Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693105

ABSTRACT

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Subject(s)
Camptothecin/analogs & derivatives , Colonic Neoplasms , Fluorouracil , Neoplastic Stem Cells , Spheroids, Cellular , Thyroid Hormone Receptors alpha , Triiodothyronine , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors alpha/genetics , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Triiodothyronine/pharmacology , Leucovorin/pharmacology , Leucovorin/therapeutic use , Camptothecin/pharmacology , Camptothecin/therapeutic use , Phenotype , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics
2.
Cell Rep Methods ; 4(5): 100778, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38749443

ABSTRACT

Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.


Subject(s)
Adipose Tissue , Ethanol , Hepatocytes , Liver Diseases, Alcoholic , Organoids , Humans , Organoids/pathology , Organoids/drug effects , Ethanol/pharmacology , Ethanol/adverse effects , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/metabolism , Adipose Tissue/pathology , Adipose Tissue/cytology , Alcohol Dehydrogenase/metabolism , Oxidative Stress/drug effects , Liver/pathology , Liver/drug effects , Liver/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology , Models, Biological , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Stromal Cells/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Thioredoxins/metabolism
3.
Theriogenology ; 223: 98-107, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38697014

ABSTRACT

The ALDH1A1 gene encodes a cytoplasmic member of the aldehyde dehydrogenase 1 family, which plays an important role in regulating animal reproductive performance, including estrus cycle and embryonic development. The aim of this study was to characterize ALDH1A1 activity in ovaries of 3-5 year-old yaks and to determine its effects on cell proliferation, apoptosis, and progesterone secretion in luteal cells (LCs). The coding sequence (CDS) of the ALDH1A1 gene was cloned by reverse transcription-PCR and immunohistochemical analysis was used to confirm localization of the ALDH1A1 protein in the ovary. To assess the activity of ALDH1A1 in regulating progesterone secretion, si-ALDH1A1 was transfected into LCs in vitro and progesterone levels in LC supernatants were measured by ELISA. The interference efficiency was assessed by real-time quantitative PCR (RT-qPCR) and immunofluorescence staining, and cell proliferation and apoptosis were evaluated by EdU and TUNEL staining, respectively. The cloned ALDH1A1 sequence contained 1462 bp, encoding 487 amino acids. Immunohistochemical analysis showed that ALDH1A1 protein expression, which was significantly higher in LCs, was mainly found in antral follicles and the corpus luteum (CL). The expression of ALDH1A1 mRNA in LCs was effectively inhibited by si-ALDH1A1transfection, and progesterone secretion was markedly decreased along with the significant down-regulation of progesterone pathway-related genes, STAR, CYP11A1, CYP19A1, CYP17A1, 3ß-HSD, and HSD17B1. Knockdown of ALDH1A1 mRNA expression decreased cell proliferation and increased apoptosis in LCs. The mRNA expression of the proliferation-related genes, PCNA, CCND1, CCNB1 and CDC25A, was significantly down-regulated, while expression of the apoptosis-promoting CASP3 gene was significantly increased. In summary, we characterized the yak ALDH1A1 gene and revealed that ALDH1A1 knockdown promoted apoptosis, repressed cell proliferation, and decreased progesterone secretion by yak LCs, potentially by regulating the mRNA expression of genes related to proliferation, apoptosis, and progesterone synthesis and secretion.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Luteal Cells , Retinal Dehydrogenase , Animals , Female , Cattle/genetics , Luteal Cells/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Apoptosis , Progesterone/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Cell Proliferation , Gene Expression Regulation/physiology
4.
Biochem Pharmacol ; 224: 116252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701866

ABSTRACT

The mitogen-activated protein kinase (MAPK/ERK) pathway is pivotal in controlling the proliferation and survival of melanoma cells. Several mutations, including those in BRAF, exhibit an oncogenic effect leading to increased cellular proliferation. As a result, the combination therapy of a MEK inhibitor with a BRAF inhibitor demonstrated higher efficacy and lower toxicity than BRAF inhibitor alone. This combination has become the preferred standard of care for tumors driven by BRAF mutations. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a known marker of stemness involved in drug resistance in several type of tumors, including melanoma. This study demonstrates that melanoma cells overexpressing ALDH1A1 displayed resistance to vemurafenib and trametinib through the activation of PI3K/AKT signaling instead of MAPK axis. Inhibition of PI3K/AKT signaling partially rescued sensitivity to the drugs. Consistently, pharmacological inhibition of ALDH1A1 activity downregulated the activation of AKT and partially recovered responsiveness to vemurafenib and trametinib. We propose ALDH1A1 as a new potential target for treating melanoma resistant to MAPK/ERK inhibitors.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Drug Resistance, Neoplasm , Melanoma , Neoplastic Stem Cells , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Retinal Dehydrogenase , Humans , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Cell Line, Tumor , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Retinal Dehydrogenase/metabolism , Protein Kinase Inhibitors/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Pyrimidinones/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Pyridones/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Vemurafenib/pharmacology , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/genetics , Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Phenotype
5.
Sci Rep ; 14(1): 10583, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719848

ABSTRACT

Identifying marker combinations for robust prognostic validation in primary tumour compartments remains challenging. We aimed to assess the prognostic significance of CSC markers (ALDH1, CD44, p75NTR, BMI-1) and E-cadherin biomarkers in OSCC. We analysed 94 primary OSCC and 67 metastatic lymph node samples, including central and invasive tumour fronts (ITF), along with clinicopathological data. We observed an increase in ALDH1+/CD44+/BMI-1- tumour cells in metastatic lesions compared to primary tumours. Multivariate analysis highlighted that elevated p75NTR levels (at ITF) and reduced E-cadherin expression (at the tumour centre) independently predicted metastasis, whilst ALDH1high exhibited independent predictive lower survival at the ITF, surpassing the efficacy of traditional tumour staging. Then, specifically at the ITF, profiles characterized by CSChighE-cadherinlow (ALDH1highp75NTRhighE-cadherinlow) and CSCintermediateE-cadherinlow (ALDH1 or p75NTRhighE-cadherinlow) were significantly associated with worsened overall survival and increased likelihood of metastasis in OSCC patients. In summary, our study revealed diverse tumour cell profiles in OSCC tissues, with varying CSC and E-cadherin marker patterns across primary tumours and metastatic sites. Given the pivotal role of reduced survival rates as an indicator of unfavourable prognosis, the immunohistochemistry profile identified as CSChighE-cadherinlow at the ITF of primary tumours, emerges as a preferred prognostic marker closely linked to adverse outcomes in OSCC.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Biomarkers, Tumor , Cadherins , Carcinoma, Squamous Cell , Mouth Neoplasms , Adult , Aged , Female , Humans , Male , Middle Aged , Aldehyde Dehydrogenase 1 Family/metabolism , Biomarkers, Tumor/metabolism , Cadherins/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Hyaluronan Receptors/metabolism , Immunohistochemistry , Lymphatic Metastasis , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/mortality , Mouth Neoplasms/diagnosis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nerve Tissue Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Prognosis , Receptors, Nerve Growth Factor/metabolism , Retinal Dehydrogenase/metabolism
6.
J Agric Food Chem ; 72(22): 12696-12706, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775624

ABSTRACT

Nasal xenobiotic metabolizing enzymes (XMEs) are important for the sense of smell because they influence odorant availability and quality. Since the major part of the human nasal cavity is lined by a respiratory mucosa, we hypothesized that this tissue contributed to nasal odorant metabolism through XME activity. Thus, we built human respiratory tissue models and characterized the XME profiles using single-cell RNA sequencing. We focused on the XMEs dicarbonyl and l-xylulose reductase, aldehyde dehydrogenase (ALDH) 1A1, and ALDH3A1, which play a role in food odorant metabolism. We demonstrated protein abundance and localization in the tissue models and showed the metabolic activity of the corresponding enzyme families by exposing the models to the odorants 3,4-hexandione and benzaldehyde. Using gas chromatography coupled with mass spectrometry, we observed, for example, a significantly higher formation of the corresponding metabolites 4-hydroxy-3-hexanone (39.03 ± 1.5%, p = 0.0022), benzyl alcohol (10.05 ± 0.88%, p = 0.0008), and benzoic acid (8.49 ± 0.57%, p = 0.0004) in odorant-treated tissue models compared to untreated controls (0 ± 0, 0.12 ± 0.12, and 0.18 ± 0.18%, respectively). This is the first study that reveals the XME profile of tissue-engineered human respiratory mucosa models and demonstrates their suitability to study nasal odorant metabolism.


Subject(s)
Odorants , Respiratory Mucosa , Humans , Odorants/analysis , Respiratory Mucosa/metabolism , Models, Biological , Gas Chromatography-Mass Spectrometry , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Xenobiotics/metabolism
7.
Anticancer Res ; 44(5): 1877-1883, 2024 May.
Article in English | MEDLINE | ID: mdl-38677758

ABSTRACT

BACKGROUND/AIM: Human gastric cancer stem-like cells (CSCs)/cancer-initiating cells can be identified as aldehyde dehydrogenase-high (ALDHhigh) cells. Cancer immunotherapy employing immune checkpoint blockade has been approved for advanced gastric cancer cases. However, the effectiveness of cancer immunotherapy against gastric CSCs/CICs remains unclear. This study aimed to investigate the susceptibility of gastric CSCs/CICs to immunotherapy. MATERIALS AND METHODS: Gastric CSCs/CICs were isolated as ALDHhigh cells using the human gastric cancer cell line, MKN-45. ALDHhigh clone cells and ALDHlow clone cells were isolated using the ALDEFLUOR assay. ALDH1A1 expression was assessed via qRT-PCR. Sphere-forming ability was evaluated to confirm the presence of CSCs/CICs. A model neoantigen, AP2S1, was over-expressed in ALDHhigh clone cells and ALDHlow clone cells, and susceptibility to AP2S1-specific TCR-T cells was assessed using IFNγ ELISPOT assay. RESULTS: Three ALDHhigh clone cells were isolated from MKN-45 cells. ALDHhigh clone cells exhibited a stable phenotype in in vitro culture for more than 2 months. The High-36 clone cells demonstrated the highest sphere-forming ability, whereas the Low-8 cells showed the lowest sphere-forming ability. High-36 cells exhibited lower expression of HLA-A24 compared to Low-8 cells. TCR-T cells specific for AP2S1 showed lower reactivity to High-36 cells compared to Low-8 cells. CONCLUSION: High-36 cells and Low-8 cells represent novel gastric CSCs/CICs and non-CSCs/CICs, respectively. ALDHhigh CSCs/CICs evade T cells due to lower expression of HLA class 1.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Neoplastic Stem Cells , Stomach Neoplasms , T-Lymphocytes, Cytotoxic , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Cell Line, Tumor , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Retinal Dehydrogenase/metabolism , Tumor Escape/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology
8.
Ecotoxicol Environ Saf ; 270: 115876, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38154155

ABSTRACT

Early life exposure to endocrine disrupting chemicals (EDCs) has been suggested to adversely affect reproductive health in humans and wildlife. Here, we characterize endocrine and adverse effects on the reproductive system after juvenile exposure to propiconazole (PROP) or imazalil (IMZ), two common azole fungicides with complex endocrine modes of action. Using the frog Xenopus tropicalis, two short-term (2-weeks) studies were conducted. I: Juveniles (2 weeks post metamorphosis (PM)) were exposed to 0, 17 or 178 µg PROP/L. II: Juveniles (6 weeks PM) were exposed to 0, 1, 12 or 154 µg IMZ/L. Histological analysis of the gonads revealed an increase in the number of dark spermatogonial stem cells (SSCs)/testis area, and in the ratio secondary spermatogonia: dark SSCs were increased in all IMZ groups compared to control. Key genes in gametogenesis, retinoic acid and sex steroid pathways were also analysed in the gonads. Testicular levels of 3ß-hsd, ddx4 were increased and cyp19 and id4 levels were decreased in the IMZ groups. In PROP exposed males, increased testicular aldh1a2 levels were detected, but no histological effects observed. Although no effects on ovarian histology were detected, ovarian levels of esr1, rsbn1 were increased in PROP groups, and esr1 levels were decreased in IMZ groups. In conclusion, juvenile azole exposure disrupted testicular expression of key genes in retinoic acid (PROP) and sex steroid pathways and in gametogenesis (IMZ). Our results further show that exposure to environmental concentrations of IMZ disrupted spermatogenesis in the juvenile testis, which is a cause for concern as it may lead to impaired fertility. Testicular levels of id4, ddx4 and the id4:ddx4 ratio were associated with the number of dark SSCs and secondary spermatogonia suggesting that they may serve as a molecular markers for disrupted spermatogenesis.


Subject(s)
Fungicides, Industrial , Humans , Male , Female , Animals , Fungicides, Industrial/metabolism , Xenopus laevis , Azoles/toxicity , Xenopus/metabolism , Testis , Spermatogenesis , Gonadal Steroid Hormones/metabolism , Tretinoin , Steroids/metabolism , Aldehyde Dehydrogenase 1 Family/metabolism , Xenopus Proteins/metabolism , Xenopus Proteins/pharmacology , Retinal Dehydrogenase/metabolism
9.
Anticancer Res ; 44(1): 37-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38160009

ABSTRACT

BACKGROUND/AIM: We have reported that p62 (also known as sequestosome 1) is needed for survival/proliferation and tumor formation by aldehyde dehydrogenase 1 (ALDH1) -positive cancer stem cells (CSCs) and that p62high ALDH1A3high expression is associated with a poor prognosis in luminal B breast cancer. However, the association between p62high ALDH1A3high and the benefit from radiotherapy in patients with luminal B breast cancer remains unclear. MATERIALS AND METHODS: Datasets from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) were downloaded, and data from p62high ALDH1A3high luminal B patients treated without or with radiotherapy were analyzed by Kaplan-Meier and multivariate Cox regression analyses. We also performed an in vitro tumor sphere formation assay after X-ray irradiation using p62-knockdown ALDH1high luminal B BT-474 cells. RESULTS: p62high ALDH1A3high patients had poorer clinical outcomes than other luminal B breast cancer patients treated with radiotherapy. The combination of p62 DsiRNA KD and X-ray irradiation suppressed in vitro tumor sphere formation by ALDH1high BT-474 cells. These results suggest that p62 is involved in the reduced effect of X-ray irradiation on ALDH1-positive luminal B breast CSCs. CONCLUSION: p62 and ALDH1A3 may serve as prognostic biomarkers for luminal B breast cancer patients treated with radiotherapy. Additionally, the combination of p62 inhibition and radiotherapy could be useful for targeted strategies against ALDH1-positive luminal B breast CSCs.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Breast Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast/pathology , Aldehyde Dehydrogenase 1 Family/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Retinal Dehydrogenase/metabolism , Prognosis
10.
Chem Biol Interact ; 384: 110714, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37716420

ABSTRACT

Colon cancer is the third leading cause of cancer death globally. Although early screenings and advances in treatments have reduced mortality since 1970, identification of novel targets for therapeutic intervention is needed to address tumor heterogeneity and recurrence. Previous work identified aldehyde dehydrogenase 1B1 (ALDH1B1) as a critical factor in colon tumorigenesis. To investigate further, we utilized a human colon adenocarcinoma cell line (SW480) in which the ALDH1B1 protein expression has been knocked down by 80% via shRNA. Through multi-omics (transcriptomics, proteomics, and untargeted metabolomics) analysis, we identified the impact of ALDH1B1 knocking down (KD) on molecular signatures in colon cancer cells. Suppression of ALDH1B1 expression resulted in 357 differentially expressed genes (DEGs), 191 differentially expressed proteins (DEPs) and 891 differentially altered metabolites (DAMs). Functional annotation and enrichment analyses revealed that: (1) DEGs were enriched in integrin-linked kinase (ILK) signaling and growth and development pathways; (2) DEPs were mainly involved in apoptosis signaling and cellular stress response pathways; and (3) DAMs were associated with biosynthesis, intercellular and second messenger signaling. Collectively, the present study provides new molecular information associated with the cellular functions of ALDH1B1, which helps to direct future investigation of colon cancer.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Aldehyde Dehydrogenase 1 Family/metabolism , Multiomics
11.
Biochem Biophys Res Commun ; 669: 85-94, 2023 08 20.
Article in English | MEDLINE | ID: mdl-37267864

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the cancer with the poorest prognosis. One of the major properties reflecting its poor prognosis is high-grade heterogeneity, which leads to insensitivity to anticancer treatments. Cancer stem cells (CSCs) acquire phenotypic heterogeneity, generating abnormally differentiated cells by asymmetric cell division. However, the detailed mechanism leading to phenotypic heterogeneity is largely unknown. Here, we showed that PDAC patients with co-upregulation of PKCλ and ALDH1A3 had the poorest clinical outcome. PKCλ knockdown by DsiRNA in the ALDH1high population of PDAC MIA-PaCa-2 cells attenuated the asymmetric distribution of the ALDH1A3 protein. To monitor asymmetric cell division of ALDH1A3-positive PDAC CSCs, we established stable Panc-1 PDAC clones expressing ALDH1A3-turboGFP (Panc-1-ALDH1A3-turboGFP cells). In addition to MIA-PaCa-2-ALDH1high cells, turboGFPhigh cells sorted from Panc-1-ALDH1A3-turboGFP cells showed asymmetric cell propagation of ALDH1A3 protein. PKCλ DsiRNA in Panc-1-ALDH1A3-turboGFP cells also attenuated the asymmetric distribution of ALDH1A3 protein. These results suggest that PKCλ regulates the asymmetric cell division of ALDH1A3-positive PDAC CSCs. Furthermore, Panc-1-ALDH1A3-turboGFP cells can be useful for the visualization and monitoring of CSC properties such as asymmetric cell division of ALDH1A3-positive PDAC CSCs in time-lapse imaging.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Asymmetric Cell Division , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Aldehyde Dehydrogenase 1 Family/metabolism , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms
12.
Neurosci Res ; 194: 58-65, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37146794

ABSTRACT

Lower motor neuron degeneration is the pathological hallmark of spinal muscular atrophy (SMA), a hereditary motor neuron disease caused by loss of the SMN1 gene and the resulting deficiency of ubiquitously expressed SMN protein. The molecular mechanisms underlying motor neuron degeneration, however, remain elusive. To clarify the cell-autonomous defect in developmental processes, we here performed transcriptome analyses of isolated embryonic motor neurons of SMA model mice to explore mechanisms of dysregulation of cell-type-specific gene expression. Of 12 identified genes that were differentially expressed between the SMA and control motor neurons, we focused on Aldh1a2, an essential gene for lower motor neuron development. In primary spinal motor neuron cultures, knockdown of Aldh1a2 led to the formation of axonal spheroids and neurodegeneration, reminiscent of the histopathological changes observed in human and animal cellular models. Conversely, Aldh1a2 rescued these pathological features in spinal motor neurons derived from SMA mouse embryos. Our findings suggest that developmental defects due to Aldh1a2 dysregulation enhances lower motor neuron vulnerability in SMA.


Subject(s)
Muscular Atrophy, Spinal , Mice , Humans , Animals , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Motor Neurons/metabolism , Nerve Degeneration/metabolism , Disease Models, Animal , Aldehyde Dehydrogenase 1 Family/metabolism , Retinal Dehydrogenase/metabolism
13.
Anticancer Res ; 43(5): 2145-2154, 2023 May.
Article in English | MEDLINE | ID: mdl-37097684

ABSTRACT

BACKGROUND/AIM: This study aimed to examine the clinical significance of the protein expression of the cancer stem cell (CSC) markers ALDH1A1, CD133, CD44, and MSI-1 in primary and metastatic tissues of patients with breast cancer (BC). PATIENTS AND METHODS: ALDH1A1, CD133, CD44, and MSI-1 protein expression in pairs of primary and metastatic tissues of 55 patients with BC with metastases treated at Kanagawa Cancer Center between January 1970 and December 2016 were evaluated using immunohistochemical assay and their association with clinicopathological factors and survival was examined. RESULTS: There were no significant differences in CSC marker expression rates between primary and metastatic tissues for any CSC markers. Regarding the relationship between CSC marker expression in primary tissues and survival, patients with high CD133 expression had significantly lower recurrence-free survival (DFS) and overall survival. On multivariate analysis, they were also a poor independent predictor of DFS (hazard ratio=4.993, 95%CI=2.189-11.394, p=0.0001). In contrast, there was no significant association between the expression of any CSC marker in metastatic tissues and survival. CONCLUSION: CD133 expression in the primary BC tissue may be a useful risk factor for recurrence in patients with BC.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoplastic Stem Cells , Neoplastic Stem Cells/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Neoplasm Metastasis , Biomarkers, Tumor/metabolism , Aldehyde Dehydrogenase 1 Family/metabolism , Retinal Dehydrogenase/metabolism , AC133 Antigen/metabolism , Hyaluronan Receptors/metabolism , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Humans , Female , Middle Aged , Disease-Free Survival , Japan
14.
J Vis Exp ; (193)2023 03 31.
Article in English | MEDLINE | ID: mdl-37067271

ABSTRACT

Relapse after cancer treatment is often attributed to the persistence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are characterized by their remarkable tumor-initiating and self-renewal capacity. Depending on the origin of the tumor (e.g., ovaries), the CSC surface biomarker profile can vary dramatically, making the identification of such cells via immunohistochemical staining a challenging endeavor. On the contrary, aldehyde dehydrogenase 1A1 (ALDH1A1) has emerged as an excellent marker to identify CSCs, owing to its conserved expression profile in nearly all progenitor cells including CSCs. The ALDH1A1 isoform belongs to a superfamily of 19 enzymes that are responsible for the oxidation of various endogenous and xenobiotic aldehydes to the corresponding carboxylic acid products. Chan et al. recently developed AlDeSense, an isoform-selective "turn-on" probe for the detection of ALDH1A1 activity, as well as a non-reactive matching control reagent (Ctrl-AlDeSense) to account for off-target staining. This isoform-selective tool has already been demonstrated to be a versatile chemical tool through the detection of ALDH1A1 activity in K562 myelogenous leukemia cells, mammospheres, and melanoma-derived CSC xenografts. In this article, the utility of the probe was showcased through additional fluorimetry, confocal microscopy, and flow cytometry experiments where the relative ALDH1A1 activity was determined in a panel of five ovarian cancer cell lines.


Subject(s)
Aldehyde Dehydrogenase , Ovarian Neoplasms , Humans , Female , Aldehyde Dehydrogenase 1 Family/metabolism , Retinal Dehydrogenase/metabolism , Cell Line, Tumor , Aldehyde Dehydrogenase/metabolism , Ovarian Neoplasms/pathology , Neoplastic Stem Cells/pathology
15.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768723

ABSTRACT

Recurrent disease and treatment-associated chemoresistance are the two main factors accounting for poor clinical outcomes of ovarian cancer (OC) patients. Both can be associated with cancer stem cells (CSCs), which contribute to cancer formation, progression, chemoresistance, and recurrence. Hence, this study investigated whether the expression of known CSC-associated markers ALDH1A, CD44, and CD133 may predict OC patient prognosis. We analyzed their expression in primary epithelial ovarian cancer (EOC) patients using immunohistochemistry and related them to clinicopathological data, including overall survival (OS) and progression-free survival (PFS). Expression of ALDH1A1 was detected in 32%, CD133 in 28%, and CD44 in 33% of cases. While Kaplan-Meier analysis revealed no association of the expression of CD133 and CD44 with PFS and OS, ALDH1A1-positive patients were characterized with both significantly shorter OS (p = 0.00022) and PFS (p = 0.027). Multivariate analysis demonstrated that the expression of ALDH1A1, FIGO stage III-IV, and residual disease after suboptimal debulking or neoadjuvant chemotherapy correlated with shorter OS. The results of this study identify ALDH1A1 as a potential independent prognostic factor of shorter OS and PFS in EOC patients. Therefore, targeting ALDH1A1-positive cancer cells may be a promising therapeutic strategy to influence the disease course and treatment response.


Subject(s)
Hyaluronan Receptors , Ovarian Neoplasms , Female , Humans , Aldehyde Dehydrogenase 1 Family/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Ovarian Epithelial/pathology , Follow-Up Studies , Hyaluronan Receptors/metabolism , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Prognosis , Retinal Dehydrogenase/metabolism
16.
Am J Med Genet A ; 191(1): 90-99, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36263470

ABSTRACT

Aldehyde Dehydrogenase 1, Family Member A2 (ALDH1A2) is essential for the synthesis of retinoic acid from vitamin A. Studies in model organisms demonstrate a critical role for ALDH1A2 in embryonic development, yet few pathogenic variants are linked to congenital anomalies in humans. We present three siblings with multiple congenital anomaly syndrome linked to biallelic sequence variants in ALDH1A2. The major congenital malformations affecting these children include tetralogy of Fallot, absent thymus, diaphragmatic eventration, and talipes equinovarus. Upper airway anomalies, hypocalcemia, and dysmorphic features are newly reported in this manuscript. In vitro functional validation of variants indicated that substitutions reduced the expression of the enzyme. Our clinical and functional data adds to a recent report of biallelic ALDH1A2 pathogenic variants in two families with a similar constellation of congenital malformations. These findings provide further evidence for an autosomal recessive ALDH1A2-deficient recognizable malformation syndrome involving the diaphragm, cardiac and musculoskeletal systems.


Subject(s)
Tretinoin , Child , Humans , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Tretinoin/metabolism , Retinal Dehydrogenase/genetics
17.
Molecules ; 27(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500483

ABSTRACT

Folate (vitamin B9) is involved in one-carbon transfer reactions and plays a significant role in nucleic acid synthesis and control of cellular proliferation, among other key cellular processes. It is now recognized that the role of folates in different stages of carcinogenesis is complex, and more research is needed to understand how folate reactions become dysregulated in cancers and the metabolic consequences that occur as a result. ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism expressed in many tissues, is ubiquitously downregulated in cancers and is not expressed in cancer cell lines. The RT4 cell line (derived from papillary bladder cancer) which expresses high levels of ALDH1L1 represents an exception, providing an opportunity to explore the metabolic consequences of the loss of this enzyme. We have downregulated this protein in RT4 cells (shRNA driven knockdown or CRISPR driven knockout) and compared metabolomes of ALDH1L1-expressing and -deficient cells to determine if metabolic changes linked to the loss of this enzyme might provide proliferative and/or survival advantages for cancer cells. In this study, cell extracts were analyzed using Ultra High Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-HR-MS). A total of 13,339 signals were identified or annotated using an in-house library and public databases. Supervised and unsupervised multivariate analysis revealed metabolic differences between RT4 cells and ALDH1L1-deficient clones. Glycine (8-fold decrease) and metabolites derived from S-adenosylmethionine utilizing pathways were significantly decreased in the ALDH1L1-deficient clones, compared with RT4 cells. Other changes linked to ALDH1L1 downregulation include decreased levels of amino acids, Krebs cycle intermediates, and ribose-5-phosphate, and increased nicotinic acid. While the ALDH1L1-catalyzed reaction is directly linked to glycine biosynthesis and methyl group flux, its overall effect on cellular metabolism extends beyond immediate metabolic pathways controlled by this enzyme.


Subject(s)
Folic Acid , Neoplasms , Humans , Folic Acid/metabolism , Glycine/metabolism , Retinal Dehydrogenase/metabolism , Methylation , Aldehyde Dehydrogenase 1 Family/metabolism , S-Adenosylmethionine/metabolism , Metabolomics
18.
Sci Transl Med ; 14(676): eabm4054, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542696

ABSTRACT

More than 40% of individuals will develop osteoarthritis (OA) during their lifetime, yet there are currently no licensed disease-modifying treatments for this disabling condition. Common polymorphic variants in ALDH1A2, which encodes the key enzyme for synthesis of all-trans retinoic acid (atRA), are associated with severe hand OA. Here, we sought to elucidate the biological significance of this association. We first confirmed that ALDH1A2 risk variants were associated with hand OA in the U.K. Biobank. Articular cartilage was acquired from 33 individuals with hand OA at the time of routine hand OA surgery. After stratification by genotype, RNA sequencing was performed. A reciprocal relationship between ALDH1A2 mRNA and inflammatory genes was observed. Articular cartilage injury up-regulated similar inflammatory genes by a process that we have previously termed mechanoflammation, which we believe is a primary driver of OA. Cartilage injury was also associated with a concomitant drop in atRA-inducible genes, which were used as a surrogate measure of cellular atRA concentration. Both responses to injury were reversed using talarozole, a retinoic acid metabolism blocking agent (RAMBA). Suppression of mechanoflammation by talarozole was mediated by a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Talarozole was able to suppress mechano-inflammatory genes in articular cartilage in vivo 6 hours after mouse knee joint destabilization and reduced cartilage degradation and osteophyte formation after 26 days. These data show that boosting atRA suppresses mechanoflammation in the articular cartilage in vitro and in vivo and identifies RAMBAs as potential disease-modifying drugs for OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Mice , Animals , Tretinoin/pharmacology , Tretinoin/therapeutic use , Tretinoin/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Knee Joint , Anti-Inflammatory Agents , Chondrocytes/metabolism , Aldehyde Dehydrogenase 1 Family/metabolism , Retinal Dehydrogenase/metabolism
19.
Biochem Biophys Res Commun ; 628: 141-146, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36084552

ABSTRACT

Aldehyde dehydrogenase 1A1 (ALDH1A1) is an enzyme that catalyzes the NAD+-dependent oxidation of aldehydes to carboxylic acids, participating in various metabolic processes. Currently, only structures from human and Ovis aries have been reported. Here we show a 2.89 Å resolution structure of ALDH1A1 from mice using X-ray crystallography. We performed a detailed analysis of the structure and compared it with ALDH1A1 structures from two other species, highlighting the significance of the differences. Structural superimposition reveals that the tetrameric molecule is asymmetrical, and the NAD+-binding domain exhibits a certain rotation. In addition, the noticeable structural differences were detected, including the unique contact between Ser461 and Asp148, as well as the side chain orientations of three amino acids residues, Asn474, Met471 and Phe466. This study helps to expand the structural diversity of the ALDH family.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Aldehyde Dehydrogenase , NAD , Retinal Dehydrogenase , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family/chemistry , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehydes/metabolism , Amino Acids , Animals , Carboxylic Acids , Crystallography, X-Ray , Mice , NAD/metabolism , Retinal Dehydrogenase/chemistry , Retinal Dehydrogenase/metabolism
20.
Contrast Media Mol Imaging ; 2022: 8199917, 2022.
Article in English | MEDLINE | ID: mdl-35909581

ABSTRACT

To investigate the prognostic potential of serum aldehyde dehydrogenase isoform 1 (ALDH1) level in acute cerebral infarction, and the molecular mechanism in mediating neurological deficits, a total of 120 acute cerebral infarction cases within 72 h of onset were retrospectively analyzed. Serum ALDH1 level in them was detected by qRT-PCR. Receiver operating characteristic (ROC) and Kaplan-Meier curves were depicted for assessing the diagnostic and prognostic potentials of ALDH1 in acute cerebral infarction, respectively. An in vivo acute cerebral infarction model in rats was established by performing MCAO, followed by evaluation of neurological deficits using mNSS and detection of relative levels of ALDH1, Smad2, Smad4, and p21 in rat brain tissues. Pearson's correlation test was carried out to verify the correlation between ALDH1 and mNSS and relative levels of Smad2, Smad4, and p21. Serum ALDH1 level increased in acute cerebral infarction patients. A high level of ALDH1 predicted a poor prognosis of acute cerebral infarction patients. In addition, ALDH1 was sensitive and specific in distinguishing acute cerebral infarction cases, presenting a certain diagnostic potential. mNSS was remarkably higher in acute cerebral infarction rats than that of controls. Compared with sham operation group, relative levels of ALDH1, Smad2, and Smad4 were higher in brain tissues of modeling rats, whilst p21 level was lower. ALDH1 level in brain tissues of modeling rats was positively correlated to mNSS, and mRNA levels of Smad2 and Smad4, but negatively correlated to p21 level. Serum ALDH1 level is a promising prognostic and diagnostic factor of acute cerebral infarction, which is correlated to 90-day mortality. Increased level of ALDH1 in the brain of cerebral infarction rats is closely linked to neurological function, which is associated with the small mothers against decapentaplegic (Smad) signaling and p21.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Cerebral Infarction , Retinal Dehydrogenase , Aldehyde Dehydrogenase 1 Family/blood , Aldehyde Dehydrogenase 1 Family/metabolism , Animals , Biomarkers/blood , Brain Ischemia/blood , Brain Ischemia/metabolism , Cerebral Infarction/blood , Cerebral Infarction/metabolism , Humans , Prognosis , Protein Isoforms/blood , Protein Isoforms/metabolism , Rats , Retinal Dehydrogenase/analysis , Retinal Dehydrogenase/blood , Retinal Dehydrogenase/metabolism , Retrospective Studies , Stroke/blood , Stroke/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...