cholangiocarcinoma, and 2,552 with pancreatic ductal adenocarcinoma. RESULTS: CDKN2A, CDKN2B, and MTAP mutations were associated with both smoking and drinking history, and patients with these mutations had a worse prognosis. Almost all gene alterations in CDKN2B and MTAP were deletions, often accompanied by CDKN2A deletion. CDKN2A mutation emerged as the most decisive prognostic factor among these mutations. Although CDKN2A mutations were frequently seen in esophageal squamous cell carcinoma, cholangiocarcinoma, and pancreatic ductal adenocarcinoma, statistically significant differences in survival outcomes were only identified in the latter two. CONCLUSION: CDKN2A mutations were associated with smoking and drinking in digestive cancers. This mutation was prevalent among patients with cholangiocarcinoma and pancreatic ductal adenocarcinoma, for whom they could serve as prognostic factors.


Subject(s)
Alcohol Drinking , Cyclin-Dependent Kinase Inhibitor p16 , Digestive System Neoplasms , Mutation , Smoking , Humans , Male , Prognosis , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Female , Japan/epidemiology , Smoking/adverse effects , Smoking/genetics , Digestive System Neoplasms/genetics , Middle Aged , Retrospective Studies , Aged , Adult , East Asian People
12.
BMC Med ; 22(1): 205, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769537

ABSTRACT

BACKGROUND: It is unclear whether brief interventions using the combined classification of alcohol-metabolizing enzymes aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) together with behavioral changes in alcohol use can reduce excessive alcohol consumption. This study aimed to examine the effects of a brief intervention based on the screening of ALDH2 and ADH1B gene polymorphisms on alcohol consumption in Japanese young adults. METHODS: In this open-label randomized controlled trial, we enrolled adults aged 20-30 years who had excessive drinking behavior (average amount of alcohol consumed: men, ≥ 4 drinks/per day and women, ≥ 2 drinks/per day; 1 drink = 10 g of pure alcohol equivalent). Participants were randomized into intervention or control group using a simple random number table. The intervention group underwent saliva-based genotyping of alcohol-metabolizing enzymes (ALDH2 and ADH1B), which were classified into five types. A 30-min in-person or online educational counseling was conducted approximately 1 month later based on genotyping test results and their own drinking records. The control group received traditional alcohol education. Average daily alcohol consumption was calculated based on the drinking diary, which was recorded at baseline and at 3 and 6 months of follow-up. The primary endpoint was average daily alcohol consumption, and the secondary endpoints were the alcohol-use disorder identification test for consumption (AUDIT-C) score and behavioral modification stages assessed using a transtheoretical model. RESULTS: Participants were allocated to the intervention (n = 100) and control (n = 96) groups using simple randomization. Overall, 28 (29.2%) participants in the control group and 21 (21.0%) in the intervention group did not complete the follow-up. Average alcohol consumption decreased significantly from baseline to 3 and 6 months in the intervention group but not in the control group. The reduction from baseline alcohol consumption values and AUDIT-C score at 3 months were greater in the intervention group than in the control group (p < 0.001). In addition, the behavioral modification stages were significantly changed by the intervention (p < 0.001). CONCLUSIONS: Genetic testing for alcohol-metabolizing enzymes and health guidance on type-specific excessive drinking may be useful for reducing sustained average alcohol consumption associated with behavioral modification. TRIAL REGISTRATION: R000050379, UMIN000044148, Registered on June 1, 2021.


Subject(s)
Alcohol Dehydrogenase , Alcohol Drinking , Aldehyde Dehydrogenase, Mitochondrial , Humans , Male , Female , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Adult , Aldehyde Dehydrogenase, Mitochondrial/genetics , Alcohol Drinking/genetics , Young Adult , Genotype , Ethanol/metabolism , Polymorphism, Genetic , Treatment Outcome , Japan
13.
Life Sci ; 348: 122673, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38679193

ABSTRACT

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Subject(s)
Ethanol , Gene Knock-In Techniques , Receptors, Glycine , Animals , Ethanol/pharmacology , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Mice , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Mice, Transgenic , Receptors, GABA-A
14.
EBioMedicine ; 103: 105086, 2024 May.
Article in English | MEDLINE | ID: mdl-38580523

ABSTRACT

BACKGROUND: Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS: We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS: The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION: Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING: MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).


Subject(s)
Alcohol Drinking , Genome-Wide Association Study , Mendelian Randomization Analysis , Phenotype , Polymorphism, Single Nucleotide , Humans , Alcohol Drinking/genetics , Female , Cohort Studies , Male , Phenomics , Genetic Predisposition to Disease , Alcohol Dehydrogenase/genetics , Genotype , Alleles
15.
Gene ; 916: 148437, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38582264

ABSTRACT

Biallelic variants in PPA2 gene cause a rare but lethal mitochondrial disorder. We describe the first four cases reported in Spain of PPA2 disease in two unrelated families. We have conducted a revision of the clinical history, necropsies, and postmortem genetic testing from probands, and clinical evaluation, genetic testing and blood transcript analysis in family members. All the cases harbored biallelic PPA2 variants in compound heterozygous status. Two brothers from family 1 suffered sudden death after a small first intake of alcohol in 2013 and 2022. The sister remains alive but affected with cardiomyopathy, extensive scar on cardiac imaging, and high sensitivity to alcohol intake. The three siblings carried PPA2 c.290A > G (p.Glu97Gly) novel missense variant and PPA2 c.513C > T (p.Cys171 = ) altering splicing site variant, both probably leading to mRNA degradation based on in-silico and transcript analyses. A teenager from family 2 suffered sudden death after a small intake of alcohol in 2018 and carried PPA2 c.683C > T (p.Pro228Leu) missense and PPA2 c.980_983del (p.Gln327fs) novel frameshift variant, both probably leading to abnormal protein structure. All cases were asymptomatic until adolescence. Furthermore, the sister in family 1 has survived as an asymptomatic adult. PPA2 disease can manifest as cardiac arrest in the young, especially after alcohol exposure. Our results show that PPA2 deficiency can be related to different pathogenicity mechanisms such as abnormal protein structure but also mRNA decay caused by synonymous or missense variants. Strict avoidance of alcohol consumption and early defibrillator implantation might prevent lethal arrhythmias in patients at risk.


Subject(s)
Alcohol Drinking , Death, Sudden, Cardiac , Inorganic Pyrophosphatase , Mitochondrial Proteins , Adolescent , Adult , Female , Humans , Male , Alcohol Drinking/genetics , Alcohol Drinking/adverse effects , Death, Sudden, Cardiac/etiology , Mutation, Missense , Pedigree , Spain , Mitochondrial Proteins/genetics , Inorganic Pyrophosphatase/genetics
16.
Transl Psychiatry ; 14(1): 176, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575599

ABSTRACT

Alcohol consumption may impact and shape brain development through perturbed biological pathways and impaired molecular functions. We investigated the relationship between alcohol consumption rates and neuron-enriched extracellular vesicles' (EVs') microRNA (miRNA) expression to better understand the impact of alcohol use on early life brain biology. Neuron-enriched EVs' miRNA expression was measured from plasma samples collected from young people using a commercially available microarray platform while alcohol consumption was measured using the Alcohol Use Disorders Identification Test. Linear regression and network analyses were used to identify significantly differentially expressed miRNAs and to characterize the implicated biological pathways, respectively. Compared to alcohol naïve controls, young people reporting high alcohol consumption exhibited significantly higher expression of three neuron-enriched EVs' miRNAs including miR-30a-5p, miR-194-5p, and miR-339-3p, although only miR-30a-5p and miR-194-5p survived multiple test correction. The miRNA-miRNA interaction network inferred by a network inference algorithm did not detect any differentially expressed miRNAs with a high cutoff on edge scores. However, when the cutoff of the algorithm was reduced, five miRNAs were identified as interacting with miR-194-5p and miR-30a-5p. These seven miRNAs were associated with 25 biological functions; miR-194-5p was the most highly connected node and was highly correlated with the other miRNAs in this cluster. Our observed association between neuron-enriched EVs' miRNAs and alcohol consumption concurs with results from experimental animal models of alcohol use and suggests that high rates of alcohol consumption during the adolescent/young adult years may impact brain functioning and development by modulating miRNA expression.


Subject(s)
Alcoholism , Extracellular Vesicles , MicroRNAs , Animals , Humans , Adolescent , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Alcohol Drinking/genetics , Extracellular Vesicles/metabolism
17.
Nat Commun ; 15(1): 3385, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649715

ABSTRACT

There is a long-standing debate about the magnitude of the contribution of gene-environment interactions to phenotypic variations of complex traits owing to the low statistical power and few reported interactions to date. To address this issue, the Gene-Lifestyle Interactions Working Group within the Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium has been spearheading efforts to investigate G × E in large and diverse samples through meta-analysis. Here, we present a powerful new approach to screen for interactions across the genome, an approach that shares substantial similarity to the Mendelian randomization framework. We identify and confirm 5 loci (6 independent signals) interacted with either cigarette smoking or alcohol consumption for serum lipids, and empirically demonstrate that interaction and mediation are the major contributors to genetic effect size heterogeneity across populations. The estimated lower bound of the interaction and environmentally mediated heritability is significant (P < 0.02) for low-density lipoprotein cholesterol and triglycerides in Cross-Population data. Our study improves the understanding of the genetic architecture and environmental contributions to complex traits.


Subject(s)
Gene-Environment Interaction , Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Male , Triglycerides/blood , Female , Alcohol Drinking/genetics , Polymorphism, Single Nucleotide , Phenotype , Cholesterol, LDL/blood , Cholesterol, LDL/metabolism , Cigarette Smoking/genetics , Quantitative Trait Loci , Middle Aged
18.
Pharmacogenet Genomics ; 34(5): 139-148, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38465575

ABSTRACT

OBJECTIVES: Given the high prevalence of fast-metabolizing alcohol dehydrogenase-1B*2 (ADH1B*2 ) and inactive aldehyde dehydrogenase-2*2 (ALDH2*2 ) alleles in East Asians, we evaluated how the ADH1B / ALDH2 genotypes and alcohol flushing might affect the development of alcohol dependence (AD). METHODS: We evaluated how the ADH1B / ALDH2 genotypes and self-reported alcohol flushing affected history of drinking events and withdrawal symptoms and ICD-10 criteria in 4116 Japanese AD men. RESULTS: The ADH1B*1/*1 group and ALDH2*1/*1 group were 1-5 years younger than the ADH1B*2 (+) and ALDH2*1/*2 groups, respectively, for all of the ages at onset of habitual drinking, blackouts, daytime drinking, uncontrolled drinking, withdrawal symptoms, and first treatment for AD, and the current age. Blackouts were more common in the ADH1B*1/*1 group and ALDH2*1/*1 group. Daytime drinking, uncontrolled drinking, and withdrawal symptoms, such as hand tremor, sweating, convulsions, and delirium tremens/hallucinations were more common in the ADH1B*1/*1 group. The ADH1B*1/*1 was positively associated with the ICD-10 criteria for 'tolerance' and 'withdrawal symptoms'. The ADH1B*1/*1 group and ALDH2*1/*2 group had a larger ICD-10 score. Never flushing was reported by 91.7% and 35.2% of the ALDH2*1/*1 and ALDH2*1/*2 carriers, respectively. After a 1-2-year delay in the onset of habitual drinking in the former-/current-flushing group, no differences in the ages of the aforementioned drinking milestones were found according to the flushing status. CONCLUSION: The ADH1B*1/*1 and ALDH2*1/*1 accelerated the development of drinking events and withdrawal symptoms in Japanese AD patients. ICD-10 score was larger in the ADH1B*1/*1 group and ALDH2*1/*2 group. The effects of alcohol flushing on drinking events were limited.


Subject(s)
Alcohol Dehydrogenase , Alcoholism , Aldehyde Dehydrogenase, Mitochondrial , Aldehyde Dehydrogenase , Flushing , Genotype , Substance Withdrawal Syndrome , Humans , Alcohol Dehydrogenase/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics , Male , Alcoholism/genetics , Adult , Substance Withdrawal Syndrome/genetics , Flushing/genetics , Flushing/chemically induced , Middle Aged , Aldehyde Dehydrogenase/genetics , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Asian People/genetics , Japan/epidemiology , International Classification of Diseases , East Asian People
19.
Addiction ; 119(7): 1226-1237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523595

ABSTRACT

BACKGROUND AND AIMS: Whether alcohol-related DNA methylation has a causal effect on psychiatric disorders has not been investigated. Furthermore, a comprehensive investigation into the causal relationship and underlying mechanisms linking alcohol consumption and psychiatric disorders has been lacking. This study aimed to evaluate the causal effect of general alcohol intake and pathological drinking behaviors on psychiatric disorders, alcohol-associated DNA methylation on gene expression and psychiatric disorders, and gene expression on psychiatric disorders. DESIGN: Two-sample design Mendelian randomization (MR) analysis. Various sensitivity and validation analyses, including colocalization analysis, were conducted to test the robustness of the results. SETTING: Genome-wide association study (GWAS) data mainly from GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), Genetics of DNA Methylation Consortium (GoDMC) and Psychiatric Genomics Consortium (PGC) with European ancestry. PARTICIPANTS: The GWAS summary data on general alcohol intake (drinks per week, n = 941 280), pathological drinking behaviors (including alcohol use disorder [AUD, n = 313 959] and problematic alcohol use [PAU, n = 435 563]) and psychiatric disorders (including schizophrenia, major depressive disorder and bipolar disorder, n = 51 710-500 199) were included. Alcohol-related DNA methylation CpG sites (n = 9643) and mQTL data from blood (n = 27 750) and brain (n = 1160), BrainMeta v2 and GTEx V8 eQTL summary data (n = 73-2865) were also included. MEASUREMENTS: Genetic variants were selected as instrumental variables for exposures, including drinks per week, AUD, PAU, alcohol-related DNA methylation CpG sites (mQTL) and genes selected (eQTL). FINDINGS: Pathological drinking behaviors were associated with an increased risk of psychiatric disorders after removing outliers or controlling for alcohol consumption. MR analysis identified 10 alcohol-related CpG sites with colocalization evidence that were causally associated with psychiatric disorders (P = 1.65 × 10-4-7.52 × 10-22). Furthermore, the expression of genes (RERE, PTK6, GATAD2B, COG8, PDF and GAS5) mapped to these CpG sites in the brain, led by the cortex, were significantly associated with psychiatric disorders (P = 1.19 × 10-2-3.51 × 10-7). CONCLUSIONS: Pathological drinking behavior and alcohol-related DNA methylation appear to have a causal effect on psychiatric disorders. The expression of genes regulated by the alcohol-related DNA methylation sites may underpin this association.


Subject(s)
Alcohol Drinking , DNA Methylation , Genome-Wide Association Study , Mendelian Randomization Analysis , Mental Disorders , Humans , DNA Methylation/genetics , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology , Mental Disorders/genetics , Mental Disorders/epidemiology , Schizophrenia/genetics , Alcoholism/genetics , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Causality , Gene Expression , Multiomics
20.
Alcohol ; 117: 27-41, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508286

ABSTRACT

While DNA serves as the fundamental genetic blueprint for an organism, it is not a static entity. Gene expression, the process by which genetic information is utilized to create functional products like proteins, can be modulated by a diverse range of environmental factors. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNAs, play a pivotal role in mediating the intricate interplay between the environment and gene expression. Intriguingly, alterations in the epigenome have the potential to be inherited across generations. Alcohol use disorder (AUD) poses significant health issues worldwide. Alcohol has the capability to induce changes in the epigenome, which can be inherited by offspring, thus impacting them even in the absence of direct alcohol exposure. This review delves into the impact of alcohol on the epigenome, examining how its effects vary based on factors such as the age of exposure (adolescence or adulthood), the duration of exposure (chronic or acute), and the specific sample collected (brain, blood, or sperm). The literature underscores that alcohol exposure can elicit diverse effects on the epigenome during different life stages. Furthermore, compelling evidence from human and animal studies demonstrates that alcohol induces alterations in epigenome content, affecting both the brain and blood. Notably, rodent studies suggest that these epigenetic changes can result in lasting phenotype alterations that extend across at least two generations. In conclusion, the comprehensive literature analysis supports the notion that alcohol exposure induces lasting epigenetic alterations, influencing the behavior and health of future generations. This knowledge emphasizes the significance of addressing the potential transgenerational effects of alcohol and highlights the importance of preventive measures to minimize the adverse impact on offspring.


Subject(s)
Alcoholism , Epigenome , Animals , Female , Humans , Male , Alcohol Drinking/genetics , Alcohol Drinking/adverse effects , Alcoholism/genetics , Brain/drug effects , Brain/metabolism , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Epigenome/drug effects , Ethanol/pharmacology , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...