Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.397
Filter
1.
Phytochemistry ; 224: 114151, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768880

ABSTRACT

The plant lipoxygenase cascade is a source of various regulatory oxylipins that play a role in cell signalling, stress adaptation, and immune response. Recently, we detected an unprecedented 16(S)-lipoxygenase, CsLOX3, in the leaves and fruit pericarp of cucumber (Cucumis sativus L.). In the present work, an array of products biosynthesized through the conversions of α-linolenic acid 16-hydroperoxide (16-HPOT) was detected. Firstly, a prominent 15-hydroxy-9,12-pentadecadienoic acid (Me/TMS) was detected, the product of hydroperoxide lyase (HPL) chain cleavage of 16-HPOT and further reduction of aldehyde 15-oxo-9,12-pentadecadienoic acid to alcohol. Besides, the presence of dicarboxylic acid, 3,6-pentadecadiene-1,15-dioic acid, was deduced from the detection of its catalytic hydrogenation product, pentadecane-1,15-dioic acid. Finally, 12,15-dihydroxypentadecanoic acid (Me/TMS) was detected amongst the hydrogenated products, thus indicating the presence of the parent 12,15-dihydroxy-9,13-pentadecadienoic acid. To confirm the proposed HPL chain cleavage, the 16(S)-HPOT was prepared and incubated with the recombinant cucumber HPL CYP74B6 enzyme. The CYP74B6 possessed high activity towards 16-HPOT. Chain cleavage yields the (9Z,12Z)-15-oxo-9,12-pentadecadienoic acid, undergoing a spontaneous isomerization into (9Z,13E)-15-oxo-9,13-pentadecadienoic acid. Thus, the cucumber plants as well as the recombinant cucumber HPL CYP74B6 possessed unprecedented 16-HPL activity, cleaving 16-HPOT into a C15 fragment, 15-oxo-9,12-pentadecadienoic acid, and a complementary volatile C3 fragment, propionic aldehyde. The 16-LOX/16-HPL route of oxylipin biosynthesis presents a novel facet of the plant LOX pathway.


Subject(s)
Aldehyde-Lyases , Cucumis sativus , Cytochrome P-450 Enzyme System , Oxylipins , Cucumis sativus/metabolism , Cucumis sativus/enzymology , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/chemistry , Oxylipins/metabolism , Oxylipins/chemistry , Oxylipins/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Molecular Structure
2.
Biomed Pharmacother ; 174: 116575, 2024 May.
Article in English | MEDLINE | ID: mdl-38599060

ABSTRACT

Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care. In search for additional treatment options, we recently discovered the inhibition of the sphingosine 1-phosphate (S1P) lyase and subsequent activation of the S1P receptor type 3 (S1PR3) in pre-conditioning experiments as promising targets for sepsis prevention. Here, we demonstrate that treatment of septic mice with the direct S1P lyase inhibitor C31 or the S1PR3 agonist CYM5541 in the advanced phase of sepsis resulted in a significantly increased survival rate. A single dose of each compound led to a rapid decline of sepsis severity in treated mice and coincided with decreased cytokine release and increased lung barrier function with unaltered bacterial load. The survival benefit of both compounds was completely lost in S1PR3 deficient mice. Treatment of the murine macrophage cell line J774.1 with either C31 or CYM5541 resulted in decreased protein kinase B (Akt) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) phosphorylation without alteration of the mitogen-activated protein kinase (MAPK) p38 and p44/42 phosphorylation. Thus, activation of S1PR3 in the acute phase of sepsis by direct agonism or S1P lyase inhibition dampened Akt and JNK phosphorylation, resulting in decreased cytokine release, improved lung barrier stability, rapid decline of sepsis severity and better survival in mice.


Subject(s)
Aldehyde-Lyases , Mice, Inbred C57BL , Sepsis , Sphingosine-1-Phosphate Receptors , Animals , Sepsis/drug therapy , Sepsis/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Aldehyde-Lyases/antagonists & inhibitors , Aldehyde-Lyases/metabolism , Mice , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/metabolism , Male , Disease Models, Animal , Cell Line , Proto-Oncogene Proteins c-akt/metabolism , Cytokines/metabolism , Mice, Knockout
3.
Chembiochem ; 25(11): e202400118, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38526556

ABSTRACT

Hydroxynitrile lyase (HNL) from the cyanogenic millipede Oxidus gracillis (OgraHNL) is a crucial enzyme in the cyanogenesis pathway. Here, the crystal structures of OgraHNL complexed with sulfate, benzaldehyde (BA), (R)-mandelonitrile ((R)-Man), (R)-2-chloromandelonitrile ((R)-2-Cl-Man), and acetone cyanohydrin (ACN) were solved at 1.6, 1.7, 2.3, 2.1, and 2.0 Šresolutions, respectively. The structure of OgraHNL revealed that it belonged to the lipocalin superfamily. Based on this structure, positive variants were designed to further improve the catalytic activity and enantioselectivity of the enzyme for asymmetric hydrocyanation and Henry reactions.


Subject(s)
Aldehyde-Lyases , Mutagenesis, Site-Directed , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/chemistry , Aldehyde-Lyases/genetics , Animals , Benzaldehydes/metabolism , Benzaldehydes/chemistry , Acetonitriles/chemistry , Acetonitriles/metabolism , Models, Molecular , Crystallography, X-Ray , Nitriles/metabolism , Nitriles/chemistry , Stereoisomerism
4.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396648

ABSTRACT

The employment of 2-deoxyribose-5-phosphate aldolase (DERA) stands as a prevalent biocatalytic route for synthesizing statin side chains. The main problem with this pathway is the low stability of the enzyme. In this study, mesocellular silica foam (MCF) with different pore sizes was used as a carrier for the covalent immobilization of DERA. Different functionalizing and activating agents were tested and kinetic modeling was subsequently performed. The use of succinic anhydride as an activating agent resulted in an enzyme hyperactivation of approx. 140%, and the stability almost doubled compared to that of the free enzyme. It was also shown that the pore size of MCF has a decisive influence on the stability of the DERA enzyme.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Silicon Dioxide/chemistry , Aldehyde-Lyases/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Biocatalysis
5.
J Pathol ; 263(1): 22-31, 2024 05.
Article in English | MEDLINE | ID: mdl-38332723

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-ß signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-ß signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1ß as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Dependovirus , Idiopathic Pulmonary Fibrosis , Lysophospholipids , Sphingosine/analogs & derivatives , Humans , Mice , Animals , Dependovirus/genetics , Lung/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/metabolism , Bleomycin , Models, Animal , Genetic Therapy , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism
6.
ACS Synth Biol ; 13(3): 888-900, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38359048

ABSTRACT

Methanol has gained substantial attention as a substrate for biomanufacturing due to plentiful stocks and nonreliance on agriculture, and it can be sourced renewably. However, due to inevitable complexities in cell metabolism, microbial methanol conversion requires further improvement before industrial applicability. Here, we present a novel, parallel strategy using artificial cells to provide a simplified and well-defined environment for methanol utilization as artificial methylotrophic cells. We compartmentalized a methanol-utilizing enzyme cascade, including NAD-dependent methanol dehydrogenase (Mdh) and pyruvate-dependent aldolase (KHB aldolase), in cell-sized lipid vesicles using the inverted emulsion method. The reduction of cofactor NAD+ to NADH was used to quantify the conversion of methanol within individual artificial methylotrophic cells via flow cytometry. Compartmentalization of the reaction cascade in liposomes led to a 4-fold higher NADH production compared with bulk enzyme experiments, and the incorporation of KHB aldolase facilitated another 2-fold increase above the Mdh-only reaction. This methanol-utilizing platform can serve as an alternative route to speed up methanol biological conversion, eventually shifting sugar-based bioproduction toward a sustainable methanol bioeconomy.


Subject(s)
Artificial Cells , Methanol , Methanol/metabolism , NAD/metabolism , Fructose-Bisphosphate Aldolase , Aldehyde-Lyases/metabolism
7.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958544

ABSTRACT

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is an inborn error of metabolism caused by inactivating mutations in SGPL1, the gene encoding sphingosine-1-phosphate lyase (SPL), an essential enzyme needed to degrade sphingolipids. SPLIS features include glomerulosclerosis, adrenal insufficiency, neurological defects, ichthyosis, and immune deficiency. Currently, there is no cure for SPLIS, and severely affected patients often die in the first years of life. We reported that adeno-associated virus (AAV) 9-mediated SGPL1 gene therapy (AAV-SPL) given to newborn Sgpl1 knockout mice that model SPLIS and die in the first few weeks of life prolonged their survival to 4.5 months and prevented or delayed the onset of SPLIS phenotypes. In this study, we tested the efficacy of a modified AAV-SPL, which we call AAV-SPL 2.0, in which the original cytomegalovirus (CMV) promoter driving the transgene is replaced with the synthetic "CAG" promoter used in several clinically approved gene therapy agents. AAV-SPL 2.0 infection of human embryonic kidney (HEK) cells led to 30% higher SPL expression and enzyme activity compared to AAV-SPL. Newborn Sgpl1 knockout mice receiving AAV-SPL 2.0 survived ≥ 5 months and showed normal neurodevelopment, 85% of normal weight gain over the first four months, and delayed onset of proteinuria. Over time, treated mice developed nephrosis and glomerulosclerosis, which likely resulted in their demise. Our overall findings show that AAV-SPL 2.0 performs equal to or better than AAV-SPL. However, improved kidney targeting may be necessary to achieve maximally optimized gene therapy as a potentially lifesaving SPLIS treatment.


Subject(s)
Genetic Therapy , Parvovirinae , Sphingosine , Animals , Humans , Mice , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Lysophospholipids/metabolism , Mice, Knockout , Parvovirinae/metabolism , Phosphates , Sphingosine/metabolism
8.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37857526

ABSTRACT

BACKGROUND: Post-translational modification of proteins has the potential to alter the ability of T cells to recognize major histocompatibility complex (MHC) class -I and class-II restricted antigens, thereby resulting in altered immune responses. One such modification is carbamylation (homocitrullination) that results in the formation of homocitrulline (Hcit) residues in a non-enzymatic reaction of cyanate with the lysine residues in the polypeptide chain. Homocitrullination occurs in the tumor microenvironment and CD4-mediated immune responses to Hcit epitopes can target stressed tumor cells and provide a potent antitumor response in mouse models. METHODS: Homocitrullinated peptides were identified and assessed in vitro for HLA-A2 binding and in vivo in human leukocyte antigen (HLA) transgenic mouse models for immunogenicity. CD8 responses were assessed in vitro for cytotoxicity and in vivo tumor therapy. Human tumor samples were analyzed by targeted mass spectrometry for presence of homocitrullinated peptides. RESULTS: Homocitrullinated peptides from aldolase and cytokeratin were identified, that stimulated CD8-mediated responses in vivo. Modified peptides showed enhanced binding to HLA-A2 compared with the native sequences and immunization of HLA-A2 transgenic mice generated high avidity modification specific CD8 responses that killed peptide expressing target cells. Importantly, in vivo the homocitrullinated aldolase specific response was associated with efficient CD8 dependent antitumor therapy of the aggressive murine B16 tumor model indicating that this epitope is naturally presented in the tumor. In addition, the homocitrullinated aldolase epitope was also detected in human tumor samples. CONCLUSION: This is the first evidence that homocitrullinated peptides can be processed and presented via MHC-I and targeted for tumor therapy. Thus, Hcit-specific CD8 T-cell responses have potential in the development of future anticancer therapy.


Subject(s)
CD8-Positive T-Lymphocytes , HLA-A2 Antigen , Mice , Humans , Animals , Histocompatibility Antigens Class II/metabolism , Vaccination , Mice, Transgenic , Peptides , Histocompatibility Antigens Class I , Epitopes , Protein Processing, Post-Translational , Aldehyde-Lyases/metabolism
9.
Biotechnol Lett ; 45(11-12): 1521-1528, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37688676

ABSTRACT

N­Acetyl­D­neuraminic acid (Neu5Ac) is the crucial compound for the chemical synthesis of antiflu medicine Zanamivir. Chemoenzymatic synthesis of Neu5Ac involves N-acetyl-D-glucosamine 2-epimerase (AGE)-catalyzed epimerization of N-acetyl-D-glucosamine (GlcNAc) to N-acetyl-D-mannosamine (ManNAc), and aldolase-catalyzed condensation between ManNAc and pyruvate. Host optimization plays an important role in the whole-cell biotransformation of value-added compounds. In this study, via single-plasmid biotransformation system, we showed that the AGE gene BT0453, cloned from human gut microorganism Bacteroides thetaiotaomicron VPI-5482, showed the highest biotransformation yield among the AGE genes tested; and there is no clear Neu5Ac yield difference between the BT0453 coupled with one aldolase coding nanA gene and two nanA genes. Next, Escherichia coli chromosomal genes involved in substrate degradation, product exportation and pH change were deleted via recombineering and CRISPR/Cas9. With the final E. coli BL21(DE3) ΔnanA Δnag ΔpoxB as host, a significant 16.5% yield improvement was obtained. Furthermore, precursor (pyruvate) feeding resulted in 3.2% yield improvement, reaching 66.8% molar biotransformation. The result highlights the importance of host optimization, and set the stage for further metabolic engineering of whole-cell biotransformation of Neu5Ac.


Subject(s)
Aldehyde-Lyases , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Aldehyde-Lyases/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Pyruvic Acid/metabolism , Biotransformation , N-Acetylneuraminic Acid/metabolism
10.
PLoS Biol ; 21(9): e3002285, 2023 09.
Article in English | MEDLINE | ID: mdl-37733785

ABSTRACT

The canonical glycolysis pathway is responsible for converting glucose into 2 molecules of acetyl-coenzyme A (acetyl-CoA) through a cascade of 11 biochemical reactions. Here, we have designed and constructed an artificial phosphoketolase (APK) pathway, which consists of only 3 types of biochemical reactions. The core enzyme in this pathway is phosphoketolase, while phosphatase and isomerase act as auxiliary enzymes. The APK pathway has the potential to achieve a 100% carbon yield to acetyl-CoA from any monosaccharide by integrating a one-carbon condensation reaction. We tested the APK pathway in vitro, demonstrating that it could efficiently catabolize typical C1-C6 carbohydrates to acetyl-CoA with yields ranging from 83% to 95%. Furthermore, we engineered Escherichia coli stain capable of growth utilizing APK pathway when glycerol act as a carbon source. This novel catabolic pathway holds promising route for future biomanufacturing and offering a stoichiometric production platform using multiple carbon sources.


Subject(s)
Aldehyde-Lyases , Carbon , Acetyl Coenzyme A , Carbon/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Glucose/metabolism , Metabolic Engineering
11.
Front Immunol ; 14: 1186575, 2023.
Article in English | MEDLINE | ID: mdl-37377976

ABSTRACT

Background: Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is associated with biallelic variants in SGPL1, comprising a multisystemic disease characterized by steroid resistant nephrotic syndrome, primary adrenal insufficiency, neurological problems, skin abnormalities and immunodeficiency in described cases. Signal transducer and activator of transcription 1 (STAT1) plays an important role in orchestrating an appropriate immune response through JAK-STAT pathway. Biallelic STAT1 loss of function (LOF) variants lead to STAT1 deficiency with a severe phenotype of immunodeficiency with increased frequency of infections and poor outcome if untreated. Case presentation: We report novel homozygous SGPL1 and STAT1 variants in a newborn of Gambian ethnicity with clinical features of SPLIS and severe combined immunodeficiency. The patient presented early in life with nephrotic syndrome, severe respiratory infection requiring ventilation, ichthyosis, and hearing loss, with T-cell lymphopenia. The combination of these two conditions led to severe combined immunodeficiency with inability to clear respiratory tract infections of viral, fungal, and bacterial nature, as well as severe nephrotic syndrome. The child sadly died at 6 weeks of age despite targeted treatments. Conclusion: We report the finding of two novel, homozygous variants in SGPL1 and STAT1 in a patient with a severe clinical phenotype and fatal outcome early in life. This case highlights the importance of completing the primary immunodeficiency genetic panel in full to avoid missing a second diagnosis in other patients presenting with similar severe clinical phenotype early in life. For SPLIS no curative treatment is available and more research is needed to investigate different treatment modalities. Hematopoietic stem cell transplantation (HSCT) shows promising results in patients with autosomal recessive STAT1 deficiency. For this patient's family, identification of the dual diagnosis has important implications for future family planning. In addition, future siblings with the familial STAT1 variant can be offered curative treatment with HSCT.


Subject(s)
Immunologic Deficiency Syndromes , Nephrotic Syndrome , Severe Combined Immunodeficiency , Humans , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Janus Kinases/metabolism , Nephrotic Syndrome/genetics , Signal Transduction , STAT Transcription Factors/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Infant, Newborn
12.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047151

ABSTRACT

Sphingosine-1-phosphate lyase (SPL) is a pyridoxal 5'-phosphate-dependent enzyme involved in the irreversible degradation of sphingosine-1-phosphate (S1P)-a bioactive sphingolipid that modulates a broad range of biological processes (cell proliferation, migration, differentiation and survival; mitochondrial functioning; and gene expression). Although SPL activity leads to a decrease in the available pool of S1P in the cell, at the same time, hexadecenal and phosphoethanolamine, compounds with potential biological activity, are generated. The increased expression and/or activity of SPL, and hence the imbalance between S1P and the end products of its cleavage, were demonstrated in several pathological states. On the other hand, loss-of-function mutations in the SPL encoding gene are a cause of severe developmental impairments. Recently, special attention has been paid to neurodegenerative diseases as the most common pathologies of the nervous system. This review summarizes the current findings concerning the role of SPL in the nervous system with an emphasis on neurodegeneration. Moreover, it briefly discusses pharmacological compounds directed to inhibit its activity.


Subject(s)
Sphingolipids , Sphingosine , Sphingosine/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Lysophospholipids/metabolism
13.
J Lipid Res ; 64(4): 100351, 2023 04.
Article in English | MEDLINE | ID: mdl-36868360

ABSTRACT

Sphingosine 1-phosphate lyase (SGPL1) insufficiency (SPLIS) is a syndrome which presents with adrenal insufficiency, steroid-resistant nephrotic syndrome, hypothyroidism, neurological disease, and ichthyosis. Where a skin phenotype is reported, 94% had abnormalities such as ichthyosis, acanthosis, and hyperpigmentation. To elucidate the disease mechanism and the role SGPL1 plays in the skin barrier we established clustered regularly interspaced short palindromic repeats-Cas9 SGPL1 KO and a lentiviral-induced SGPL1 overexpression (OE) in telomerase reverse-transcriptase immortalised human keratinocytes (N/TERT-1) and thereafter organotypic skin equivalents. Loss of SGPL1 caused an accumulation of S1P, sphingosine, and ceramides, while its overexpression caused a reduction of these species. RNAseq analysis showed perturbations in sphingolipid pathway genes, particularly in SGPL1_KO, and our gene set enrichment analysis revealed polar opposite differential gene expression between SGPL1_KO and _OE in keratinocyte differentiation and Ca2+ signaling genesets. SGPL1_KO upregulated differentiation markers, while SGPL1_OE upregulated basal and proliferative markers. The advanced differentiation of SGPL1_KO was confirmed by 3D organotypic models that also presented with a thickened and retained stratum corneum and a breakdown of E-cadherin junctions. We conclude that SPLIS associated ichthyosis is a multifaceted disease caused possibly by sphingolipid imbalance and excessive S1P signaling, leading to increased differentiation and an imbalance of the lipid lamellae throughout the epidermis.


Subject(s)
Ichthyosis , Sphingolipids , Humans , Calcium/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Lysophospholipids/metabolism , Sphingosine/genetics , Sphingosine/metabolism , Ichthyosis/genetics
14.
Neurobiol Dis ; 180: 106092, 2023 05.
Article in English | MEDLINE | ID: mdl-36948261

ABSTRACT

RecQ helicase family proteins play vital roles in maintaining genome stability, including DNA replication, recombination, and DNA repair. In human cells, there are five RecQ helicases: RECQL1, Bloom syndrome (BLM), Werner syndrome (WRN), RECQL4, and RECQL5. Dysfunction or absence of RecQ proteins is associated with genetic disorders, tumorigenesis, premature aging, and neurodegeneration. The biochemical and biological roles of RecQ helicases are rather well established, however, there is no systematic study comparing the behavioral changes among various RecQ-deficient mice including consequences of exposure to DNA damage. Here, we investigated the effects of ionizing irradiation (IR) on three RecQ-deficient mouse models (RecQ1, WRN and RecQ4). We find abnormal cognitive behavior in RecQ-deficient mice in the absence of IR. Interestingly, RecQ dysfunction impairs social ability and induces depressive-like behavior in mice after a single exposure to IR, suggesting that RecQ proteins play roles in mood and cognition behavior. Further, transcriptomic and metabolomic analyses revealed significant alterations in RecQ-deficient mice, especially after IR exposure. In particular, pathways related to neuronal and microglial functions, DNA damage repair, cell cycle, and reactive oxygen responses were downregulated in the RecQ4 and WRN mice. In addition, increased DNA damage responses were found in RecQ-deficient mice. Notably, two genes, Aldolase Fructose-Bisphosphate B (Aldob) and NADPH Oxidase 4 (Nox4), were differentially expressed in RecQ-deficient mice. Our findings suggest that RecQ dysfunction contributes to social and depressive-like behaviors in mice, and that aldolase activity may be associated with these changes, representing a potential therapeutic target.


Subject(s)
DNA Replication , RecQ Helicases , Animals , Humans , Mice , RecQ Helicases/genetics , RecQ Helicases/metabolism , DNA Repair , DNA Damage , Genomic Instability , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism
15.
mBio ; 14(1): e0322322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36598285

ABSTRACT

The preferred carbon source of Staphylococcus aureus and many other pathogens is glucose, and its consumption is critical during infection. However, glucose utilization increases the cellular demand for manganese, a nutrient sequestered by the host as a defense against invading pathogens. Therefore, bacteria must balance glucose metabolism with the increasing demand that metal-dependent processes, such as glycolysis, impose upon the cell. A critical regulator that enables S. aureus to resist nutritional immunity is the ArlRS two-component system. This work revealed that ArlRS regulates the expression of FdaB, a metal-independent fructose 1,6-bisphosphate aldolase. Further investigation revealed that when S. aureus is metal-starved by the host, FdaB functionally replaces the metal-dependent isozyme FbaA, thereby allowing S. aureus to resist host-imposed metal starvation in culture. Although metal-dependent aldolases are canonically zinc-dependent, this work uncovered that FbaA requires manganese for activity and that FdaB protects S. aureus from manganese starvation. Both FbaA and FdaB contribute to the ability of S. aureus to cause invasive disease in wild-type mice. However, the virulence defect of a strain lacking FdaB was reversed in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of this pathogen to overcome manganese limitation during infection. Cumulatively, these observations suggest that the expression of the metal-independent aldolase FdaB allows S. aureus to alleviate the increased demand for manganese that glucose consumption imposes, and highlights the cofactor flexibility of even established metalloenzyme families. IMPORTANCE Staphylococcus aureus and other pathogens consume glucose during infection. Glucose utilization increases the demand for transition metals, such as manganese, a nutrient that the host limits as a defense mechanism against invading pathogens. Therefore, pathogenic bacteria must balance glucose and manganese requirements during infection. The two-component system ArlRS is an important regulator that allows S. aureus to adapt to both glucose and manganese starvation. Among the genes regulated by ArlRS is the metal-independent fructose 1,6-bisphosphate aldolase fdaB, which functionally substitutes for the metal-dependent isoenzyme FbaA and enables S. aureus to survive host-imposed manganese starvation. Unexpectedly, and differing from most characterized metal-dependent aldolases, FbaA requires manganese for activity. Cumulatively, these findings reveal a new mechanism for overcoming nutritional immunity as well as the cofactor plasticity of even well-characterized metalloenzyme families.


Subject(s)
Manganese , Staphylococcal Infections , Animals , Mice , Manganese/metabolism , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Staphylococcus aureus/metabolism , Isoenzymes/metabolism , Metals/metabolism , Bacteria/metabolism , Aldehyde-Lyases/metabolism , Staphylococcal Infections/microbiology
16.
Arthritis Rheumatol ; 75(7): 1246-1261, 2023 07.
Article in English | MEDLINE | ID: mdl-36648920

ABSTRACT

OBJECTIVE: This study was undertaken to identify blood markers of juvenile dermatomyositis (DM) disease activity (DA), which are needed to improve disease management. METHODS: The study comprised a total of 123 juvenile DM patients and 53 healthy controls. Results of laboratory tests (aldolase, creatinine kinase, lactate dehydrogenase [LDH], aspartate aminotransferase) and clinical measures of DA in patients with juvenile DM, including the Manual Muscle Testing in 8 muscles (MMT-8), Childhood Myositis Assessment Scale (CMAS), and disease activity scores (DAS) (total DAS for juvenile DM, the muscle DAS, and the skin DAS), were recorded when available. Surface phenotype of peripheral blood mononuclear cells was assessed using flow cytometry. Whole blood transcriptional profiles were studied using either RNA-sequencing or microarrays. Differential gene expression was determined using DESeq and compared by pathway and gene ontology analyses. RESULTS: Conventional memory (CD27+IgD-) B cells expressing low CXCR5 levels (CXCR5low/- CM B cells) were significantly increased in frequency and absolute numbers in 2 independent cohorts of juvenile DM patients compared with healthy controls. The frequency of CD4+ Th2 memory cells (CD45RA-CXCR5-CCR6-CXCR3-) was also increased in juvenile DM, especially in patients who were within <1 year from diagnosis. The frequency of CXCR5low/- CM B cells correlated with serum aldolase levels and with a blood interferon-stimulated gene transcriptional signature. Furthermore, both the frequency and absolute numbers of CXCR5low/- CM B cells correlated with clinical and laboratory measures of muscle DA (MMT-8, CMAS, aldolase, and LDH). CONCLUSION: These findings suggest that both CM B cells lacking the CXCR5 follicular marker and CXCR5- Th2 cells represent potential biomarkers of DA in juvenile DM and may contribute to its pathogenesis.


Subject(s)
Dermatomyositis , Humans , Dermatomyositis/metabolism , Leukocytes, Mononuclear , T-Lymphocytes, Helper-Inducer/metabolism , CD4-Positive T-Lymphocytes/metabolism , Aldehyde-Lyases/metabolism
17.
Eur J Endocrinol ; 188(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36651165

ABSTRACT

OBJECTIVE: Adrenocortical carcinomas (ACCs) are invasive tumours arising in the adrenal cortex, and steroidogenic tumours are associated with worse prognostic outcomes. Loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1) cause primary adrenal insufficiency and as a key degradative enzyme in the sphingolipid pathway, SGPL1 also influences the balance of pro-proliferative and pro-apoptotic sphingolipids. We, therefore, hypothesized increased SGPL1 may be linked to increased disease severity in ACC. DESIGN: Analyse SGPL1 expression impact on patient survival and adrenal cancer cell phenotype. We analysed two ACC cohorts with survival and corresponding transcriptomic data, focusing on SGPL1 and sphingolipid pathway genes. In vitro, we generated SGPL1-knockout and overexpressing H295R adrenocortical cells to investigate the role of SGPL1 in cell signalling in ACCs. RESULTS: We found increased expression of several sphingolipid pathway receptors and enzymes, most notably SGPL1 correlated with reduced patient survival in both cohorts. Overexpression of SGPL1 in the H295R cell line increased proliferation and migration while reducing apoptosis, while SGPL1 knockout had the opposite effect. RNA-seq revealed a global increase in the expression of genes in the electron transport chain in overexpressing cells, correlating with increased aerobic respiration and glycolysis. Furthermore, the opposite phenotype was seen in cells lacking SGPL1. We subsequently found the increased proliferation is linked to metabolic substrate availability and increased capacity to use different fuel sources, but particularly glucose, in overexpressing cells. CONCLUSIONS: We, therefore, propose that SGPL1-overexpressing ACC tumours reduce patient survival by increasing fuel usage for anabolism and energy production to facilitate growth and invasion.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Humans , Adrenocortical Carcinoma/genetics , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Sphingolipids , Adrenal Cortex Neoplasms/genetics
18.
Pediatr Nephrol ; 38(3): 711-719, 2023 03.
Article in English | MEDLINE | ID: mdl-35748945

ABSTRACT

BACKGROUND: Recently, recessive mutations in SGPL1 (sphingosine-1-phosphate lyase), which encodes the final enzyme of sphingolipid metabolism, have been reported to cause steroid-resistant nephrotic syndrome, adrenal insufficiency, and many other organ/system involvements. We aimed to determine the clinical and genetic characteristics, and outcomes in patients with SGPL1 mutations. METHODS: The study included 6 patients with bi-allelic SGPL1 mutation. Clinical, genetic, and laboratory characteristics, and outcomes of the patients were evaluated retrospectively. We also reviewed previously reported patients with SGPL1 mutations and compared them to the presented patients. RESULTS: The median age at kidney presentation was 5 months. Four patients (67%) were diagnosed before age 1 year. Kidney biopsy showed focal segmental glomerulosclerosis in 2 patients and diffuse mesangial sclerosis in one patient. Steroids were given to 3 patients, but they did not respond. All 6 patients progressed to chronic kidney disease; 5 required kidney replacement therapy (KRT) at a median age of 6 months. Deceased kidney transplantation was performed in one patient. All 6 patients had adrenal insufficiency, of which 5 were diagnosed at age < 6 months. Three patients had hypothyroidism, 2 had ichthyosis, 4 had immunodeficiency, 5 had neurological findings, and 2 had genitourinary system anomalies. Four patients died at a median age of 30.5 months. Two patients are being followed up with KRT. One patient had a novel mutation. CONCLUSIONS: Patients with SGPL1 mutations have a poor prognosis, and many types of extrarenal organ/system involvement beyond adrenal insufficiency can be seen. Genetic diagnosis of such patients is important for treatment, genetic counseling, and screening for comorbid conditions. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Adrenal Insufficiency , Nephrotic Syndrome , Humans , Infant , Child, Preschool , Nephrotic Syndrome/etiology , Nephrotic Syndrome/genetics , Retrospective Studies , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Syndrome
19.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235018

ABSTRACT

Enzyme immobilization is a technology that enables (bio-)catalysts to be applied in continuous-flow systems. However, there is a plethora of immobilization methods available with individual advantages and disadvantages. Here, we assessed the influence of simple and readily available methods with respect to the performance of 2-deoxy-d-ribose-5-phosphate aldolase (DERA) in continuous-flow conditions. The investigated immobilization strategies cover the unspecific attachment to carriers via epoxides, affinity-based attachment via metal ion affinity, StrepTag™-StrepTactin™ interaction as well as the covalent affinity attachment of an enzyme to a matrix tethered by the HaloTag®. The metal-ion-affinity-based approach outperformed the other methods in terms of immobilized activity and stability under applied conditions. As most enzymes examined today already have a HisTag for purification purposes, effective immobilization may be applied, as simple as a standard purification, if needed.


Subject(s)
Acetaldehyde , Fructose-Bisphosphate Aldolase , Aldehyde-Lyases/metabolism , Enzyme Stability , Enzymes, Immobilized/metabolism , Epoxy Compounds
20.
J Lipid Res ; 63(10): 100279, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36100091

ABSTRACT

The unfolded protein response (UPR) is an elaborate signaling network that evolved to maintain proteostasis in the endoplasmic reticulum (ER) and mitochondria (mt). These organelles are functionally and physically associated, and consequently, their stress responses are often intertwined. It is unclear how these two adaptive stress responses are coordinated during ER stress. The inositol-requiring enzyme-1 (IRE1), a central ER stress sensor and proximal regulator of the UPRER, harbors dual kinase and endoribonuclease (RNase) activities. IRE1 RNase activity initiates the transcriptional layer of the UPRER, but IRE1's kinase substrate(s) and their functions are largely unknown. Here, we discovered that sphingosine 1-phosphate (S1P) lyase (SPL), the enzyme that degrades S1P, is a substrate for the mammalian IRE1 kinase. Our data show that IRE1-dependent SPL phosphorylation inhibits SPL's enzymatic activity, resulting in increased intracellular S1P levels. S1P has previously been shown to induce the activation of mitochondrial UPR (UPRmt) in nematodes. We determined that IRE1 kinase-dependent S1P induction during ER stress potentiates UPRmt signaling in mammalian cells. Phosphorylation of eukaryotic translation initiation factor 2α (eif2α) is recognized as a critical molecular event for UPRmt activation in mammalian cells. Our data further demonstrate that inhibition of the IRE1-SPL axis abrogates the activation of two eif2α kinases, namely double-stranded RNA-activated protein kinase (PKR) and PKR-like ER kinase upon ER stress. These findings show that the IRE1-SPL axis plays a central role in coordinating the adaptive responses of ER and mitochondria to ER stress in mammalian cells.


Subject(s)
RNA, Double-Stranded , Unfolded Protein Response , Animals , Phosphorylation , Endoribonucleases/genetics , Endoplasmic Reticulum Stress , Protein Serine-Threonine Kinases/genetics , Aldehyde-Lyases/metabolism , Ribonucleases/metabolism , Inositol , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...