Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.615
Filter
1.
Food Res Int ; 186: 114372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729730

ABSTRACT

The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.


Subject(s)
Gas Chromatography-Mass Spectrometry , Hot Temperature , Oxidation-Reduction , Aldehydes/chemistry , Aldehydes/analysis , Palmitates/chemistry , Palmitic Acid/chemistry , Ketones/chemistry , Carboxylic Acids/chemistry
2.
Food Res Int ; 183: 114183, 2024 May.
Article in English | MEDLINE | ID: mdl-38760123

ABSTRACT

A large number of volatile compounds are formed during the baking of foods by reactions such as caramelization and Maillard reactions. Elucidating the reaction mechanisms may be useful to predict and control food quality. Ten reaction volatile markers were extracted during baking of solid model cakes implemented with known amounts of precursors (glucose with or without leucine) and then quantified by Thermal desorption-Gas chromatography-Mass spectrometry. The kinetic data showed that the level of air convection in the oven had no significant influence on the reaction rates. In contrast, increasing baking temperatures had a nonlinear accelerating impact on the generation of newly formed volatile compounds with a bell-shaped kinetic curve found for most of the markers at 200 °C. The presence of leucine triggered the activation of the Maillard and Strecker routes with a specific and very rapid formation of 3-Methylbutanal and pyrazines. A dynamic model was developed, combining evaporation flow rate and kinetic formation and consumption of reaction markers. It can be used to describe, for two furanic compounds of different volatilities, the vapor concentrations in the oven from the concentrations measured in the model cakes.


Subject(s)
Cooking , Gas Chromatography-Mass Spectrometry , Glucose , Hot Temperature , Leucine , Maillard Reaction , Volatile Organic Compounds , Kinetics , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Cooking/methods , Glucose/chemistry , Glucose/analysis , Leucine/chemistry , Aldehydes/analysis , Aldehydes/chemistry , Pyrazines/analysis , Pyrazines/chemistry
3.
Food Res Int ; 187: 114330, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763633

ABSTRACT

Processing technology plays a crucial role in the formation of tea aroma. The dynamic variations in volatile metabolites across different processing stages of fresh scent green tea (FSGT) were meticulously tracked utilizing advanced analytical techniques such as GC-E-Nose, GC-MS, and GC × GC-TOFMS. A total of 244 volatile metabolites were identified by GC-MS and GC × GC-TOFMS, among which 37 volatile compounds were concurrently detected by both methods. Spreading and fixation stages were deemed as pivotal processes for shaping the volatile profiles in FSGT. Notably, linalool, heptanal, 2-pentylfuran, nonanal, ß-myrcene, hexanal, 2-heptanone, pentanal, 1-octen-3-ol, and 1-octanol were highlighted as primary contributors to the aroma profiles of FSGT by combining odor activity value assessment. Furthermore, lipid degradation and glycoside hydrolysis were the main pathways for aroma formation of FSGT. The results not only elucidate the intricate variations in volatile metabolites but also offer valuable insights into enhancing the processing techniques for improved aroma quality of green tea.


Subject(s)
Food Handling , Gas Chromatography-Mass Spectrometry , Odorants , Tea , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Tea/chemistry , Food Handling/methods , Electronic Nose , Aldehydes/analysis , Aldehydes/metabolism , Acyclic Monoterpenes/metabolism , Acyclic Monoterpenes/analysis , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Ketones/analysis , Ketones/metabolism , Octanols
4.
Food Res Int ; 187: 114323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763630

ABSTRACT

The balance regulation between characteristic aroma and hazards in high-temperature processed fish is a hot spot. This study was aimed to explore the interactive relationship between the nutritional value, microstructures, aroma, and harmful substances of hairtail under different frying methods including traditional frying (TF), air frying (AF), and vacuum frying (VF) via chemical pattern recognition. The results indicated that VF-prepared hairtail could form a crunchy mouthfeel and retain the highest content of protein (645.53 mg/g) and the lowest content of fat (242.03 mg/g). Vacuum frying reduced lipid oxidation in hairtail, resulting in the POV reaching 0.02 mg/g, significantly lower than that of TF (0.05 mg/g) and AF (0.21 mg/g), and TBARS reached 0.83 mg/g, significantly lower than that of AF (1.96 mg/g) (P < 0.05), respectively. Notable variations were observedin the aroma profileof hairtail preparedfrom different frying methods. Vacuum frying of hairtail resulted in higher levels of pyrazines and alcohols, whereas traditional frying and air frying were associated with the formation of aldehydes and ketones, respectively. Air frying was not a healthy way to cook hairtail which produced the highest concentration of harmful substances (up to 190.63 ng/g), significantly higher than VF (5.72 ng/g) and TF (52.78 ng/g) (P < 0.05), especially norharman (122.57 ng/g), significantly higher than VF (4.50 ng/g) and TF (32.63 ng/g) (P < 0.05). Norharman and acrylamide were the key harmful substances in hairtail treated with traditional frying. The vacuum frying method was an excellent alternative for deep-fried hairtail as a snack food with fewer harmful substances and a fine aroma, providing a theoretic guidance for preparing healthy hairtail food with high nutrition and superior sensory attraction.


Subject(s)
Cooking , Hot Temperature , Odorants , Animals , Cooking/methods , Odorants/analysis , Aldehydes/analysis , Nutritive Value , Perciformes , Volatile Organic Compounds/analysis , Pyrazines/analysis , Pyrazines/chemistry , Seafood/analysis
5.
Food Res Int ; 187: 114398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763656

ABSTRACT

Nowadays, it is important to monitor the freshness of meat during storage to protect consumers' health. Volatile organic compounds (VOCs) are responsible for odour and taste of food, and they give an indication about meat quality and freshness. This study had the aim to seek and select potential new markers of meat spoilage through a semi-quantitative analysis in five types of meat (beef, raw and baked ham, pork sausage and chicken) and then to develop a new quantitative analytical method to detect and quantify potential markers on five types of meat simultaneously. Firstly, a new headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method was developed to evaluate the volatile profile of five types of meat, preserved at 4 °C for 5 days. Among the 40 compounds identified, 15 were chosen and selected as potential shelf-life markers on the basis of their presence in most of meat samples or/and for their constant increasing/decreasing trend within the sample. Afterwards, a quantitative HS-SPME-GC-MS analytical method was developed to confirm which VOCs can be considered markers of shelf-life for these meat products, stored at 4 °C for 12 days. Some of the compounds analyzed attracted attention as they can be considered markers of shelf-life for at least 4 types of meat: 1-butanol, 3-methylbutanol, 1-hexanol, 2-nonanone, nonanal, 1-octen-3-ol and linalool. In conclusion, in this study a new quantitative HS-SPME-GC-MS analytical method to quantity 15 VOCs in five types of meat was developed and it was demonstrated that some of the compounds quantified can be considered markers of shelf-life for some of the meat products analyzed.


Subject(s)
Food Storage , Gas Chromatography-Mass Spectrometry , Meat Products , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Meat Products/analysis , Animals , Swine , Odorants/analysis , Cattle , Aldehydes/analysis , Chickens , Ketones/analysis , Pentanols/analysis , Acyclic Monoterpenes/analysis , Octanols
6.
Sci Total Environ ; 931: 173024, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38719048

ABSTRACT

Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. ß-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on ß-cyclocitral levels in water. Here, we conducted a study on the ß-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), ß-cyclocitral in the water (Wcyc), ß-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, ß-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of ß-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit ß-cyclocitral, the release of ß-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of ß-cyclocitral.


Subject(s)
Eutrophication , Odorants , Water Pollutants, Chemical , Odorants/analysis , Water Pollutants, Chemical/analysis , Aldehydes/analysis , Plants , Nutrients/analysis , Environmental Monitoring , Diterpenes
7.
J Chromatogr A ; 1722: 464866, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581976

ABSTRACT

The detection of aromatic aldehydes, considered potential genotoxic impurities, holds significant importance during drug development and production. Current analytical methods necessitate complex pre-treatment processes and exhibit insufficient specificity and sensitivity. This study presents the utilization of naphthalenediimide as a pre-column derivatisation reagent to detect aromatic aldehyde impurities in pharmaceuticals via high-performance liquid chromatography (HPLC). We screened a series of derivatisation reagents through density functional theory (DFT) and investigated the phenomenon of photoinduced electron transfer (PET) for both the derivatisation reagents and the resulting products. Optimal experimental conditions for derivatisation were achieved at 40 °C for 60 min. This approach has been successfully applied to detect residual aromatic aldehyde genotoxic impurities in various pharmaceutical preparations, including 4-Nitrobenzaldehyde, 2-Nitrobenzaldehyde, 1,4-Benzodioxane-6-aldehyde, and 5-Hydroxymethylfurfural. The pre-column derivatisation method significantly enhanced detection sensitivity and reduced the limit of detection (LOD), which ranged from 0.002 to 0.008 µg/ml for the analytes, with relative standard deviations < 3 %. The correlation coefficient (R2) >0.998 demonstrated high quality. In chloramphenicol eye drops, the concentration of 4-Nitrobenzaldehyde was measured to be 8.6 µg/mL below the specified concentration, with recoveries ranging from 90.0 % to 119.2 %. In comparison to existing methods, our work simplifies the pretreatment process, enhances the sensitivity and specificity of the analysis, and offers comprehensive insights into impurity detection in pharmaceutical preparations.


Subject(s)
Aldehydes , Drug Contamination , Imides , Limit of Detection , Naphthalenes , Chromatography, High Pressure Liquid/methods , Naphthalenes/chemistry , Naphthalenes/analysis , Aldehydes/analysis , Aldehydes/chemistry , Imides/chemistry , Mutagens/analysis , Mutagens/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Benzaldehydes/chemistry , Benzaldehydes/analysis
8.
J Oleo Sci ; 73(5): 813-821, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583980

ABSTRACT

Gas chromatography-olfactory-mass spectrometry (GC-O-MS) combined with Aroma Extract Dilution Analysis (AEDA) were employed to characterize the key odor-active compounds in sesame paste (SP) and dehulled sesame paste (DSP). The AEDA results revealed the presence of 32 and 22 odor-active compounds in SP and DSP, respectively. Furthermore, 13 aroma compounds with FD ≥ 2, OAV ≥ 1, and VIP ≥ 1 were identified as key differential aroma compounds between SP and DSP. Specifically, compounds such as 3-methylbutyraldehyde (OAV = 100.70-442.57; fruity), 2-methylbutyraldehyde (OAV = 106.89-170.31; almond), m-xylene (FD = 16; salty pastry), and 2,5-dimethylpyrazine (FD = 8-16; roasted, salty pastry) played an important role in this differentiation. Additionally, the dehulling process led to increased fermented, sweet, green, and nutty aroma notes in DSP compared to the more pronounced burnt and roasted sesame aroma notes in SP. Our findings offer a theoretical foundation for the regulation of sesame paste aroma profiles.


Subject(s)
Food Handling , Gas Chromatography-Mass Spectrometry , Odorants , Sesamum , Sesamum/chemistry , Odorants/analysis , Food Handling/methods , Pyrazines/analysis , Xylenes/analysis , Aldehydes/analysis , Taste , Flavoring Agents/analysis , Volatile Organic Compounds/analysis
9.
J Mass Spectrom ; 59(5): e5022, 2024 May.
Article in English | MEDLINE | ID: mdl-38659190

ABSTRACT

The quantitative analysis of SJA6017, a peptide aldehyde inhibitor of calpain (Calpain Inhibitor VI), has encountered challenges in preclinical drug studies. The complex reverse-phase HPLC chromatographic behavior exhibits two peaks, each containing multiple species. An liquid chromatography-mass spectrometry (LC-MS/MS) study proposed an explanation for this phenomenon, caused by the amide aldehyde structure of SJA6017. Four chemical species corresponding to the two HPLC peaks have been identified as SJA6017 and its methyl hemiacetal, methyl enol ether, and gem-diol. In many instances of preclinical studies, methanol is favored as a substitute for DMSO. The hemiacetal is formed when the amide-activated peptide aldehyde reacts with methanol, which can then be further dehydrated in the mass spectrometer ion source under high temperature to form the methyl enol ether. The hemiacetal and gem-diol can also be decomposed to SJA6017 in the ion source. Additionally, the amide-activated peptide aldehyde can easily hydrate to the gem-diol of SJA6017 during sample incubation or sample preparation. The hemiacetal and gem-diol of SJA6017 are stable enough to have different retention times in the liquid chromatography, which explains why SJA6017 appears as two peaks, each containing multiple species. An LC-MS/MS tandem quadrupole mass spectrometer quantitative analysis method is proposed, enabling the analysis of these types of samples. This work serves as both an illustrative example and a cautionary note for mass analysis, sample incubations, and sample preparations involving compounds of peptide aldehyde, including similar aldehyde-containing metabolites, especially when methanol is present. This study provides the information needed to understand peptide aldehyde behavior at various steps of preclinical in vitro studies in the presence of methanol. It has assisted in the development of the SJA6017 bioanalysis method and will also aid in the development of bioanalysis methods for similar peptide aldehydes.


Subject(s)
Aldehydes , Peptides , Aldehydes/analysis , Aldehydes/chemistry , Chromatography, High Pressure Liquid/methods , Liquid Chromatography-Mass Spectrometry , Peptides/chemistry , Peptides/analysis , Tandem Mass Spectrometry/methods
10.
Food Res Int ; 182: 114077, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519167

ABSTRACT

Fruits flavor deterioration is extremely likely to occur during post-harvest storage, which not only damages quality but also seriously affects its market value. This work focuses on the study of fruits deterioration odorants during storage by describing their chemical compositions (i.e., alcohols, aldehydes, acids, and sulfur-containing compounds). Besides, the specific flavor deterioration mechanisms (i.e., fermentation metabolism, lipid oxidation, and amino acid degradation) inducing by factors (temperature, oxygen, microorganisms, ethylene) are summarized. Moreover, quality control strategies to mitigate fruits flavor deterioration by physical (temperature control, hypobaric treatment, UV-C, CA) and chemical (1-MCP, MT, NO, MeJA) techniques are also proposed. This review will provide useful references for fruits flavor control technologies development.


Subject(s)
Fruit , Odorants , Fruit/chemistry , Aldehydes/analysis , Alcohols/analysis , Fermentation
11.
Anal Chem ; 96(13): 5289-5297, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507224

ABSTRACT

Paper spray mass spectrometry (PS-MS) has evolved into a promising tool for monitoring reactions in thin films and microdroplets, known as reactive PS, alongside its established role in ambient and direct ionization. This study addresses the need for rapid, cost-effective methods to improve analyte identification in biofluids by leveraging reactive PS-MS in clinical chemistry environments. The technique has proven effective in derivatizing target analytes, altering hydrophobicity to enhance elution and ionization efficiency, and refining detection through thin-film reactions on paper, significantly expediting reaction rates by using amino acids (AAs) as model analytes. These molecules are prone to interacting with substrates like paper, impeding elution and detection. Additionally, highly abundant species in biofluids, such as lipids, often suppress AA ionization. This study employs the Schiff base (SB) reaction utilizing aromatic aldehydes for AA derivatization to optimize reaction conditions time, temperature, and catalyst presence and dramatically increasing the conversion ratio (CR) of formed SB. For instance, using leucine as a model AA, the CR surged from 57% at room temperature to 89% at 70 °C, with added pyridine during and after 7.5 min, displaying a 43% CR compared to the bulk reaction. Evaluation of various aromatic aldehydes as derivatization agents highlighted the importance of specific oxygen substituents for achieving higher conversion rates. Furthermore, diverse derivatization agents unveiled unique fragmentation pathways, aiding in-depth annotation of the target analyte. Successfully applied to quantify AAs in human and rat plasma, this reactive PS-MS approach showcases promising potential in efficiently detecting conventionally challenging compounds in PS-MS analysis.


Subject(s)
Amino Acids , Schiff Bases , Humans , Animals , Rats , Mass Spectrometry/methods , Amines , Aldehydes/analysis
12.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474451

ABSTRACT

This study focuses on the behavior of volatile organic compounds in beef after irradiation with 1 MeV accelerated electrons with doses ranging from 0.25 kGy to 5 kGy to find reliable dose-dependent markers that could be used for establishing an effective dose range for beef irradiation. GC/MS analysis revealed that immediately after irradiation, the chemical yield and accumulation rate of lipid oxidation-derived aldehydes was higher than that of protein oxidation-derived aldehydes. The nonlinear dose-dependent relationship of the concentration of volatile organic compounds was explained using a mathematical model based on the simultaneous occurrence of two competing processes: decomposition of volatile compounds due to direct and indirect action of accelerated electrons, and accumulation of volatile compounds due to decomposition of other compounds and biomacromolecules. A four-day monitoring of the beef samples stored at 4 °C showed that lipid oxidation-derived aldehydes, protein oxidation-derived aldehydes and alkanes as well as alcohol ethanol as an indicator of bacterial activity were dose-dependent markers of biochemical processes occurring in the irradiated beef samples during storage: oxidative processes during direct and indirect action of irradiation, oxidation due to the action of reactive oxygen species, which are always present in the product during storage, and microbial-enzymatic processes. According to the mathematical model of the change in the concentrations of lipid oxidation-derived aldehydes over time in the beef samples irradiated with different doses, it was found that doses ranging from 0.25 kGy to 1 kGy proved to be most effective for beef irradiation with accelerated electrons, since this dose range decreases the bacterial content without considerable irreversible changes in chemical composition of chilled beef during storage.


Subject(s)
Volatile Organic Compounds , Animals , Cattle , Electrons , Oxidation-Reduction , Lipids , Aldehydes/analysis
13.
Food Chem ; 446: 138782, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38402765

ABSTRACT

Flaxseed milk is a plant-based dairy alternative that is rich in nutrients. Due to the low concentration of odor compounds in flaxseed milk, it cannot be completely extracted. This poses significant challenges for analysis. Therefore, this study developed a method suitable for extracting volatile compounds from flaxseed milk and compared it with three other extraction methods. It was found that Stir Bar Sorptive Extraction had the best extraction performance, identifying 39 odorants. Flavor dilution factors ranged from 1 to 512, with higher values observed for esters. 13 key odor compounds were identified (odor activity value > 1) using the external standard method for quantification; these included four aldehydes, three pyrazines, two alcohols, two esters, and two other compounds. Pyrazine compounds exhibited the highest concentrations. Aroma recombination and omission experiments showed that nine key odorants contributed significantly to the flavor profile of flaxseed milk, imparting aroma of cucumber, green, mushroom, fruity, sweet, and coconut.


Subject(s)
Flax , Volatile Organic Compounds , Animals , Odorants/analysis , Milk/chemistry , Gas Chromatography-Mass Spectrometry/methods , Aldehydes/analysis , Volatile Organic Compounds/analysis , Olfactometry/methods
14.
Molecules ; 29(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338351

ABSTRACT

Sweet potato provides rich nutrients and bioactive substances for the human diet. In this study, the volatile organic compounds of five pigmented-fleshed sweet potato cultivars were determined, the characteristic aroma compounds were screened, and a correlation analysis was carried out with the aroma precursors. In total, 66 volatile organic compounds were identified. Terpenoids and aldehydes were the main volatile compounds, accounting for 59% and 17%, respectively. Fifteen compounds, including seven aldehydes, six terpenes, one furan, and phenol, were identified as key aromatic compounds for sweet potato using relative odor activity values (ROAVs) and contributed to flower, sweet, and fat flavors. The OR sample exhibited a significant presence of trans-ß-Ionone, while the Y sample showed high levels of benzaldehyde. Starch, soluble sugars, 20 amino acids, and 25 fatty acids were detected as volatile compounds precursors. Among them, total starch (57.2%), phenylalanine (126.82 ± 0.02 g/g), and fatty acids (6.45 µg/mg) were all most abundant in Y, and LY contained the most soluble sugar (14.65%). The results of the correlation analysis revealed the significant correlations were identified between seven carotenoids and trans-ß-Ionone, soluble sugar and nerol, two fatty acids and hexanal, phenylalanine and 10 fatty acids with benzaldehyde, respectively. In general, terpenoids and aldehydes were identified as the main key aromatic compounds in sweet potatoes, and carotenoids had more influence on the aroma of OR than other cultivars. Soluble sugars, amino acids, and fatty acids probably serve as important precursors for some key aroma compounds in sweet potatoes. These findings provide valuable insights for the formation of sweet potato aroma.


Subject(s)
Ipomoea batatas , Norisoprenoids , Solanum tuberosum , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Benzaldehydes , Ipomoea batatas/chemistry , Carotenoids , Odorants/analysis , Terpenes , Aldehydes/analysis , Sugars , Fatty Acids , Phenylalanine , Starch
15.
Phytochem Anal ; 35(3): 567-578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38191129

ABSTRACT

INTRODUCTION: Quisqualis indica L. (QIL) has a long history as a traditional Chinese herb in China, but the study of volatile components in QIL from different geographical sources has been relatively rare. OBJECTIVES: To establish an optimal headspace gas chromatography-mass spectrometry (HS-GC-MS) method to comprehensively analyse the volatile component profile and screen quality markers of QIL from different origins. METHODS: Response surface methodology (RSM) was used to optimise the conditions for headspace analysis. The volatile components of QIL from four main origins of southwest China were analysed and identified by HS-GC-MS. The similarity of all samples of QIL was evaluated by fingerprint. The differences of the volatile components in QIL from different origins were distinguished by chemometrics. RESULTS: According to the optimal conditions of RSM, a total of 31 volatile components were identified, including fatty acids, aldehydes, alcohols, alkyl pyrazines, and other volatile components. Similarity evaluation presented that there were 26 common volatile components with different contents in all samples. Principal component analysis (PCA) showed that QIL from four different origins could be roughly divided into four categories. Hierarchical cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) indicated that QIL from different origins had obvious regional characteristics. CONCLUSION: The optimised HS-GC-MS method provided a strategy to rapidly, effectively, and accurately elucidate the volatile component profile of QIL from different origins, and seven important differential components were screened for quality evaluation and origin traceability.


Subject(s)
Chemometrics , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Cluster Analysis , Aldehydes/analysis , Alcohols/analysis , Volatile Organic Compounds/analysis
16.
J Food Sci ; 89(2): 998-1011, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161275

ABSTRACT

Effects of light or dark storage condition on the profile changes of volatile and non-volatile compounds were evaluated in dried and baked laver for 60 days. Volatile and non-volatile compounds were analyzed using gas chromatography-mass selective detection and high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry, respectively. Baked laver stored in light conditions for 60 days produced the most volatile compounds, whereas dried laver stored in the dark produced the least volatile compounds. Total 11 classes of volatile compounds were detected, including alkanes, alkenes, and ketones, with aldehydes being most abundant in dried laver stored under light. Metabolite analysis of non-volatile compounds led to the selection of 12 compounds with a higher variable importance projection (VIP) value of >1.0: 6 fatty acids (VIP 1.2-2.0), 2 flavanols (VIP 1.3-1.8), hydroxybenzoic acid (VIP 1.5), hydroxycinnamic acid (VIP 2.3), a phenolic acid ester (VIP 1.9), and phloroglucinol (VIP 1.2). Generally, levels of these compounds decreased more following storage in the light than under dark, irrespective of laver preparation. The content of linolenic acid was particularly affected by storage conditions, with light conditions causing a fourfold reduction in linolenic acid level compared with dark conditions, which could result in an increased formation of aldehydes. Gallic acid and sinapinic acid were detected in dried but not baked laver, as they are destroyed by heat treatment. Therefore, laver should be baked and stored in dark conditions to prevent the development of rancidity. PRACTICAL APPLICATION: Laver is one of the representative seaweeds, and the popularity among consumers increases. Although commercially available laver is prepared in dried or baked condition, scientific studies on the changes of metabolites, including volatile and non-volatile compounds during storage, are scarce. The results of this study can be applied to improve proper storage methods to maintain the quality of laver, which can be beneficial for consumers and food industry.


Subject(s)
Edible Seaweeds , Porphyra , Volatile Organic Compounds , Porphyra/chemistry , Aldehydes/analysis , Linolenic Acids , Volatile Organic Compounds/chemistry
17.
J Agric Food Chem ; 72(4): 1995-2007, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-36848621

ABSTRACT

The aim of this study was the optimization and validation of a green, robust, and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines that could be added as a new quality control tool for the evaluation of a complete fermentation, correct winemaking style, and proper bottling and storage. A HS-SPME-GC-MS/MS method was optimized and automated using the autosampler to improve overall performance. A solvent-less technique and a strong minimization of all volumes were implemented to comply with the green analytical chemistry principles. There were as many as 44 VCC (mainly linear aldehydes, Strecker aldehydes, unsaturated aldehydes, ketones, and many other) analytes under investigation. All compounds showed a good linearity, and the LOQs were abundantly under the relevant perception thresholds. Intraday, 5-day interday repeatability, and recovery performances in a spiked real sample were evaluated showing satisfactory results. The method was applied to determine the evolution of VCCs in white and red wines after accelerated aging for 5 weeks at 50 °C. Furans and linear and Strecker aldehydes were the compounds that showed the most important variation; many VCCs increased in both classes of samples, whereas some showed different behaviors between white and red cultivars. The obtained results are in strong accordance with the latest models on carbonyl evolution related to wine aging.


Subject(s)
Volatile Organic Compounds , Wine , Tandem Mass Spectrometry , Wine/analysis , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Solid Phase Microextraction/methods , Aldehydes/analysis , Volatile Organic Compounds/analysis
18.
J Agric Food Chem ; 72(4): 1902-1913, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-36988295

ABSTRACT

3S-Gluthathionylhexanal (glut3SHal) is an early precursor to the important wine aroma compound 3-sulfanylhexan-1-ol (3SH), imparting tropical passion fruit aromas, even at trace concentrations. In wine, glut3SHal occurs in equilibrium with its bisulfite adduct (glut3SH-SO3), challenging its quantification. To circumvent the issues encountered when attempting to describe the equilibrium between these compounds, a method for their quantification in wine samples was developed. Separation of glut3SHal and glut3SH-SO3 using solid-phase extraction followed by oxime derivatization and analysis via liquid chromatography-mass spectrometry allowed for measurement of both compounds in wine samples. Analysis of commercial Sauvignon Blanc wines using the developed method confirmed that glut3SH-SO3 is the major species in the wine matrix. The method developed in this work will enable further exploration of the relationship between glut3SHal and glut3SH-SO3 and their contribution to production of 3SH in wines. There is potential to extrapolate this work to explore other aldehyde-sulfonic acid equilibria in foods and beverages.


Subject(s)
Vitis , Wine , Wine/analysis , Aldehydes/analysis , Solid Phase Extraction , Fruit/chemistry , Beverages/analysis , Odorants/analysis , Sulfhydryl Compounds/analysis , Vitis/chemistry
19.
mSystems ; 9(1): e0080323, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38064548

ABSTRACT

Aliphatic carboxylic acids, aldehydes, and ketones play diverse roles in microbial adaptation to their microenvironment, from excretion as toxins to adaptive metabolites for membrane fluidity. However, the spatial distribution of these molecules throughout biofilms and how microbes in these environments exchange these molecules remain elusive for many of these bioactive species due to inefficient molecular imaging strategies. Herein, we apply on-tissue chemical derivatization (OTCD) using 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) on a co-culture of a soil bacterium (Bacillus subtilis NCIB 3610) and fungus (Fusarium sp. DS 682) grown on agar as our model system. Using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we spatially resolved more than 300 different metabolites containing carbonyl groups within this model system. Various spatial patterns are observable in these species, which indicate possible extracellular or intercellular processes of the metabolites and their up- or downregulation during microbial interaction. The unique chemistry of our approach allowed us to bring additional confidence in accurate carbonyl identification, especially when multiple isomeric candidates were possible, and this provided the ability to generate hypotheses about the potential role of some aliphatic carbonyls in this B. subtilis/Fusarium sp. interaction. The results shown here demonstrate the utility of 4-ABEBA-based OTCD MALDI-MSI in probing interkingdom interactions directly from microbial co-cultures, and these methods will enable future microbial interaction studies with expanded metabolic coverage.IMPORTANCEThe metabolic profiles within microbial biofilms and interkingdom interactions are extremely complex and serve a variety of functions, which include promoting colonization, growth, and survival within competitive and symbiotic environments. However, measuring and differentiating many of these molecules, especially in an in situ fashion, remains a significant analytical challenge. We demonstrate a chemical derivatization strategy that enabled highly sensitive, multiplexed mass spectrometry imaging of over 300 metabolites from a model microbial co-culture. Notably, this approach afforded us to visualize over two dozen classes of ketone-, aldehyde-, and carboxyl-containing molecules, which were previously undetectable from colonies grown on agar. We also demonstrate that this chemical derivatization strategy can enable the discrimination of isobaric and isomeric metabolites without the need for orthogonal separation (e.g., online chromatography or ion mobility). We anticipate that this approach will further enhance our knowledge of metabolic regulation within microbiomes and microbial systems used in bioengineering applications.


Subject(s)
Aldehydes , Carboxylic Acids , Agar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Aldehydes/analysis , Carboxylic Acids/analysis , Ketones/analysis , Microbial Interactions
20.
Environ Sci Pollut Res Int ; 31(12): 17670-17677, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37227637

ABSTRACT

Indoor air quality (IAQ) has attracted a lot of attention due to its complexity and direct effect on human health. Indoor settings in libraries entail various volatile organic compounds (VOCs) linked to the aging and degradation of print material. The effect of the storage environment on paper life expectancy was investigated by targeting the VOC emissions of old and new books using headspace solid phase micro extraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS) analysis. "Sniffing" of book degradation markers showed both ubiquitously and infrequently occurring VOCs. Old book "degradomics" revealed mostly alcohols (57%) and ethers (12%), whereas new books resulted mainly to ketones (40%) and aldehydes (21%). Chemometric processing of the results with principal component analysis (PCA) corroborated our initial observations and was able to discriminate the books by age into three groups: very old books (from the 1600 s to mid-1700), old books (from the 1800s to the early 1900s), and modern books (from the mid-twentieth century onwards) based on their gaseous markers. The measured mean concentrations of selected VOCs (acetic acid, furfural, benzene, and toluene) were below the respective guidelines set for similar places (i.e. museums). The applied non-invasive, green analytical methodology (HS-SPME-GC/MS) can assist librarians, stakeholders, and researchers to evaluate the IAQ, as well as the degree of degradation, and take the appropriate measures for book restoration and monitoring protocols.


Subject(s)
Solid Phase Microextraction , Volatile Organic Compounds , Humans , Solid Phase Microextraction/methods , Aldehydes/analysis , Volatile Organic Compounds/analysis , Acetic Acid , Books , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...