Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.808
Filter
1.
Alcohol Alcohol ; 59(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38832907

ABSTRACT

AIMS: Alcohol drinking is associated with central obesity, hypertension, and hyperlipidemia, which further causes metabolic syndrome (MetS). However, prior epidemiological studies on such associations lack experimental evidence for a causal relationship. This study aims to explore the causal relationship between drinking behavior and MetS in Taiwan population by using Mendelian randomization (MR) analysis. METHODS: A cross-sectional study was conducted using the Taiwan Biobank database, which comprised 50 640 Han Chinese who were 30-70 years old without cancer from 2008 to 2020. In MR analysis, we constructed weighted and unweighted genetic risk scores by calculating SNP alleles significantly associated with alcohol drinking. We calculated odds ratios and 95% confidence interval (CI) by using a two-stage regression model. RESULTS: A total of 50 640 participants were included with a mean age of 49.5 years (SD: 1.67 years), 36.6% were men. The adjusted odds ratio (aOR) of MetS per 5% increase in the likelihood of genetic predisposition to drink based on weighted genetic risk score with adjustment was 1.11 (95% CI: 1.10, 1.12, P < .001). Analysis was also conducted by grouping the likelihood of genetic predisposition to drink based on quartiles with multivariate adjustment. Using Q1 as the reference group, the aORs of MetS for Q2, Q3, and Q4 were 1.19 (1.12, 1.27, p < .001), 1.31 (1.23, 1.40, p < .001), and 1.87 (1.75, 2.00, p < .001), respectively, for the weighted genetic risk score. CONCLUSIONS: This study shows a modest relationship between drinking behavior and MetS by using MR analysis.


Subject(s)
Alcohol Drinking , Mendelian Randomization Analysis , Metabolic Syndrome , Humans , Metabolic Syndrome/genetics , Metabolic Syndrome/epidemiology , Male , Middle Aged , Female , Cross-Sectional Studies , Adult , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology , Alcohol Drinking/psychology , Taiwan/epidemiology , Aged , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics
2.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38727677

ABSTRACT

BACKGROUND: Polygenic Risk Scores (PRS) based on results from genome-wide association studies offer the prospect of risk stratification for many common and complex diseases. We developed a PRS for alcohol-associated cirrhosis by comparing single-nucleotide polymorphisms among patients with alcohol-associated cirrhosis (ALC) versus drinkers who did not have evidence of liver fibrosis/cirrhosis. METHODS: Using a data-driven approach, a PRS for ALC was generated using a meta-genome-wide association study of ALC (N=4305) and an independent cohort of heavy drinkers with ALC and without significant liver disease (N=3037). It was validated in 2 additional independent cohorts from the UK Biobank with diagnosed ALC (N=467) and high-risk drinking controls (N=8981) and participants in the Indiana Biobank Liver cohort with alcohol-associated liver disease (N=121) and controls without liver disease (N=3239). RESULTS: A 20-single-nucleotide polymorphisms PRS for ALC (PRSALC) was generated that stratified risk for ALC comparing the top and bottom deciles of PRS in the 2 validation cohorts (ORs: 2.83 [95% CI: 1.82 -4.39] in UK Biobank; 4.40 [1.56 -12.44] in Indiana Biobank Liver cohort). Furthermore, PRSALC improved the prediction of ALC risk when added to the models of clinically known predictors of ALC risk. It also stratified the risk for metabolic dysfunction -associated steatotic liver disease -cirrhosis (3.94 [2.23 -6.95]) in the Indiana Biobank Liver cohort -based exploratory analysis. CONCLUSIONS: PRSALC incorporates 20 single-nucleotide polymorphisms, predicts increased risk for ALC, and improves risk stratification for ALC compared with the models that only include clinical risk factors. This new score has the potential for early detection of heavy drinking patients who are at high risk for ALC.


Subject(s)
Genome-Wide Association Study , Liver Cirrhosis, Alcoholic , Multifactorial Inheritance , Polymorphism, Single Nucleotide , White People , Humans , Liver Cirrhosis, Alcoholic/genetics , Male , Female , Middle Aged , White People/genetics , Aged , Risk Assessment , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Adult , Risk Factors , Genetic Predisposition to Disease , United Kingdom , Genetic Risk Score
3.
BMC Med ; 22(1): 205, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769537

ABSTRACT

BACKGROUND: It is unclear whether brief interventions using the combined classification of alcohol-metabolizing enzymes aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) together with behavioral changes in alcohol use can reduce excessive alcohol consumption. This study aimed to examine the effects of a brief intervention based on the screening of ALDH2 and ADH1B gene polymorphisms on alcohol consumption in Japanese young adults. METHODS: In this open-label randomized controlled trial, we enrolled adults aged 20-30 years who had excessive drinking behavior (average amount of alcohol consumed: men, ≥ 4 drinks/per day and women, ≥ 2 drinks/per day; 1 drink = 10 g of pure alcohol equivalent). Participants were randomized into intervention or control group using a simple random number table. The intervention group underwent saliva-based genotyping of alcohol-metabolizing enzymes (ALDH2 and ADH1B), which were classified into five types. A 30-min in-person or online educational counseling was conducted approximately 1 month later based on genotyping test results and their own drinking records. The control group received traditional alcohol education. Average daily alcohol consumption was calculated based on the drinking diary, which was recorded at baseline and at 3 and 6 months of follow-up. The primary endpoint was average daily alcohol consumption, and the secondary endpoints were the alcohol-use disorder identification test for consumption (AUDIT-C) score and behavioral modification stages assessed using a transtheoretical model. RESULTS: Participants were allocated to the intervention (n = 100) and control (n = 96) groups using simple randomization. Overall, 28 (29.2%) participants in the control group and 21 (21.0%) in the intervention group did not complete the follow-up. Average alcohol consumption decreased significantly from baseline to 3 and 6 months in the intervention group but not in the control group. The reduction from baseline alcohol consumption values and AUDIT-C score at 3 months were greater in the intervention group than in the control group (p < 0.001). In addition, the behavioral modification stages were significantly changed by the intervention (p < 0.001). CONCLUSIONS: Genetic testing for alcohol-metabolizing enzymes and health guidance on type-specific excessive drinking may be useful for reducing sustained average alcohol consumption associated with behavioral modification. TRIAL REGISTRATION: R000050379, UMIN000044148, Registered on June 1, 2021.


Subject(s)
Alcohol Dehydrogenase , Alcohol Drinking , Aldehyde Dehydrogenase, Mitochondrial , Humans , Male , Female , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Adult , Aldehyde Dehydrogenase, Mitochondrial/genetics , Alcohol Drinking/genetics , Young Adult , Genotype , Ethanol/metabolism , Polymorphism, Genetic , Treatment Outcome , Japan
4.
Anticancer Res ; 44(6): 2699-2707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821577

ABSTRACT

BACKGROUND/AIM: Organs of the digestive system are frequent sites of cancer development, and digestive tract cancers are the leading causes of death worldwide, including in Japan. Most of these cancers are associated with smoking or drinking habits. This study focused on the clinical and genomic characteristics of patients with these cancers using the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, which comprises a large volume of data on Japanese patients who have undergone tumor profiling gene panel tests. PATIENTS AND METHODS: The genomic and clinical data from patients with digestive tract cancers registered in C-CAT between 2019 and 2023 were retrospectively reviewed. The data were derived from 412 patients with esophageal squamous cell carcinoma, 558 with gastric adenocarcinoma, 3,368 with colorectal adenocarcinoma, 139 with hepatocellular carcinoma, 2,050 with cholangiocarcinoma, and 2,552 with pancreatic ductal adenocarcinoma. RESULTS: CDKN2A, CDKN2B, and MTAP mutations were associated with both smoking and drinking history, and patients with these mutations had a worse prognosis. Almost all gene alterations in CDKN2B and MTAP were deletions, often accompanied by CDKN2A deletion. CDKN2A mutation emerged as the most decisive prognostic factor among these mutations. Although CDKN2A mutations were frequently seen in esophageal squamous cell carcinoma, cholangiocarcinoma, and pancreatic ductal adenocarcinoma, statistically significant differences in survival outcomes were only identified in the latter two. CONCLUSION: CDKN2A mutations were associated with smoking and drinking in digestive cancers. This mutation was prevalent among patients with cholangiocarcinoma and pancreatic ductal adenocarcinoma, for whom they could serve as prognostic factors.


Subject(s)
Alcohol Drinking , Cyclin-Dependent Kinase Inhibitor p16 , Digestive System Neoplasms , Mutation , Smoking , Humans , Male , Prognosis , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Female , Japan/epidemiology , Smoking/adverse effects , Smoking/genetics , Digestive System Neoplasms/genetics , Middle Aged , Retrospective Studies , Aged , Adult , East Asian People
5.
Nutrients ; 16(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794754

ABSTRACT

Alcohol consumption significantly impacts disease burden and has been linked to various diseases in observational studies. However, comprehensive meta-analyses using Mendelian randomization (MR) to examine drinking patterns are limited. We aimed to evaluate the health risks of alcohol use by integrating findings from MR studies. A thorough search was conducted for MR studies focused on alcohol exposure. We utilized two sets of instrumental variables-alcohol consumption and problematic alcohol use-and summary statistics from the FinnGen consortium R9 release to perform de novo MR analyses. Our meta-analysis encompassed 64 published and 151 de novo MR analyses across 76 distinct primary outcomes. Results show that a genetic predisposition to alcohol consumption, independent of smoking, significantly correlates with a decreased risk of Parkinson's disease, prostate hyperplasia, and rheumatoid arthritis. It was also associated with an increased risk of chronic pancreatitis, colorectal cancer, and head and neck cancers. Additionally, a genetic predisposition to problematic alcohol use is strongly associated with increased risks of alcoholic liver disease, cirrhosis, both acute and chronic pancreatitis, and pneumonia. Evidence from our MR study supports the notion that alcohol consumption and problematic alcohol use are causally associated with a range of diseases, predominantly by increasing the risk.


Subject(s)
Alcohol Drinking , Genetic Predisposition to Disease , Mendelian Randomization Analysis , Humans , Male , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Alcoholism/genetics , Arthritis, Rheumatoid/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/epidemiology , Parkinson Disease/genetics , Parkinson Disease/epidemiology , Parkinson Disease/etiology , Risk Factors , Female
6.
Neuropharmacology ; 255: 110019, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810926

ABSTRACT

The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.


Subject(s)
Alcohol Drinking , Mice, Knockout , Quinine , Receptors, Opioid, mu , Reward , Animals , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Male , Female , Mice , Quinine/pharmacology , Quinine/administration & dosage , Alcohol Drinking/genetics , Alcohol Drinking/psychology , Nicotine/pharmacology , Ethanol/pharmacology , Ethanol/administration & dosage , Cholinergic Neurons/drug effects , Cholinergic Neurons/physiology , Cholinergic Neurons/metabolism , Self Administration , Sucrose/administration & dosage , Avoidance Learning/drug effects , Avoidance Learning/physiology , Interneurons/drug effects , Interneurons/physiology , Interneurons/metabolism
7.
Transl Psychiatry ; 14(1): 176, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575599

ABSTRACT

Alcohol consumption may impact and shape brain development through perturbed biological pathways and impaired molecular functions. We investigated the relationship between alcohol consumption rates and neuron-enriched extracellular vesicles' (EVs') microRNA (miRNA) expression to better understand the impact of alcohol use on early life brain biology. Neuron-enriched EVs' miRNA expression was measured from plasma samples collected from young people using a commercially available microarray platform while alcohol consumption was measured using the Alcohol Use Disorders Identification Test. Linear regression and network analyses were used to identify significantly differentially expressed miRNAs and to characterize the implicated biological pathways, respectively. Compared to alcohol naïve controls, young people reporting high alcohol consumption exhibited significantly higher expression of three neuron-enriched EVs' miRNAs including miR-30a-5p, miR-194-5p, and miR-339-3p, although only miR-30a-5p and miR-194-5p survived multiple test correction. The miRNA-miRNA interaction network inferred by a network inference algorithm did not detect any differentially expressed miRNAs with a high cutoff on edge scores. However, when the cutoff of the algorithm was reduced, five miRNAs were identified as interacting with miR-194-5p and miR-30a-5p. These seven miRNAs were associated with 25 biological functions; miR-194-5p was the most highly connected node and was highly correlated with the other miRNAs in this cluster. Our observed association between neuron-enriched EVs' miRNAs and alcohol consumption concurs with results from experimental animal models of alcohol use and suggests that high rates of alcohol consumption during the adolescent/young adult years may impact brain functioning and development by modulating miRNA expression.


Subject(s)
Alcoholism , Extracellular Vesicles , MicroRNAs , Animals , Humans , Adolescent , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Alcohol Drinking/genetics , Extracellular Vesicles/metabolism
8.
Nat Commun ; 15(1): 3385, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649715

ABSTRACT

There is a long-standing debate about the magnitude of the contribution of gene-environment interactions to phenotypic variations of complex traits owing to the low statistical power and few reported interactions to date. To address this issue, the Gene-Lifestyle Interactions Working Group within the Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium has been spearheading efforts to investigate G × E in large and diverse samples through meta-analysis. Here, we present a powerful new approach to screen for interactions across the genome, an approach that shares substantial similarity to the Mendelian randomization framework. We identify and confirm 5 loci (6 independent signals) interacted with either cigarette smoking or alcohol consumption for serum lipids, and empirically demonstrate that interaction and mediation are the major contributors to genetic effect size heterogeneity across populations. The estimated lower bound of the interaction and environmentally mediated heritability is significant (P < 0.02) for low-density lipoprotein cholesterol and triglycerides in Cross-Population data. Our study improves the understanding of the genetic architecture and environmental contributions to complex traits.


Subject(s)
Gene-Environment Interaction , Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Male , Triglycerides/blood , Female , Alcohol Drinking/genetics , Polymorphism, Single Nucleotide , Phenotype , Cholesterol, LDL/blood , Cholesterol, LDL/metabolism , Cigarette Smoking/genetics , Quantitative Trait Loci , Middle Aged
9.
EBioMedicine ; 103: 105086, 2024 May.
Article in English | MEDLINE | ID: mdl-38580523

ABSTRACT

BACKGROUND: Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS: We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS: The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION: Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING: MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).


Subject(s)
Alcohol Drinking , Genome-Wide Association Study , Mendelian Randomization Analysis , Phenotype , Polymorphism, Single Nucleotide , Humans , Alcohol Drinking/genetics , Female , Cohort Studies , Male , Phenomics , Genetic Predisposition to Disease , Alcohol Dehydrogenase/genetics , Genotype , Alleles
10.
Life Sci ; 348: 122673, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38679193

ABSTRACT

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Subject(s)
Ethanol , Gene Knock-In Techniques , Receptors, Glycine , Animals , Ethanol/pharmacology , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Mice , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Mice, Transgenic , Receptors, GABA-A
11.
Gene ; 916: 148437, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38582264

ABSTRACT

Biallelic variants in PPA2 gene cause a rare but lethal mitochondrial disorder. We describe the first four cases reported in Spain of PPA2 disease in two unrelated families. We have conducted a revision of the clinical history, necropsies, and postmortem genetic testing from probands, and clinical evaluation, genetic testing and blood transcript analysis in family members. All the cases harbored biallelic PPA2 variants in compound heterozygous status. Two brothers from family 1 suffered sudden death after a small first intake of alcohol in 2013 and 2022. The sister remains alive but affected with cardiomyopathy, extensive scar on cardiac imaging, and high sensitivity to alcohol intake. The three siblings carried PPA2 c.290A > G (p.Glu97Gly) novel missense variant and PPA2 c.513C > T (p.Cys171 = ) altering splicing site variant, both probably leading to mRNA degradation based on in-silico and transcript analyses. A teenager from family 2 suffered sudden death after a small intake of alcohol in 2018 and carried PPA2 c.683C > T (p.Pro228Leu) missense and PPA2 c.980_983del (p.Gln327fs) novel frameshift variant, both probably leading to abnormal protein structure. All cases were asymptomatic until adolescence. Furthermore, the sister in family 1 has survived as an asymptomatic adult. PPA2 disease can manifest as cardiac arrest in the young, especially after alcohol exposure. Our results show that PPA2 deficiency can be related to different pathogenicity mechanisms such as abnormal protein structure but also mRNA decay caused by synonymous or missense variants. Strict avoidance of alcohol consumption and early defibrillator implantation might prevent lethal arrhythmias in patients at risk.


Subject(s)
Alcohol Drinking , Death, Sudden, Cardiac , Inorganic Pyrophosphatase , Mitochondrial Proteins , Adolescent , Adult , Female , Humans , Male , Alcohol Drinking/genetics , Alcohol Drinking/adverse effects , Death, Sudden, Cardiac/etiology , Mutation, Missense , Pedigree , Spain , Mitochondrial Proteins/genetics , Inorganic Pyrophosphatase/genetics
12.
J Stroke Cerebrovasc Dis ; 33(6): 107685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522756

ABSTRACT

OBJECTIVES: Increased plasma gamma-glutamyl transferase (GGT1) has been identified as a robust and independent risk factor for ischemic stroke (IS), but the molecular mechanisms of the enzyme-disease association are unclear. The present study investigated whether polymorphisms in the GGT1 gene contribute to IS susceptibility. MATERIALS AND METHODS: DNA samples obtained from 1288 unrelated individuals (600 IS patients and 688 controls) were genotyped for common single nucleotide polymorphisms of GGT1 using the MassArray-4 platform. RESULTS: The rs5751909 polymorphism was significantly associated with decreased risk of ischemic stroke regardless sex and age (Pperm ≤ 0.01, dominant genetic model). The haplotype rs4820599A-rs5760489A-rs5751909A showed strong protection against ischemic stroke (OR 0.53, 95 %CI 0.36 - 0.77, Pperm ≤ 0.0001). The protective effect of SNP rs5751909 in the stroke phenotype was successfully replicated in the UK Biobank, SiGN, and ISGC cohorts (P ≤ 0.01). GGT1 polymorphisms showed joint (epistatic) effects on the risk of ischemic stroke, with some known IS-associated GWAS loci (e.g., rs4322086 and rs12646447) investigated in our population. In addition, SNP rs5751909 was found to be strongly associated with a decreased risk of ischemic stroke in non-smokers (OR 0.54 95 %CI 0.39-0.75, Pperm = 0.0002) and non-alcohol abusers (OR 0.43 95 %CI 0.30-0.61, Pperm = 2.0 × 10-6), whereas no protective effects of this SNP against disease risk were observed in smokers and alcohol abusers (Pperm < 0.05). CONCLUSIONS: We propose mechanisms underlying the observed associations between GGT1 polymorphisms and ischemic stroke risk. This pilot study is the first to demonstrate that GGT1 is a novel susceptibility gene for ischemic stroke and provides additional evidence of the genetic contribution to impaired redox homeostasis underlying disease pathogenesis.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Ischemic Stroke , Phenotype , Polymorphism, Single Nucleotide , Protective Factors , gamma-Glutamyltransferase , Humans , Male , Female , Ischemic Stroke/genetics , Ischemic Stroke/prevention & control , Ischemic Stroke/diagnosis , Ischemic Stroke/epidemiology , Middle Aged , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/genetics , Risk Factors , Case-Control Studies , Aged , Non-Smokers , Risk Assessment , Haplotypes , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics
13.
Pharmacogenet Genomics ; 34(5): 139-148, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38465575

ABSTRACT

OBJECTIVES: Given the high prevalence of fast-metabolizing alcohol dehydrogenase-1B*2 (ADH1B*2 ) and inactive aldehyde dehydrogenase-2*2 (ALDH2*2 ) alleles in East Asians, we evaluated how the ADH1B / ALDH2 genotypes and alcohol flushing might affect the development of alcohol dependence (AD). METHODS: We evaluated how the ADH1B / ALDH2 genotypes and self-reported alcohol flushing affected history of drinking events and withdrawal symptoms and ICD-10 criteria in 4116 Japanese AD men. RESULTS: The ADH1B*1/*1 group and ALDH2*1/*1 group were 1-5 years younger than the ADH1B*2 (+) and ALDH2*1/*2 groups, respectively, for all of the ages at onset of habitual drinking, blackouts, daytime drinking, uncontrolled drinking, withdrawal symptoms, and first treatment for AD, and the current age. Blackouts were more common in the ADH1B*1/*1 group and ALDH2*1/*1 group. Daytime drinking, uncontrolled drinking, and withdrawal symptoms, such as hand tremor, sweating, convulsions, and delirium tremens/hallucinations were more common in the ADH1B*1/*1 group. The ADH1B*1/*1 was positively associated with the ICD-10 criteria for 'tolerance' and 'withdrawal symptoms'. The ADH1B*1/*1 group and ALDH2*1/*2 group had a larger ICD-10 score. Never flushing was reported by 91.7% and 35.2% of the ALDH2*1/*1 and ALDH2*1/*2 carriers, respectively. After a 1-2-year delay in the onset of habitual drinking in the former-/current-flushing group, no differences in the ages of the aforementioned drinking milestones were found according to the flushing status. CONCLUSION: The ADH1B*1/*1 and ALDH2*1/*1 accelerated the development of drinking events and withdrawal symptoms in Japanese AD patients. ICD-10 score was larger in the ADH1B*1/*1 group and ALDH2*1/*2 group. The effects of alcohol flushing on drinking events were limited.


Subject(s)
Alcohol Dehydrogenase , Alcoholism , Aldehyde Dehydrogenase, Mitochondrial , Aldehyde Dehydrogenase , Flushing , Genotype , Substance Withdrawal Syndrome , Humans , Alcohol Dehydrogenase/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics , Male , Alcoholism/genetics , Adult , Substance Withdrawal Syndrome/genetics , Flushing/genetics , Flushing/chemically induced , Middle Aged , Aldehyde Dehydrogenase/genetics , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Asian People/genetics , Japan/epidemiology , International Classification of Diseases , East Asian People
14.
Addiction ; 119(7): 1226-1237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523595

ABSTRACT

BACKGROUND AND AIMS: Whether alcohol-related DNA methylation has a causal effect on psychiatric disorders has not been investigated. Furthermore, a comprehensive investigation into the causal relationship and underlying mechanisms linking alcohol consumption and psychiatric disorders has been lacking. This study aimed to evaluate the causal effect of general alcohol intake and pathological drinking behaviors on psychiatric disorders, alcohol-associated DNA methylation on gene expression and psychiatric disorders, and gene expression on psychiatric disorders. DESIGN: Two-sample design Mendelian randomization (MR) analysis. Various sensitivity and validation analyses, including colocalization analysis, were conducted to test the robustness of the results. SETTING: Genome-wide association study (GWAS) data mainly from GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), Genetics of DNA Methylation Consortium (GoDMC) and Psychiatric Genomics Consortium (PGC) with European ancestry. PARTICIPANTS: The GWAS summary data on general alcohol intake (drinks per week, n = 941 280), pathological drinking behaviors (including alcohol use disorder [AUD, n = 313 959] and problematic alcohol use [PAU, n = 435 563]) and psychiatric disorders (including schizophrenia, major depressive disorder and bipolar disorder, n = 51 710-500 199) were included. Alcohol-related DNA methylation CpG sites (n = 9643) and mQTL data from blood (n = 27 750) and brain (n = 1160), BrainMeta v2 and GTEx V8 eQTL summary data (n = 73-2865) were also included. MEASUREMENTS: Genetic variants were selected as instrumental variables for exposures, including drinks per week, AUD, PAU, alcohol-related DNA methylation CpG sites (mQTL) and genes selected (eQTL). FINDINGS: Pathological drinking behaviors were associated with an increased risk of psychiatric disorders after removing outliers or controlling for alcohol consumption. MR analysis identified 10 alcohol-related CpG sites with colocalization evidence that were causally associated with psychiatric disorders (P = 1.65 × 10-4-7.52 × 10-22). Furthermore, the expression of genes (RERE, PTK6, GATAD2B, COG8, PDF and GAS5) mapped to these CpG sites in the brain, led by the cortex, were significantly associated with psychiatric disorders (P = 1.19 × 10-2-3.51 × 10-7). CONCLUSIONS: Pathological drinking behavior and alcohol-related DNA methylation appear to have a causal effect on psychiatric disorders. The expression of genes regulated by the alcohol-related DNA methylation sites may underpin this association.


Subject(s)
Alcohol Drinking , DNA Methylation , Genome-Wide Association Study , Mendelian Randomization Analysis , Mental Disorders , Humans , DNA Methylation/genetics , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology , Mental Disorders/genetics , Mental Disorders/epidemiology , Schizophrenia/genetics , Alcoholism/genetics , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Causality , Gene Expression , Multiomics
15.
Alcohol ; 117: 27-41, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508286

ABSTRACT

While DNA serves as the fundamental genetic blueprint for an organism, it is not a static entity. Gene expression, the process by which genetic information is utilized to create functional products like proteins, can be modulated by a diverse range of environmental factors. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNAs, play a pivotal role in mediating the intricate interplay between the environment and gene expression. Intriguingly, alterations in the epigenome have the potential to be inherited across generations. Alcohol use disorder (AUD) poses significant health issues worldwide. Alcohol has the capability to induce changes in the epigenome, which can be inherited by offspring, thus impacting them even in the absence of direct alcohol exposure. This review delves into the impact of alcohol on the epigenome, examining how its effects vary based on factors such as the age of exposure (adolescence or adulthood), the duration of exposure (chronic or acute), and the specific sample collected (brain, blood, or sperm). The literature underscores that alcohol exposure can elicit diverse effects on the epigenome during different life stages. Furthermore, compelling evidence from human and animal studies demonstrates that alcohol induces alterations in epigenome content, affecting both the brain and blood. Notably, rodent studies suggest that these epigenetic changes can result in lasting phenotype alterations that extend across at least two generations. In conclusion, the comprehensive literature analysis supports the notion that alcohol exposure induces lasting epigenetic alterations, influencing the behavior and health of future generations. This knowledge emphasizes the significance of addressing the potential transgenerational effects of alcohol and highlights the importance of preventive measures to minimize the adverse impact on offspring.


Subject(s)
Alcoholism , Epigenome , Animals , Female , Humans , Male , Alcohol Drinking/genetics , Alcohol Drinking/adverse effects , Alcoholism/genetics , Brain/drug effects , Brain/metabolism , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Epigenome/drug effects , Ethanol/pharmacology , MicroRNAs/genetics
16.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38423790

ABSTRACT

Problematic alcohol consumption is associated with deficits in decision-making and alterations in prefrontal cortex neural activity likely contribute. We hypothesized that the differences in cognitive control would be evident between male Wistars and a model of genetic risk: alcohol-preferring P rats. Cognitive control is split into proactive and reactive components. Proactive control maintains goal-directed behavior independent of a stimulus, whereas reactive control elicits goal-directed behavior at the time of a stimulus. We hypothesized that Wistars would show proactive control over alcohol seeking whereas P rats would show reactive control over alcohol seeking. Neural activity was recorded from the prefrontal cortex during an alcohol seeking task with two session types. On congruent sessions, the conditioned stimulus (CS+) was on the same side as alcohol access. Incongruent sessions presented alcohol opposite the CS+. Wistars, but not P rats, made more incorrect approaches during incongruent sessions, suggesting that Wistars utilized the previously learned rule. This motivated the hypothesis that neural activity reflecting proactive control would be observable in Wistars but not P rats. While P rats showed differences in neural activity at times of alcohol access, Wistars showed differences prior to approaching the sipper. These results support our hypothesis that Wistars are more likely to engage in proactive cognitive control strategies whereas P rats are more likely to engage in reactive cognitive control strategies. Although P rats were bred to prefer alcohol, the differences in cognitive control may reflect a sequela of behaviors that mirror those in humans at risk for an AUD.


Subject(s)
Alcohol Drinking , Prefrontal Cortex , Humans , Rats , Male , Animals , Rats, Wistar , Alcohol Drinking/genetics , Ethanol , Motivation
17.
Drug Alcohol Depend ; 257: 111120, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38402754

ABSTRACT

BACKGROUND: National survey data suggest Asian Americans (AA) are less likely to consume alcohol and develop AUD than Americans in other groups. However, it is common for AA to be born outside of the US and carry gene variants that alter alcohol metabolism, both of which can lead to lower levels of alcohol involvement. The current study examined differences in alcohol use and AUD between AA and other groups before and after controlling for birth location and gene variants. DESIGN: Past year alcohol measures were examined from adults 18+ (N=22,848) in the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions III before and after controlling for birth location (inside or outside of the US) and gene variants (ALDH2*2 and ADH1B*2/ADH1B*3). Gender gaps in alcohol measures also were assessed. RESULTS: Before adjustments, AA were less likely than White Americans to drink in the previous year (OR=0.50, 95% CI 0.41-0.62), binge (OR=0.68, 95% CI 0.52-0.88), engage in frequent heavy drinking (OR=0.55, 95% CI 0.42-0.73), and reach criteria for AUD (OR=0.71, 95% CI 0.53-0.94). After controlling for birth location and gene variants, AA remained less likely to drink in the past year (OR=0.54, 95% CI 0.41-0.70) but all other differences disappeared. Gender gaps were only observed for AA born outside of the US, highlighting the importance of experience rather than racial category per se. CONCLUSIONS: Findings indicate that heterogeneity among AA leads to spurious generalizations regarding alcohol use and AUD and challenge the model minority myth.


Subject(s)
Alcoholism , Adult , Humans , Alcoholism/epidemiology , Alcoholism/genetics , Asian , Alcohol Drinking/epidemiology , Alcohol Drinking/genetics , Ethanol , Alcohol Dehydrogenase , Aldehyde Dehydrogenase, Mitochondrial , White
18.
Genes Brain Behav ; 23(1): e12886, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38373108

ABSTRACT

Chronic alcohol exposure results in widespread dysregulation of gene expression that contributes to the pathogenesis of Alcohol Use Disorder (AUD). Long noncoding RNAs are key regulators of the transcriptome that we hypothesize coordinate alcohol-induced transcriptome dysregulation and contribute to AUD. Based on RNA-Sequencing data of human prefrontal cortex, basolateral amygdala and nucleus accumbens of AUD versus non-AUD brain, the human LINC01265 and its predicted murine homolog Gm41261 (i.e., TX2) were selected for functional interrogation. We tested the hypothesis that TX2 contributes to ethanol drinking and behavioral responses to ethanol. CRISPR/Cas9 mutagenesis was used to create a TX2 mutant mouse line in which 306 base-pairs were deleted from the locus. RNA analysis revealed that an abnormal TX2 transcript was produced at an unchanged level in mutant animals. Behaviorally, mutant mice had reduced ethanol, gaboxadol and zolpidem-induced loss of the righting response and reduced tolerance to ethanol in both sexes. In addition, a male-specific reduction in two-bottle choice every-other-day ethanol drinking was observed. Male TX2 mutants exhibited evidence of enhanced GABA release and altered GABAA receptor subunit composition in neurons of the nucleus accumbens shell. In C57BL6/J mice, TX2 within the cortex was cytoplasmic and largely present in Rbfox3+ neurons and IBA1+ microglia, but not in Olig2+ oligodendrocytes or in the majority of GFAP+ astrocytes. These data support the hypothesis that TX2 mutagenesis and dysregulation impacts ethanol drinking behavior and ethanol-induced behavioral responses in mice, likely through alterations in the GABAergic system.


Subject(s)
Alcoholism , RNA, Long Noncoding , Humans , Female , Mice , Male , Animals , Ethanol/toxicity , RNA, Long Noncoding/genetics , Alcoholism/genetics , Alcohol Drinking/genetics , Receptors, GABA-A/genetics , Mutation , Mice, Inbred C57BL
19.
Addict Biol ; 29(2): e13365, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380706

ABSTRACT

Sensation seeking is bidirectionally associated with levels of alcohol consumption in both adult and adolescent samples, and shared neurobiological and genetic influences may in part explain these associations. Links between sensation seeking and alcohol use disorder (AUD) may primarily manifest via increased alcohol consumption rather than through direct effects on increasing problems and consequences. Here the overlap among sensation seeking, alcohol consumption, and AUD was examined using multivariate modelling approaches for genome-wide association study (GWAS) summary statistics in conjunction with neurobiologically informed analyses at multiple levels of investigation. Meta-analytic and genomic structural equation modelling (GenomicSEM) approaches were used to conduct GWAS of sensation seeking, alcohol consumption, and AUD. Resulting summary statistics were used in downstream analyses to examine shared brain tissue enrichment of heritability and genome-wide evidence of overlap (e.g., stratified GenomicSEM, RRHO, genetic correlations with neuroimaging phenotypes), and to identify genomic regions likely contributing to observed genetic overlap across traits (e.g., H-MAGMA and LAVA). Across approaches, results supported shared neurogenetic architecture between sensation seeking and alcohol consumption characterised by overlapping enrichment of genes expressed in midbrain and striatal tissues and variants associated with increased cortical surface area. Alcohol consumption and AUD evidenced overlap in relation to variants associated with decreased frontocortical thickness. Finally, genetic mediation models provided evidence of alcohol consumption mediating associations between sensation seeking and AUD. This study extends previous research by examining critical sources of neurogenetic and multi-omic overlap among sensation seeking, alcohol consumption, and AUD which may underlie observed phenotypic associations.


Subject(s)
Alcoholism , Adult , Adolescent , Humans , Alcoholism/genetics , Multiomics , Genome-Wide Association Study , Alcohol Drinking/genetics , Sensation
20.
Forensic Sci Int Genet ; 70: 103022, 2024 May.
Article in English | MEDLINE | ID: mdl-38309257

ABSTRACT

DNA methylation has become a biomarker of great interest in the forensic and clinical fields. In criminal investigations, the study of this epigenetic marker has allowed the development of DNA intelligence tools providing information that can be useful for investigators, such as age prediction. Following a similar trend, when the origin of a sample in a criminal scenario is unknown, the inference of an individual's lifestyle such as tobacco use and alcohol consumption could provide relevant information to help in the identification of DNA donors at the crime scene. At the same time, in the clinical domain, prediction of these trends of consumption could allow the identification of people at risk or better identification of the causes of different pathologies. In the present study, DNA methylation data from the UK AIRWAVE study was used to build two binomial logistic models for the inference of smoking and drinking status. A total of 348 individuals (116 non-smokers, 116 former smokers and 116 smokers) plus a total of 237 individuals (79 non-drinkers, 79 moderate drinkers and 79 drinkers) were used for development of tobacco and alcohol consumption prediction models, respectively. The tobacco prediction model was composed of two CpGs (cg05575921 in AHRR and cg01940273) and the alcohol prediction model three CpGs (cg06690548 in SLC7A11, cg0886875 and cg21294714 in MIR4435-2HG), providing correct classifications of 86.49% and 74.26%, respectively. Validation of the models was performed using leave-one-out cross-validation. Additionally, two independent testing sets were also assessed for tobacco and alcohol consumption. Considering that the consumption of these substances could underlie accelerated epigenetic ageing patterns, the effect of these lifestyles on the prediction of age was evaluated. To do that, a quantile regression model based on previous studies was generated, and the potential effect of tobacco and alcohol consumption with the epigenetic age was assessed. The Wilcoxon test was used to evaluate the residuals generated by the model and no significant differences were observed between the categories analyzed.


Subject(s)
DNA Methylation , Smoking , Humans , Smoking/adverse effects , Alcohol Drinking/genetics , DNA , Habits
SELECTION OF CITATIONS
SEARCH DETAIL
...