Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35163833

ABSTRACT

Preventing the cytokine storm observed in COVID-19 is a crucial goal for reducing the occurrence of severe acute respiratory failure and improving outcomes. Here, we identify Aldo-Keto Reductase 1B10 (AKR1B10) as a key enzyme involved in the expression of pro-inflammatory cytokines. The analysis of transcriptomic data from lung samples of patients who died from COVID-19 demonstrates an increased expression of the gene encoding AKR1B10. Measurements of the AKR1B10 protein in sera from hospitalised COVID-19 patients suggests a significant link between AKR1B10 levels and the severity of the disease. In macrophages and lung cells, the over-expression of AKR1B10 induces the expression of the pro-inflammatory cytokines Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß) and Tumor Necrosis Factor a (TNFα), supporting the biological plausibility of an AKR1B10 involvement in the COVID-19-related cytokine storm. When macrophages were stressed by lipopolysaccharides (LPS) exposure and treated by Zopolrestat, an AKR1B10 inhibitor, the LPS-induced production of IL-6, IL-1ß, and TNFα is significantly reduced, reinforcing the hypothesis that the pro-inflammatory expression of cytokines is AKR1B10-dependant. Finally, we also show that AKR1B10 can be secreted and transferred via extracellular vesicles between different cell types, suggesting that this protein may also contribute to the multi-organ systemic impact of COVID-19. These experiments highlight a relationship between AKR1B10 production and severe forms of COVID-19. Our data indicate that AKR1B10 participates in the activation of cytokines production and suggest that modulation of AKR1B10 activity might be an actionable pharmacological target in COVID-19 management.


Subject(s)
Aldo-Keto Reductases/physiology , COVID-19/genetics , Cytokine Release Syndrome/genetics , Respiratory Distress Syndrome/genetics , Aldo-Keto Reductases/antagonists & inhibitors , Aldo-Keto Reductases/genetics , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Cells, Cultured , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Patient Acuity , RAW 264.7 Cells , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/physiology , Transcriptome
2.
J Pharmacol Sci ; 147(1): 1-8, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34294359

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are widely utilized in clinical practice to treat carcinomas, but secondary tumor resistance during chronic treatment can be problematic. AKR1B1 and AKR1B10 of the aldo-keto reductase (AKR) superfamily are highly expressed in cancer cells and are believed to be involved in drug resistance. The aim of this study was to understand how TKI treatment of chronic myelogenous leukemia (CML) cells changes their glucose metabolism and if inhibition of AKRs can sensitize CML cells to TKIs. K562 cells were treated with the TKIs imatinib, nilotinib, or bosutinib, and the effects on glucose metabolism, cell death, glutathione levels, and AKR levels were assessed. To assess glucose dependence, cells were cultured in normal and low-glucose media. Pretreatment with AKR inhibitors, including epalrestat, were used to determine AKR-dependence. Treatment with TKIs increased intracellular glucose, AKR1B1/10 levels, glutathione oxidation, and nuclear translocation of nuclear factor erythroid 2-related factor 2, but with minimal cell death. These effects were dependent on intracellular glucose accumulation. Pretreatment with epalrestat, or a selective inhibitor of AKR1B10, exacerbated TKI-induced cell death, suggesting that especially AKR1B10 was involved in protection against TKIs. Thus, by disrupting cell protective mechanisms, AKR inhibitors may render CML more susceptible to TKI treatments.


Subject(s)
Aldo-Keto Reductases/antagonists & inhibitors , Drug Synergism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Aldehyde Reductase , Aldo-Keto Reductases/metabolism , Aldo-Keto Reductases/physiology , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Drug Resistance, Neoplasm , Glucose/metabolism , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Nitriles/pharmacology , Nitriles/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Rhodanine/analogs & derivatives , Rhodanine/pharmacology , Rhodanine/therapeutic use , Thiazolidines/pharmacology , Thiazolidines/therapeutic use
3.
Br J Cancer ; 118(7): 985-994, 2018 04.
Article in English | MEDLINE | ID: mdl-29515258

ABSTRACT

BACKGROUND: Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (T-ALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors. METHODS: Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches. RESULTS: We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment. CONCLUSIONS: Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy.


Subject(s)
Aldo-Keto Reductases/physiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , 20-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 20-Hydroxysteroid Dehydrogenases/physiology , Age of Onset , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Aldo-Keto Reductase Family 1 Member C3/physiology , Aldo-Keto Reductases/antagonists & inhibitors , Animals , Child , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Leukemic/drug effects , Humans , Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Hydroxysteroid Dehydrogenases/physiology , Isoenzymes/physiology , Medroxyprogesterone Acetate/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/physiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured , Vincristine/administration & dosage , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...