ABSTRACT
Ultraviolet-B solar radiation (UV-B) is an environmental signal with biological effects in plant tissues. Recent investigations have assigned a protective role of volatile organic compounds (VOCs) in plant tissues submitted to biotic and abiotic stresses. This study investigated VOCs in berries at three developmental stages (veraison, pre-harvest and harvest) of Vitis vinifera L. cv. Malbec exposed (or not) to UV-B both, in in vitro and field experiments. By Head Space-Solid Phase Micro Extraction-Gas Chromatography-Electron Impact Mass Spectrometry (HS-SPME-GC-EIMS) analysis, 10 VOCs were identified at all developmental stages: four monoterpenes, three aldehydes, two alcohols and one ketone. Monoterpenes increased at pre-harvest and in response to UV-B in both, in vitro and field conditions. UV-B also augmented levels of some aldehydes, alcohols and ketones. These results along with others from the literature suggest that UV-B induce grape berries to produce VOCs (mainly monoterpenes) that protect the tissues from UV-B itself and other abiotic and biotic stresses, and could affect the wine flavor. Higher emission of monoterpenes was observed in the field experiments as compared in vitro, suggesting the UV-B/PAR ratio is not a signal in itself.
Subject(s)
Monoterpenes/analysis , Ultraviolet Rays , Vitis/chemistry , Vitis/radiation effects , Volatile Organic Compounds/analysis , Alcohols/analysis , Alcohols/radiation effects , Aldehydes/analysis , Aldehydes/radiation effects , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Ketones/analysis , Ketones/radiation effects , Molecular Structure , Monoterpenes/radiation effects , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purificationABSTRACT
The formation and 2-amino alcohol catalyzed addition of arylzinc reagents from and with boronic acids, respectively, is drastically accelerated to a few minutes under microwave irradiation without loss of enantioselectivity (up to 98% ee). Of the amino acid derived catalysts tested, the conformationally restricted bulky substituted aziridine-2-methanols derived from serine show the best overall performance in the formation of diarylmethanols.