Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
Int J Biol Sci ; 20(7): 2763-2778, 2024.
Article in English | MEDLINE | ID: mdl-38725845

ABSTRACT

Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting ß-catenin/TGF-ß1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Humans , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Male , Mice , Multiomics
2.
J Diabetes Investig ; 15(6): 684-692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713732

ABSTRACT

AIMS: The aim of this study was to better understand how the chemotherapy drug doxorubicin contributes to the development of ß-cell dysfunction and to explore its relationship with mitochondrial aldehyde dehydrogenase-2 (ALDH2). MATERIALS AND METHODS: In order to investigate this hypothesis, doxorubicin was administered to INS-1 cells, a rat insulinoma cell line, either with or without several target protein activators and inhibitors. ALDH2 activity was detected with a commercial kit and protein levels were determined with western blot. Mitochondrial ROS, membrane potential, and lipid ROS were determined by commercial fluorescent probes. The cell viability was measured by CCK-assay. RESULTS: Exposure of INS-1 cells to doxorubicin decreased active insulin signaling resulting in elevated ALDH2 degradation, compared with control cells by the induction of acid sphingomyelinase mediated ceramide induction. Further, ceramide induction potentiated doxorubicin induced mitochondrial dysfunction. Treatment with the ALDH2 agonist, ALDA1, blocked doxorubicin-induced acid sphingomyelinase activation which significantly blocked ceramide induction and mitochondrial dysfunction mediated cell death. Treatment with the ALDH2 agonist, ALDA1, stimulated casein kinase-2 (CK2) mediated insulin signaling activation. CK2 silencing neutralized the function of ALDH2 in the doxorubicin treated INS-1 cells. CONCLUSIONS: Mitochondrial ALDH2 activation could inhibit the progression of doxorubicin induced pancreatic ß-cell dysfunction by inhibiting the acid sphingomyelinase induction of ceramide, by regulating the activation of CK2 signaling. Our research lays the foundation of ALDH2 activation as a therapeutic target for the precise treatment of chemotherapy drug induced ß-cell dysfunction.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Apoptosis , Casein Kinase II , Cell Survival , Doxorubicin , Insulin-Secreting Cells , Mitochondria , Signal Transduction , Doxorubicin/pharmacology , Rats , Animals , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Apoptosis/drug effects , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Cell Survival/drug effects , Casein Kinase II/metabolism , Casein Kinase II/antagonists & inhibitors , Cell Line, Tumor , Ceramides/metabolism , Reactive Oxygen Species/metabolism , Antibiotics, Antineoplastic/pharmacology
3.
J Am Chem Soc ; 146(22): 15155-15166, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775806

ABSTRACT

Fructose-1,6-bisphosphate (FBP), a cellular endogenous sugar metabolite in the glycolytic pathway, has recently been reported to act as a signaling molecule to regulate various cellular events through the engagement of important proteins. Though tremendous progress has been made in identifying specific FBP-protein interactions, the comprehensive identification of FBP-interacting proteins and their regulatory mechanisms remains largely unexplored. Here, we describe a concise synthetic approach for the scalable preparation of a photoaffinity FBP probe that enables the quantitative chemoproteomic profiling of FBP-protein interactions based on photoaffinity labeling (PAL) directly in living cells. Using such a protocol, we captured known FBP targets including PKM2 and MDH2. Furthermore, among unknown FBP-interacting proteins, we identified a mitochondrial metabolic enzyme aldehyde dehydrogenase 2 (ALDH2), against which FBP showed inhibitory activity and resulted in cellular ROS upregulation accompanied by mitochondrial fragmentation. Our findings disclosed a new mode of glucose signaling mediating by the FBP-ALDH2-ROS axis.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Fructosediphosphates , Proteomics , Humans , Fructosediphosphates/metabolism , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Signal Transduction , Reactive Oxygen Species/metabolism , Mitochondria/metabolism
4.
Comput Biol Med ; 173: 108396, 2024 May.
Article in English | MEDLINE | ID: mdl-38574529

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive malignancy characterized by challenges in treatment, including drug resistance and frequent relapse. Recent research highlights the crucial roles of tumor microenvironment (TME) in assisting tumor cell immune escape and promoting tumor aggressiveness. This study delves into the interplay between AML and TME. Through the exploration of potential driver genes, we constructed an AML prognostic index (AMLPI). Cross-platform data and multi-dimensional internal and external validations confirmed that the AMLPI outperforms existing models in terms of areas under the receiver operating characteristic curves, concordance index values, and net benefits. High AMLPIs in AML patients were indicative of unfavorable prognostic outcomes. Immune analyses revealed that the high-AMLPI samples exhibit higher expression of HLA-family genes and immune checkpoint genes (including PD1 and CTLA4), along with lower T cell infiltration and higher macrophage infiltration. Genetic variation analyses revealed that the high-AMLPI samples associate with adverse variation events, including TP53 mutations, secondary NPM1 co-mutations, and copy number deletions. Biological interpretation indicated that ALDH2 and SPATS2L contribute significantly to AML patient survival, and their abnormal expression correlates with DNA methylation at cg12142865 and cg11912272. Drug response analyses revealed that different AMLPI samples tend to have different clinical selections, with low-AMLPI samples being more likely to benefit from immunotherapy. Finally, to facilitate broader access to our findings, a user-friendly and publicly accessible webserver was established and available at http://bioinfor.imu.edu.cn/amlpi. This server provides tools including TME-related AML driver genes mining, AMLPI construction, multi-dimensional validations, AML patients risk assessment, and figures drawing.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , DNA Methylation , Tumor Microenvironment , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism
5.
Medicine (Baltimore) ; 103(16): e37820, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640328

ABSTRACT

Aldehyde dehydrogenase 2 (ALDH2) plays a critical role in safeguarding cells against acetaldehyde toxicity and is closely linked to human metabolism. Nevertheless, the involvement of ALDH2 in cancer remains enigmatic. This investigation seeks to comprehensively assess ALDH2's significance in pan-cancer. We conducted an all-encompassing analysis of pan-cancer utilizing multiple databases, including TCGA, linkedomicshs, UALCAN, and Kaplan-Meier plotter. We employed diverse algorithms such as EPIC, MCPCOUNTER, TIDTIMER, xCell, MCP-counter, CIBERSORT, quanTIseq, and EPIC to examine the connection between ALDH2 expression and immune cell infiltration. Single-cell sequencing analysis furnished insights into ALDH2's functional status in pan-cancer. Immunohistochemical staining was performed to validate ALDH2 expression in cancer tissues. In a comprehensive assessment, we observed that tumor tissues demonstrated diminished ALDH2 expression levels compared to normal tissues across 16 different cancer types. ALDH2 expression exhibited a significant positive correlation with the infiltration of immune cells, including CD4 + T cells, CD8 + T cells, neutrophils, B cells, and macrophages, in various tumor types. Moreover, this study explored the association between ALDH2 and patient survival, examined the methylation patterns of ALDH2 in normal and primary tumor tissues, and delved into genetic variations and mutations of ALDH2 in tumors. The findings suggest that ALDH2 could serve as a valuable prognostic biomarker in pan-cancer, closely linked to the tumor's immune microenvironment.


Subject(s)
Acetaldehyde , Aldehyde Dehydrogenase, Mitochondrial , Neoplasms , Humans , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/immunology , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Algorithms , Biomarkers , Neoplasms/genetics , Prognosis , Tumor Microenvironment/immunology
6.
Eur Heart J ; 45(18): 1662-1680, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38666340

ABSTRACT

BACKGROUND AND AIMS: The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS: The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS: Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS: ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Extracellular Traps , Leukotriene C4 , Mice, Knockout , Myocardial Reperfusion Injury , Protein-Arginine Deiminase Type 4 , Animals , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Extracellular Traps/metabolism , Humans , Mice , Protein-Arginine Deiminase Type 4/metabolism , Leukotriene C4/metabolism , Male , Disease Models, Animal , Neutrophils/metabolism , Leukotriene Antagonists/pharmacology , Leukotriene Antagonists/therapeutic use , Female , ST Elevation Myocardial Infarction/metabolism , Middle Aged , Benzamides , Benzodioxoles
7.
Cell Mol Immunol ; 21(5): 510-526, 2024 May.
Article in English | MEDLINE | ID: mdl-38472357

ABSTRACT

Acetaldehyde dehydrogenase 2 (ALDH2) mutations are commonly found in a subgroup of the Asian population. However, the role of ALDH2 in septic acute respiratory distress syndrome (ARDS) remains unknown. Here, we showed that human subjects carrying the ALDH2rs671 mutation were highly susceptible to developing septic ARDS. Intriguingly, ALDH2rs671-ARDS patients showed higher levels of blood cell-free DNA (cfDNA) and myeloperoxidase (MPO)-DNA than ALDH2WT-ARDS patients. To investigate the mechanisms underlying ALDH2 deficiency in the development of septic ARDS, we utilized Aldh2 gene knockout mice and Aldh2rs671 gene knock-in mice. In clinically relevant mouse sepsis models, Aldh2-/- mice and Aldh2rs671 mice exhibited pulmonary and circulating NETosis, a specific process that releases neutrophil extracellular traps (NETs) from neutrophils. Furthermore, we discovered that NETosis strongly promoted endothelial destruction, accelerated vascular leakage, and exacerbated septic ARDS. At the molecular level, ALDH2 increased K48-linked polyubiquitination and degradation of peptidylarginine deiminase 4 (PAD4) to inhibit NETosis, which was achieved by promoting PAD4 binding to the E3 ubiquitin ligase CHIP. Pharmacological administration of the ALDH2-specific activator Alda-1 substantially alleviated septic ARDS by inhibiting NETosis. Together, our data reveal a novel ALDH2-based protective mechanism against septic ARDS, and the activation of ALDH2 may be an effective treatment strategy for sepsis.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Extracellular Traps , Mice, Knockout , Neutrophils , Respiratory Distress Syndrome , Sepsis , Animals , Sepsis/complications , Humans , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/pathology , Mice , Extracellular Traps/metabolism , Male , Disease Models, Animal , Protein-Arginine Deiminase Type 4/metabolism , Mice, Inbred C57BL , Ubiquitination , Female , Peroxidase/metabolism , Mutation
8.
SLAS Discov ; 29(3): 100154, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521503

ABSTRACT

Sorafenib is a multikinase inhibitor indicated for first-line treatment of unresectable hepatocellular carcinoma. Despite its widespread use in the clinic, the existing knowledge of sorafenib mode-of-action remains incomplete. To build upon the current understanding, we used the Cellular Thermal Shift Assay (CETSA) coupled to Mass Spectrometry (CETSA-MS) to monitor compound binding to its target proteins in the cellular context on a proteome-wide scale. Among the potential sorafenib targets, we identified aldehyde dehydrogenase 2 (ALDH2), an enzyme that plays a major role in alcohol metabolism. We validated the interaction of sorafenib with ALDH2 by orthogonal methods using pure recombinant protein, proving that this interaction is not mediated by other cellular components. Moreover, we showed that sorafenib inhibits ALDH2 activity, supporting a functional role for this interaction. Finally, we were able to demonstrate that both ALDH2 protein expression and activity were reduced in sorafenib-resistant cells compared to the parental cell line. Overall, our study allowed the identification of ALDH2 as a novel sorafenib target and sheds light on its potential role in both hepatocellular carcinoma and sorafenib resistance condition.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , Proteome , Sorafenib , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Protein Binding/drug effects
9.
Circulation ; 149(22): 1752-1769, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38348663

ABSTRACT

BACKGROUND: Vascular calcification, which is characterized by calcium deposition in arterial walls and the osteochondrogenic differentiation of vascular smooth muscle cells, is an actively regulated process that involves complex mechanisms. Vascular calcification is associated with increased cardiovascular adverse events. The role of 4-hydroxynonenal (4-HNE), which is the most abundant stable product of lipid peroxidation, in vascular calcification has been poorly investigated. METHODS: Serum was collected from patients with chronic kidney disease and controls, and the levels of 4-HNE and 8-iso-prostaglandin F2α were measured. Sections of coronary atherosclerotic plaques from donors were immunostained to analyze calcium deposition and 4-HNE. A total of 658 patients with coronary artery disease who received coronary computed tomography angiography were recruited to analyze the relationship between coronary calcification and the rs671 mutation in aldehyde dehydrogenase 2 (ALDH2). ALDH2 knockout (ALDH2-/-) mice, smooth muscle cell-specific ALDH2 knockout mice, ALDH2 transgenic mice, and their controls were used to establish vascular calcification models. Primary mouse aortic smooth muscle cells and human aortic smooth muscle cells were exposed to medium containing ß-glycerophosphate and CaCl2 to investigate cell calcification and the underlying molecular mechanisms. RESULTS: Elevated 4-HNE levels were observed in the serum of patients with chronic kidney disease and model mice and were detected in calcified artery sections by immunostaining. ALDH2 knockout or smooth muscle cell-specific ALDH2 knockout accelerated the development of vascular calcification in model mice, whereas overexpression or activation prevented mouse vascular calcification and the osteochondrogenic differentiation of vascular smooth muscle cells. In patients with coronary artery disease, patients with ALDH2 rs671 gene mutation developed more severe coronary calcification. 4-HNE promoted calcification of both mouse aortic smooth muscle cells and human aortic smooth muscle cells and their osteochondrogenic differentiation in vitro. 4-HNE increased the level of Runx2 (runt-related transcription factor-2), and the effect of 4-HNE on promoting vascular smooth muscle cell calcification was ablated when Runx2 was knocked down. Mutation of Runx2 at lysine 176 reduced its carbonylation and eliminated the 4-HNE-induced upregulation of Runx2. CONCLUSIONS: Our results suggest that 4-HNE increases Runx2 stabilization by directly carbonylating its K176 site and promotes vascular calcification. ALDH2 might be a potential target for the treatment of vascular calcification.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Aldehydes , Core Binding Factor Alpha 1 Subunit , Mice, Knockout , Myocytes, Smooth Muscle , Vascular Calcification , Animals , Aldehydes/metabolism , Vascular Calcification/metabolism , Vascular Calcification/genetics , Vascular Calcification/pathology , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Female , Middle Aged , Coronary Artery Disease/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Cells, Cultured , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Aged
10.
Circ Res ; 134(4): 425-441, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38299365

ABSTRACT

BACKGROUND: Human cardiac long noncoding RNA (lncRNA) profiles in patients with dilated cardiomyopathy (DCM) were previously analyzed, and the long noncoding RNA CHKB (choline kinase beta) divergent transcript (CHKB-DT) levels were found to be mostly downregulated in the heart. In this study, the function of CHKB-DT in DCM was determined. METHODS: Long noncoding RNA expression levels in the human heart tissues were measured via quantitative reverse transcription-polymerase chain reaction and in situ hybridization assays. A CHKB-DT heterozygous or homozygous knockout mouse model was generated using the clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 system, and the adeno-associated virus with a cardiac-specific promoter was used to deliver the RNA in vivo. Sarcomere shortening was performed to assess the primary cardiomyocyte contractility. The Seahorse XF cell mitochondrial stress test was performed to determine the energy metabolism and ATP production. Furthermore, the underlying mechanisms were explored using quantitative proteomics, ribosome profiling, RNA antisense purification assays, mass spectrometry, RNA pull-down, luciferase assay, RNA-fluorescence in situ hybridization, and Western blotting. RESULTS: CHKB-DT levels were remarkably decreased in patients with DCM and mice with transverse aortic constriction-induced heart failure. Heterozygous knockout of CHKB-DT in cardiomyocytes caused cardiac dilation and dysfunction and reduced the contractility of primary cardiomyocytes. Moreover, CHKB-DT heterozygous knockout impaired mitochondrial function and decreased ATP production as well as cardiac energy metabolism. Mechanistically, ALDH2 (aldehyde dehydrogenase 2) was a direct target of CHKB-DT. CHKB-DT physically interacted with the mRNA of ALDH2 and fused in sarcoma (FUS) through the GGUG motif. CHKB-DT knockdown aggravated ALDH2 mRNA degradation and 4-HNE (4-hydroxy-2-nonenal) production, whereas overexpression of CHKB-DT reversed these molecular changes. Furthermore, restoring ALDH2 expression in CHKB-DT+/- mice alleviated cardiac dilation and dysfunction. CONCLUSIONS: CHKB-DT is significantly downregulated in DCM. CHKB-DT acts as an energy metabolism-associated long noncoding RNA and represents a promising therapeutic target against DCM.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Cardiomyopathy, Dilated , RNA, Long Noncoding , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Down-Regulation , In Situ Hybridization, Fluorescence , Mice, Knockout , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
11.
Int J Mol Sci ; 25(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396862

ABSTRACT

Atrial fibrillation (AF), characterized by structural remodeling involving atrial myocardial degradation and fibrosis, is linked with obesity and transforming growth factor beta 1 (TGF-ß1). Aldehyde dehydrogenase 2 (ALDH2) deficiency, highly prevalent in East Asian people, is paradoxically associated with a lower AF risk. This study investigated the impact of ALDH2 deficiency on diet-induced obesity and AF vulnerability in mice, exploring potential compensatory upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1). Wild-type (WT) and ALDH2*2 knock-in (KI) mice were administered a high-fat diet (HFD) for 16 weeks. Despite heightened levels of reactive oxygen species (ROS) post HFD, the ALDH2*2 KI mice did not exhibit a greater propensity for AF compared to the WT controls. The ALDH2*2 KI mice showed equivalent myofibril degradation in cardiomyocytes compared to WT after chronic HFD consumption, indicating suppressed ALDH2 production in the WT mice. Atrial fibrosis did not proportionally increase with TGF-ß1 expression in ALDH2*2 KI mice, suggesting compensatory upregulation of the Nrf2 and HO-1 pathway, attenuating fibrosis. In summary, ALDH2 deficiency did not heighten AF susceptibility in obesity, highlighting Nrf2/HO-1 pathway activation as an adaptive mechanism. Despite limitations, these findings reveal a complex molecular interplay, providing insights into the paradoxical AF-ALDH2 relationship in the setting of obesity.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Atrial Fibrillation , Animals , Mice , Aldehyde Dehydrogenase , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Atrial Fibrillation/genetics , Atrial Fibrillation/complications , Fibrosis , NF-E2-Related Factor 2 , Obesity/complications , Obesity/genetics , Transforming Growth Factor beta1/genetics
12.
Transl Res ; 267: 25-38, 2024 May.
Article in English | MEDLINE | ID: mdl-38181846

ABSTRACT

High-altitude heart disease (HAHD) is a complex pathophysiological condition related to systemic hypobaric hypoxia in response to transitioning to high altitude. Hypoxia can cause myocardial metabolic dysregulation, leading to an increased risk of heart failure and sudden cardiac death. Aldehyde dehydrogenase 2 (ALDH2) could regulate myocardial energy metabolism and plays a protective role in various cardiovascular diseases. This study aims to determine the effects of plateau hypoxia (PH) on cardiac metabolism and function, investigate the associated role of ALDH2, and explore potential therapeutic targets. We discovered that PH significantly reduced survival rate and cardiac function. These effects were exacerbated by ALDH2 deficiency. PH also caused a shift in the myocardial fuel source from fatty acids to glucose; ALDH2 deficiency impaired this adaptive metabolic shift. Untargeted/targeted metabolomics and transmission electron microscopy revealed that ALDH2 deficiency promoted myocardial fatty-acid deposition, leading to enhanced fatty-acid transport, lipotoxicity and mitochondrial dysfunction. Furthermore, results showed that ALDH2 attenuated PH-induced impairment of adaptive metabolic programs through 4-HNE/CPT1 signaling, and the CPT1 inhibitor etomoxir significantly ameliorated ALDH2 deficiency-induced cardiac impairment and improved survival in PH mice. Together, our data reveal ALDH2 acts as a key cardiometabolic adaptation regulator in response to PH. CPT1 inhibitor, etomoxir, may attenuate ALDH2 deficiency-induced effects and improved cardiac function in response to PH.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Hypoxia , Animals , Mice , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Epoxy Compounds , Heart Failure
13.
Toxicol Appl Pharmacol ; 483: 116801, 2024 02.
Article in English | MEDLINE | ID: mdl-38181938

ABSTRACT

OBJECTIVES: Retinoic acid plays diverse physiological and pathophysiological roles in reproduction, immune function, energy metabolism and carcinogenesis. Because of the potential benefits of inhibiting retinoic acid biosynthesis in certain disease states, efforts are underway to develop inhibitors of retinoic acid biosynthesis via inhibition of the aldehyde dehydrogenase-1 A (ALDH1A) family of enzymes. However, many potential ALDH1A inhibitors also inhibit the related ALDH2 enzyme that plays a role in the metabolism of ethanol. Accurate in vitro assessment of ALDH2 inhibition is problematic, and to date, there are no published in vivo assays to determine inhibition of ALDH2 by candidate ALDH1A inhibitors. STUDY DESIGN: To address this, we developed a novel gas-chromatography-mass-spectrometry ethanol clearance assay in mice using orally administered ethanol and serial measurement of ethanol over time. We then used this assay to determine pharmacological inhibition of ALDH2 by candidate ALDH1A inhibitors. RESULTS: Ethanol clearance in untreated male mice occurs within sixty minutes. Male mice treated with WIN 18,446, a known ALDH1A inhibitor that also inhibits ALDH2, demonstrated significant inhibition of ethanol clearance compared to untreated controls. Novel pyrazole and piperazine ALDH1A inhibitors were then tested with the piperazine inhibitor demonstrating ALDH2 inhibition via impaired ethanol clearance while the pyrazole inhibitor did not interfere with ethanol metabolism, suggesting a lack of ALDH2 inhibition. CONCLUSIONS: Inhibition of ethanol clearance is a useful in vivo method of inferring pharmacologic inhibition of hepatic ALDH2. This assay may be useful in the development of novel ALDH1A specific inhibitors for a variety of therapeutic indications.


Subject(s)
Ethanol , Tretinoin , Mice , Male , Animals , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Pyrazoles/pharmacology , Piperazines
14.
J Cardiovasc Transl Res ; 17(1): 169-182, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36745288

ABSTRACT

Remote ischemic conditioning (RIC) can be effectively applied for cardio-protection. Here, to clarify whether RIC exerts myocardial protection via aldehyde dehydrogenase 2 (ALDH2), we established a myocardial ischemia/reperfusion (I/R) model in C57BL/6 and ALDH2 knockout (ALDH2-KO) mice and treated them with RIC. Echocardiography and single-cell contraction experiments showed that RIC significantly improved myocardial function and alleviated I/R injury in C57BL/6 mice but did not exhibit its cardioprotective effects in ALDH2-KO mice. TUNEL, Evan's blue/triphenyl tetrazolium chloride, and reactive oxygen species (ROS) assays showed that RIC's effect on reducing myocardial cell apoptosis, myocardial infarction area, and ROS levels was insignificant in ALDH2-KO mice. Our results showed that RIC could increase ALDH2 protein levels, activate sirtuin 3 (SIRT3)/hypoxia-inducible factor 1-alpha (HIF1α), inhibit autophagy, and exert myocardial protection. This study revealed that RIC could exert myocardial protection via the ALDH2/SIRT3/HIF1α signaling pathway by reducing 4-HNE secretion.


Subject(s)
Myocardial Reperfusion Injury , Sirtuin 3 , Mice , Animals , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Signal Transduction , Autophagy
15.
J Cardiovasc Pharmacol ; 83(1): 93-104, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37816196

ABSTRACT

ABSTRACT: Aldehyde dehydrogenase 2 (ALDH2) protects the ischemic heart by activating adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling. However, the molecular mechanisms linking ALDH2 and AMPK signaling are not fully understood. This study aimed to explore the potential mechanisms linking ALDH2 and AMPK in myocardial ischemic injury. An ischemic model was established by ligating the left anterior descending coronary artery in rats. The overexpression or knockdown of ALDH2 in H9c2 cells treated with oxygen-glucose deprivation was obtained through lentivirus infection. Transferase-mediated dUTP nick-end labeling was used to evaluate apoptosis in an ischemic rat model and oxygen-glucose deprivation cells. ALDH2 activity, mitochondrial oxidative stress markers, adenosine triphosphate, respiratory control ratio, and cell viability in H9c2 cells were evaluated using a biological kit and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. Protein expression of ALDH2 , 4-hydroxynonenal, thioredoxin-1 (Trx-1), and AMPK-proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling pathway was detected through Western blotting. ALDH2 activation reduced ischemic-induced myocardial infarct size and apoptosis. ALDH2 protected mitochondrial function by enhancing mitochondrial respiratory control ratio and adenosine triphosphate production, alleviated mitochondrial oxidative stress, and suppressed myocardial apoptosis. Moreover, ALDH2 attenuated ischemia-induced oxidative stress and maintained Trx-1 levels by reducing 4-hydroxynonenal, thereby promoting AMPK-PGC-1α signaling activation. Inhibiting Trx-1 or AMPK abolished the cardioprotective effect of ALDH2 on ischemia. ALDH2 alleviates myocardial injury through increased mitochondrial biogenesis and reduced oxidative stress, and these effects were achieved through Trx1-mediating AMPK-PGC1-α signaling activation.


Subject(s)
AMP-Activated Protein Kinases , Myocardial Infarction , Animals , Rats , Adenosine Triphosphate/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/pharmacology , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Mitochondria , Myocardial Infarction/metabolism , Myocytes, Cardiac , Oxidation-Reduction , Oxygen/metabolism , Oxygen/pharmacology , AMP-Activated Protein Kinase Kinases/metabolism
16.
Redox Biol ; 69: 102994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128451

ABSTRACT

Progression of ß-cell loss in diabetes mellitus is significantly influenced by persistent hyperglycemia. At the cellular level, a number of signaling cascades affect the expression of apoptotic genes, ultimately resulting in ß-cell failure; these cascades have not been elucidated. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays a central role in the detoxification of reactive aldehydes generated from endogenous and exogenous sources and protects against mitochondrial deterioration in cells. Here we report that under diabetogenic conditions, ALDH2 is strongly inactivated in ß-cells through CDK5-dependent glutathione antioxidant imbalance by glucose-6-phosphate dehydrogenase (G6PD) degradation. Intriguingly, CDK5 inhibition strengthens mitochondrial antioxidant defense through ALDH2 activation. Mitochondrial ALDH2 activation selectively preserves ß-cells against high-glucose-induced dysfunction by activating AMPK and Hydrogen Sulfide (H2S) signaling. This is associated with the stabilization and enhancement of the activity of G6PD by SIRT2, a cytoplasmic NAD+-dependent deacetylase, and is thereby linked to an elevation in the GSH/GSSG ratio, which leads to the inhibition of mitochondrial dysfunction under high-glucose conditions. Furthermore, treatment with NaHS, an H2S donor, selectively preserves ß-cell function by promoting ALDH2 activity, leading to the inhibition of lipid peroxidation by high-glucose concentrations. Collectively, our results provide the first direct evidence that ALDH2 activation enhances H2S-AMPK-G6PD signaling, leading to improved ß-cell function and survival under high-glucose conditions via the glutathione redox balance.


Subject(s)
Hydrogen Sulfide , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Hydrogen Sulfide/pharmacology , Antioxidants/pharmacology , Aldehyde Dehydrogenase/genetics , AMP-Activated Protein Kinases/metabolism , Glutathione/metabolism , Glucose/metabolism
17.
Int J Immunopathol Pharmacol ; 37: 3946320231223005, 2023.
Article in English | MEDLINE | ID: mdl-38113877

ABSTRACT

OBJECTIVE: Evidence suggests that aldehyde dehydrogenase 2 (ALDH2) offers protection against damage caused by oxidative stress in diverse rodent models. Nonetheless, the effect of Alda-1, a compound that activates ALDH2, on acute lung injury (ALI) induced by air embolism (AE) remains unclear. The objective of this study was to explore the protective effects of Alda-1 in ALI induced by AE. METHODS: A rat model of in situ isolated perfused lung was established to investigate AE-induced ALI. Air was infused into the pulmonary artery at 0.25 mL/min for 1 minute. Before inducing AE, different doses (10, 20, or 30 mg/kg) of Alda-1 were given through intraperitoneal injection. Pathological changes in lung tissue were assessed using hematoxylin-eosin staining. We performed Western blot analysis to assess the protein levels of ALDH2,4-hydroxy-trans-2-nonenal (4-HNE), Bcl-2, caspase-3, phosphatidylinositol 3-kinase (PI3K), Akt, IκB-α, and nuclear NF-κB. RESULTS: Notably, AE results were demonstrated as harmful to the lungs, which is evidenced by intensified lung edema and disruption of lung tissue structure. Furthermore, AE caused a decrease in ALDH2 expression, increased accumulation of 4-HNE and MDA, infiltration of neutrophils, increased production of inflammatory cytokines, apoptosis, and upregulation of the PI3K/Akt and NF-κB signaling pathways within the lungs. Administration of a 20 mg/kg dose of Alda-1 alleviated the detrimental effects induced by AE. CONCLUSION: Alda-1 shows promise in mitigating AE-induced ALI, possibly through the upregulation of ALDH2 expression and suppression of the PI3K/Akt and NF-κB signaling pathways. Further research is warranted to validate these findings and to explore their translational potential in human subjects.


Subject(s)
Acute Lung Injury , Embolism, Air , Humans , Rats , Animals , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , NF-kappa B , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Lung/metabolism
18.
Clin. transl. oncol. (Print) ; 25(11): 3203-3216, 11 nov. 2023.
Article in English | IBECS | ID: ibc-226844

ABSTRACT

Purpose It is previously reported that aldehyde dehydrogenase 2 family member (ALDH2) shows neuroprotective effects in cerebral ischemia/reperfusion injury. However, whether the protective effects are through mediating the programmed cell death is yet to be fully elucidated. Methods In vitro oxygen–glucose deprivation/reoxygenation (OGD/R) model was established in HT22 cells and mouse cortical neurons. Subsequently, ALDH2 expression were assessed by qRT-PCR and western blot. The methylation status was examined by methylation-specific PCR (MS-PCR). Then, ALDH2 expression was promoted and suppressed to explore the role of ALDH2 in OGD/R-treated cells. CCK-8 assay was applied to detect cell viability, and flow cytometry was applied to evaluate cell apoptosis. Western blot was applied to detect the apoptosis-related proteins (Caspase 3, Bcl-2 and Bax), necroptosis-related proteins (RIP3 and MLKL), pyroptosis-related proteins (NLRP3 and GSDMD), ferroptosis-related protein (ACSL4 and GPX4), and autophagy-related proteins (LC3B, and p62). IL-1β and IL-18 production was evaluated by ELISA assay. Reactive oxygen species production and Fe2+ content were evaluated by the corresponding detection kit. Results In OGD/R-treated cells, ALDH2 expression was decreased, which was due to the hypermethylation of ALDH2 in the promoter region. ALDH2 overexpression improved cell viability and ALDH2 knockdown suppressed cell viability in OGD/R-treated cells. We also found that ALDH2 overexpression attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy, while ALDH2 knockdown facilitated the OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. Conclusions Collectively, our results implied that ALDH2 attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy to promote cell viability in HT22 cells and mouse cortical neurons (AU)


Subject(s)
Animals , Mice , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Glucose/metabolism , Pyroptosis , Apoptosis , Autophagy , Apoptosis Regulatory Proteins/metabolism , Oxygen/metabolism
19.
Adv Sci (Weinh) ; 10(32): e2302231, 2023 11.
Article in English | MEDLINE | ID: mdl-37822152

ABSTRACT

The involvement of endothelial barrier function in abdominal aortic aneurysm (AAA) and its upstream regulators remains unknown. Single-cell RNA sequencing shows that disrupted endothelial focal junction is an early (3 days) and persistent (28 days) event during Angiotensin II (Ang II)-induced AAA progression. Consistently, mRNA sequencing on human aortic dissection tissues confirmed downregulated expression of endothelial barrier-related genes. Aldehyde dehydrogenase 2 (ALDH2), a negative regulator of AAA, is found to be upregulated in the intimal media of AAA samples, leading to testing its role in early-stage AAA. ALDH2 knockdown/knockout specifically in endothelial cells (ECs) significantly increases expression of EC barrier markers related to focal adhesion and tight junction, restores endothelial barrier integrity, and suppresses early aortic dilation of AAA (7 and 14 days post-Ang II). Mechanically, ELK3 acts as an ALDH2 downstream regulator for endothelial barrier function preservation. At the molecular level, ALDH2 directly binds to LIN28B, a regulator of ELK3 mRNA stability, hindering LIN28B binding to ELK3 mRNA, thereby depressing ELK3 expression and impairing endothelial barrier function. Therefore, preserving vascular endothelial barrier integrity via ALDH2-specific knockdown in ECs holds therapeutic potential in the early management of AAAs.


Subject(s)
Aortic Aneurysm, Abdominal , Endothelial Cells , Humans , Endothelial Cells/metabolism , Aortic Aneurysm, Abdominal/genetics , Signal Transduction , RNA, Messenger/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , RNA-Binding Proteins/metabolism
20.
J Cardiovasc Pharmacol ; 82(5): 407-418, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37657070

ABSTRACT

ABSTRACT: Chronic alcohol intake contributes to high mortality rates due to ethanol-induced cardiac hypertrophy and contractile dysfunction, which are accompanied by increased oxidative stress and disrupted mitophagy. Alpha-lipoic acid (α-LA), a well-known antioxidant, has been shown to protect against cardiac hypertrophy and inflammation. However, little is known about its role and mechanism in the treatment of alcoholic cardiomyopathy. Here, we evaluated the role of α-LA in alcohol-induced cardiac damage by feeding mice a 4.8% (v/v) alcohol diet with or without α-LA for 6 w. Our results suggested that chronic alcohol consumption increased mortality, blood alcohol concentrations, and serum aldehyde levels, but a-LA attenuated the elevations in mortality and aldehydes. Chronic alcohol intake also induced cardiac dysfunction, including enlarged left ventricles, reduced left ventricular ejection fraction, enhanced cardiomyocyte size, and increased serum levels of brain natriuretic peptide, lactate dehydrogenase, and creatine kinase myocardial isoenzyme. Moreover, alcohol intake led to the accumulation of collagen fiber and mitochondrial dysfunction, the effects of which were alleviated by α-LA. In addition, α-LA intake also prevented the increase in reactive oxygen species production and the decrease in mitochondrial number that were observed after alcohol consumption. Chronic alcohol exposure activated PINK1/Parkin-mediated mitophagy. These effects were diminished by α-LA intake by the activation of aldehyde dehydrogenase 2. Our data indicated that α-LA helps protect cardiac cells against the effects of chronic alcohol intake, likely by inhibiting PINK1/Parkin-related mitophagy through the activation of aldehyde dehydrogenase 2.


Subject(s)
Alcoholism , Thioctic Acid , Mice , Animals , Thioctic Acid/pharmacology , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Alcoholism/metabolism , Stroke Volume , Ventricular Function, Left , Myocytes, Cardiac , Ethanol/toxicity , Alcohol Drinking/adverse effects , Alcohol Drinking/metabolism , Aldehydes/metabolism , Aldehydes/pharmacology , Protein Kinases/metabolism , Cardiomegaly/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...