Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.915
Filter
1.
Physiol Rep ; 12(13): e16095, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946616

ABSTRACT

The present study aimed to investigate the effect of catechin-loaded Chitosan-Alginate nanoparticles (NPs) on cognitive function in an aluminum chloride (AlCl3)-induced rat model of Alzheimer's disease (AD). The Catechin-loaded Chitosan-Alginate nanocarriers were synthesized through ionotropic gelation (IG) method. Physio-chemical characterization was conducted with the Zetasizer Nano system, the scanning electron microscope, and the Fourier transform infrared spectroscopy. The experiments were performed over 21 days on six groups of male Wistar rats. The control group, AlCl3 treated group, Catechin group, nanocarrier group, treatment group 1 (AlCl3 + Catechin), and treatment group 2 (AlCl3 + nanocarrier). A behavioral study was done by the Morris water maze (MWM) test. In addition, the level of oxidative indices and acetylcholine esterase (AChE) activity was determined by standard procedures at the end of the study. AlCl3 induced a significant increase in AChE activity, along with a significant decrease in the level of Catalase (CAT) and total antioxidant capacity (TAC) in the hippocampus. Moreover, the significant effect of AlCl3 was observed on the behavioral parameters of the MWM test. Both forms of Catechin markedly improved AChE activity, oxidative biomarkers, spatial memory, and learning. The present study indicated that the administration of Catechin-loaded Chitosan-Alginate NPs is a beneficial therapeutic option against behavioral and chemical alteration of AD in male Wistar rats.


Subject(s)
Alginates , Aluminum Chloride , Alzheimer Disease , Catechin , Chitosan , Nanoparticles , Rats, Wistar , Animals , Catechin/administration & dosage , Catechin/pharmacology , Aluminum Chloride/toxicity , Chitosan/chemistry , Chitosan/administration & dosage , Alginates/chemistry , Alginates/administration & dosage , Male , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Rats , Administration, Oral , Cognition/drug effects , Acetylcholinesterase/metabolism , Maze Learning/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Disease Models, Animal , Antioxidants/pharmacology , Antioxidants/administration & dosage , Oxidative Stress/drug effects , Drug Carriers/chemistry
2.
J Nanobiotechnology ; 22(1): 407, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987801

ABSTRACT

Segmental bone defects, arising from factors such as trauma, tumor resection, and congenital malformations, present significant clinical challenges that often necessitate complex reconstruction strategies. Hydrogels loaded with multiple osteogenesis-promoting components have emerged as promising tools for bone defect repair. While the osteogenic potential of the Piezo1 agonist Yoda1 has been demonstrated previously, its hydrophobic nature poses challenges for effective loading onto hydrogel matrices.In this study, we address this challenge by employing Yoda1-pretreated bone marrow-derived mesenchymal stem cell (BMSCs) exosomes (Exo-Yoda1) alongside exosomes derived from BMSCs (Exo-MSC). Comparatively, Exo-Yoda1-treated BMSCs exhibited enhanced osteogenic capabilities compared to both control groups and Exo-MSC-treated counterparts. Notably, Exo-Yoda1-treated cells demonstrated similar functionality to Yoda1 itself. Transcriptome analysis revealed activation of osteogenesis-associated signaling pathways, indicating the potential transduction of Yoda1-mediated signals such as ErK, a finding validated in this study. Furthermore, we successfully integrated Exo-Yoda1 into gelatin methacryloyl (GelMA)/methacrylated sodium alginate (SAMA)/ß-tricalcium phosphate (ß-TCP) hydrogels. These Exo-Yoda1-loaded hydrogels demonstrated augmented osteogenesis in subcutaneous ectopic osteogenesis nude mice models and in rat skull bone defect model. In conclusion, our study introduces Exo-Yoda1-loaded GELMA/SAMA/ß-TCP hydrogels as a promising approach to promoting osteogenesis. This innovative strategy holds significant promise for future widespread clinical applications in the realm of bone defect reconstruction.


Subject(s)
Exosomes , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/drug effects , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Hydrogels/chemistry , Mice , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Rats , Male , Alginates/chemistry , Gelatin/chemistry , Cell Differentiation/drug effects , Bone Regeneration/drug effects , Cells, Cultured
3.
Sci Rep ; 14(1): 15471, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969697

ABSTRACT

This study examines the effect of phycoerythrin (PE) from a cyanobacterial Nostoc strain encapsulated with alginate as a potential prebiotic to produce synbiotic ice cream products with Lactobacillus casei. It was found that the addition of the encapsulated PE affected, mostly favourably, the physicochemical properties, antioxidant activity, probiotic survival, volatile compound contents, and sensory acceptability of the synbiotic ice cream samples before and after aging at the freezing periods of one day to eight weeks. Thus, it confirms the prebiotic potential of PE for synbiotic ice creams with L. casei.


Subject(s)
Alginates , Ice Cream , Lacticaseibacillus casei , Phycoerythrin , Synbiotics , Lacticaseibacillus casei/metabolism , Ice Cream/microbiology , Alginates/chemistry , Phycoerythrin/chemistry , Synbiotics/administration & dosage , Antioxidants/chemistry , Nostoc/metabolism , Probiotics
4.
Int J Nanomedicine ; 19: 6659-6676, 2024.
Article in English | MEDLINE | ID: mdl-38975320

ABSTRACT

Background: Vital pulp therapy (VPT) is considered a conservative treatment for preserving pulp viability in caries and trauma-induced pulpitis. However, Mineral trioxide aggregate (MTA) as the most frequently used repair material, exhibits limited efficacy under inflammatory conditions. This study introduces an innovative nanocomposite hydrogel, tailored to simultaneously target anti-inflammation and dentin mineralization, aiming to efficiently preserve vital pulp tissue. Methods: The L-(CaP-ZnP)/SA nanocomposite hydrogel was designed by combining L-Arginine modified calcium phosphate/zinc phosphate nanoparticles (L-(CaP-ZnP) NPs) with sodium alginate (SA), and was characterized with TEM, SEM, FTIR, EDX, ICP-AES, and Zeta potential. In vitro, we evaluated the cytotoxicity and anti-inflammatory properties. Human dental pulp stem cells (hDPSCs) were cultured with lipopolysaccharide (LPS) to induce an inflammatory response, and the cell odontogenic differentiation was measured and possible signaling pathways were explored by alkaline phosphatase (ALP)/alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining, and Western blotting, respectively. In vivo, a pulpitis model was utilized to explore the potential of the L-(CaP-ZnP)/SA nanocomposite hydrogel in controlling pulp inflammation and enhancing dentin mineralization by Hematoxylin and eosin (HE) staining and immunohistochemistry staining. Results: In vitro experiments revealed that the nanocomposite hydrogel was synthesized successfully and presented desirable biocompatibility. Under inflammatory conditions, compared to MTA, the L-(CaP-ZnP)/SA nanocomposite hydrogel demonstrated superior anti-inflammatory and pro-odontogenesis effects. Furthermore, the nanocomposite hydrogel significantly augmented p38 phosphorylation, implicating the involvement of the p38 signaling pathway in pulp repair. Significantly, in a rat pulpitis model, the L-(CaP-ZnP)/SA nanocomposite hydrogel downregulated inflammatory markers while upregulating mineralization-related markers, thereby stimulating the formation of robust reparative dentin. Conclusion: The L-(CaP-ZnP)/SA nanocomposite hydrogel with good biocompatibility efficiently promoted inflammation resolution and enhanced dentin mineralization by activating p38 signal pathway, as a pulp-capping material, offering a promising and advanced solution for treatment of pulpitis.


Subject(s)
Alginates , Anti-Inflammatory Agents , Dental Pulp , Hydrogels , Nanocomposites , Dental Pulp/cytology , Dental Pulp/drug effects , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Nanocomposites/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Alginates/chemistry , Alginates/pharmacology , Pulpitis/therapy , Stem Cells/drug effects , Stem Cells/cytology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Silicates/chemistry , Silicates/pharmacology , Rats , Cell Differentiation/drug effects , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Cells, Cultured , Aluminum Compounds/chemistry , Aluminum Compounds/pharmacology , Arginine/chemistry , Arginine/pharmacology , Rats, Sprague-Dawley , Drug Combinations , Male , Oxides/chemistry , Oxides/pharmacology
5.
ACS Nano ; 18(28): 18604-18621, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38952130

ABSTRACT

Chemo-immunotherapy has become a promising strategy for cancer treatment. However, the inability of the drugs to penetrate deeply into the tumor and form potent tumor vaccines in vivo severely restricts the antitumor effect of chemo-immunotherapy. In this work, an injectable sodium alginate platform is reported to promote penetration of the chemotherapeutic doxorubicin (DOX) and delivery of personalized tumor vaccines. The injectable multifunctional sodium alginate platform cross-links rapidly in the presence of physiological concentrations of Ca2+, forming a hydrogel that acts as a drug depot and releases loaded hyaluronidase (HAase), DOX, and micelles (IP-NPs) slowly and sustainedly. By degrading hyaluronic acid (HA) overexpressed in tumor tissue, HAase can make tumor tissue "loose" and favor other components to penetrate deeply. DOX induces potent immunogenic cell death (ICD) and produces tumor-associated antigens (TAAs), which could be effectively captured by polyethylenimine (PEI) coated IP-NPs micelles and form personalized tumor vaccines. The vaccines efficaciously facilitate the maturation of dendritic cells (DCs) and activation of T lymphocytes, thus producing long-term immune memory. Imiquimod (IMQ) loaded in the core could further activate the immune system and trigger a more robust antitumor immune effect. Hence, the research proposes a multifunctional drug delivery platform for the effective treatment of colorectal cancer.


Subject(s)
Alginates , Doxorubicin , Hydrogels , Immunotherapy , Nanoparticles , Alginates/chemistry , Hydrogels/chemistry , Animals , Nanoparticles/chemistry , Mice , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Cancer Vaccines/chemistry , Cancer Vaccines/administration & dosage , Hyaluronoglucosaminidase/metabolism , Micelles , Cell Line, Tumor
6.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960411

ABSTRACT

AIM: We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS: Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS: Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.


Subject(s)
Azospirillum brasilense , Fertilizers , Hydrogels , Mycorrhizae , Spores, Fungal , Mycorrhizae/physiology , Spores, Fungal/growth & development , Azospirillum brasilense/metabolism , Fertilizers/analysis , Alginates
7.
Nat Commun ; 15(1): 5902, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003266

ABSTRACT

Analogous of pixels to two-dimensional pictures, voxels-in the form of either small cubes or spheres-are the basic building blocks of three-dimensional objects. However, precise manipulation of viscoelastic bio-ink voxels in three-dimensional space represents a grand challenge in both soft matter science and biomanufacturing. Here, we present a voxelated bioprinting technology that enables the digital assembly of interpenetrating double-network hydrogel droplets made of polyacrylamide/alginate-based or hyaluronic acid/alginate-based polymers. The hydrogels are crosslinked via additive-free and biofriendly click reaction between a pair of stoichiometrically matched polymers carrying norbornene and tetrazine groups, respectively. We develop theoretical frameworks to describe the crosslinking kinetics and stiffness of the hydrogels, and construct a diagram-of-state to delineate their mechanical properties. Multi-channel print nozzles are developed to allow on-demand mixing of highly viscoelastic bio-inks without significantly impairing cell viability. Further, we showcase the distinctive capability of voxelated bioprinting by creating highly complex three-dimensional structures such as a hollow sphere composed of interconnected yet distinguishable hydrogel particles. Finally, we validate the cytocompatibility and in vivo stability of the printed double-network scaffolds through cell encapsulation and animal transplantation.


Subject(s)
Acrylic Resins , Alginates , Bioprinting , Hyaluronic Acid , Hydrogels , Bioprinting/methods , Hydrogels/chemistry , Alginates/chemistry , Animals , Hyaluronic Acid/chemistry , Acrylic Resins/chemistry , Mice , Ink , Printing, Three-Dimensional , Humans , Tissue Engineering/methods , Cell Survival , Biocompatible Materials/chemistry
8.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000223

ABSTRACT

Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.


Subject(s)
Alginates , Capsules , Drug Delivery Systems , Gelatin , Hypromellose Derivatives , Triazoles , Alginates/chemistry , Gelatin/chemistry , Hypromellose Derivatives/chemistry , Drug Delivery Systems/methods , Triazoles/chemistry , Triazoles/administration & dosage , Triazoles/pharmacokinetics , Drug Liberation , Delayed-Action Preparations/chemistry , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Microspheres
9.
Tissue Eng Part C Methods ; 30(7): 307-313, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946552

ABSTRACT

It is a well-documented phenomenon that the porous structure of hydrogels observed with vacuum-based imaging techniques is generated during the freezing and drying process employed prior to observation. Nevertheless, vacuum-based techniques, such as scanning electron microscopy (SEM), are still being commonly used to measure pore sizes in hydrogels, which is often not representative of the actual pore size in hydrated conditions. The frequent underestimation of the impact of freezing and drying on hydrogel structures could stem from a lack of cross-fertilization between materials science and biomedical or food science communities, or from the simplicity and visually appealing nature of SEM imaging, which may lead to an overemphasis on its use. Our study provides a straightforward and impactful way of pinpointing this phenomenon exploiting two hydrogels ubiquitously applied in tissue engineering, including gelatin methacryloyl and alginate as proof-of-concept hydrogels. By comparing images of the samples in the native hydrated state, followed by freezing, freeze-drying, and rehydration using SEM and confocal microscopy, we highlight discrepancies between hydrogel pore sizes in the hydrated versus the dry state. To conclude, our study offers recommendations for researchers seeking insight in hydrogel properties and emphasizes key factors that require careful control when using SEM as a characterization tool.


Subject(s)
Alginates , Gelatin , Hydrogels , Microscopy, Confocal , Gelatin/chemistry , Hydrogels/chemistry , Alginates/chemistry , Porosity , Microscopy, Confocal/methods , Freeze Drying , Microscopy, Electron, Scanning
10.
Tissue Eng Part C Methods ; 30(7): 289-306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946589

ABSTRACT

In the advent of tissue engineering and regenerative medicine, the demand for innovative approaches to biofabricate complex vascular structures is increasing. We describe a single-step 3D bioprinting method leveraging Aspect Biosystems RX1 technology, which integrates the crosslinking step at a flow-focusing junction, to biofabricate immortalized adult rat brain endothelial cell (SV-ARBEC)-encapsulated alginate-collagen type I hydrogel rings. This single-step biofabrication process involves the strategic layer-by-layer assembly of hydrogel rings, encapsulating SV-ARBECs in a spatially controlled manner while optimizing access to media and nutrients. The spatial arrangement of the SV-ARBECs within the rings promotes spontaneous angiogenic network formation and the constrained deposition of cells within the hydrogel matrix facilitates tissue-like organized vascular-like network development. This approach provides a platform that can be adapted to many different endothelial cell types and leveraged to better understand the mechanisms driving angiogenesis and vascular-network formation in 3D bioprinted constructs supporting the development of more complex tissue and disease models for advancing drug discovery, tissue engineering, and regenerative medicine applications.


Subject(s)
Alginates , Bioprinting , Collagen Type I , Endothelial Cells , Hydrogels , Neovascularization, Physiologic , Printing, Three-Dimensional , Alginates/chemistry , Alginates/pharmacology , Animals , Rats , Neovascularization, Physiologic/drug effects , Bioprinting/methods , Hydrogels/chemistry , Collagen Type I/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry
11.
Molecules ; 29(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999169

ABSTRACT

The progressive decline of the coal industry necessitates the development of effective treatment solutions for acid mine drainage (AMD), which is characterized by high acidity and elevated concentrations of heavy metals. This study proposes an innovative approach leveraging sulfate-reducing bacteria (SRB) acclimated to contaminated anaerobic environments. The research focused on elucidating the physiological characteristics and optimal growth conditions of SRB, particularly in relation to the pH level and temperature. The experimental findings reveal that the SRB exhibited a sulfate removal rate of 88.86% at an optimal temperature of 30 °C. Additionally, SRB gel particles were formulated using sodium alginate (SA) and carboxymethyl cellulose (CMC), and their performance was assessed under specific conditions (pH = 6, C/S = 1.5, T = 30 °C, CMC = 4.5%, BSNa = 0.4 mol/L, and cross-linking time = 9 h). Under these conditions, the SRB gel particles demonstrated an enhanced sulfate removal efficiency of 91.6%. Thermal analysis via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) provided further insights into the stability and properties of the SRB gel spheres. The findings underscore the potential of SRB-based bioremediation as a sustainable and efficient method for AMD treatment, offering a novel and environmentally friendly solution to mitigating the adverse effects of environmental contamination.


Subject(s)
Biodegradation, Environmental , Mining , Hydrogen-Ion Concentration , Alginates/chemistry , Sulfates/chemistry , Bacteria/metabolism , Temperature , Gels/chemistry , Carboxymethylcellulose Sodium/chemistry , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
12.
Curr Microbiol ; 81(9): 272, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014046

ABSTRACT

Biofilms formed by Pseudomonas aeruginosa and Staphylococcus aureus, along with their antibiotic tolerance have posed challenges to treatment strategies for lung, wound, and other infections, particularly when co-infecting. In the present study, the inhibitory effect of xylitol on biofilm formation, as well as its eradication potential on pre-established biofilms formed by P. aeruginosa strain PAO1, methicillin-resistant S. aureus, and a mix of both species in an alginate bead model were tested. Xylitol concentrations of 2, 1, and 0.5 M reduced biofilm formation by P. aeruginosa strain PAO1, methicillin-resistant S. aureus, and the mixed-species biofilm in a concentration-dependent manner. Additionally, biofilms formed by these species were subjected to treatment with xylitol. Xylitol was also capable of eradicating biofilms established by P. aeruginosa strain PAO1, methicillin-resistant S. aureus, and the mixed-species biofilm by at least 20%, with the most effective eradication observed for P. aeruginosa strain PAO1. The present study indicates the effectiveness of xylitol as both an inhibitory and eradicating agent against biofilms formed by P. aeruginosa strain PAO1, methicillin-resistant S. aureus, and a mix of both species in an alginate bead model, which mimics the in vivo characteristics of P. aeruginosa aggregates.


Subject(s)
Alginates , Anti-Bacterial Agents , Biofilms , Methicillin-Resistant Staphylococcus aureus , Pseudomonas aeruginosa , Xylitol , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Alginates/pharmacology , Xylitol/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Glucuronic Acid/pharmacology , Hexuronic Acids/pharmacology
13.
ACS Appl Mater Interfaces ; 16(28): 35949-35963, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970482

ABSTRACT

Chemotherapy-induced oral mucositis (CIOM) is a prevalent complication of chemotherapy and significantly affects the treatment process. However, effective treatment for CIOM is lacking due to the unique environment of the oral cavity and the single effect of current drug delivery systems. In this present study, we propose an innovative approach by combining a methacrylate-modified human recombinant collagen III (rhCol3MA) hydrogel system with hyaluronic acid-epigallocatechin gallate (HA-E) and dopamine-modified methacrylate-alginate (AlgDA-MA). HA-E is used as an antioxidant and anti-inflammatory agent and synergizes with AlgDA-MA to improve the wet adhesion of hydrogel. The results of rhCol3MA/HA-E/AlgDA-MA (Col/HA-E/Alg) hydrogel demonstrate suitable physicochemical properties, excellent wet adhesive capacity, and biocompatibility. Notably, the hydrogel could promote macrophage polarization from M1 to M2 and redress human oral keratinocyte (HOK) inflammation by inhibiting NF-κB activation. Wound healing evaluations in vivo demonstrate that the Col/HA-E/Alg hydrogel exhibits a pro-repair effect by mitigating inflammatory imbalances, fostering early angiogenesis, and facilitating collagen repair. In summary, the Col/HA-E/Alg hydrogel could serve as a promising multifunctional dressing for the treatment of CIOM.


Subject(s)
Alginates , Anti-Inflammatory Agents , Hyaluronic Acid , Hydrogels , Stomatitis , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Stomatitis/drug therapy , Stomatitis/chemically induced , Stomatitis/pathology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Alginates/chemistry , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Mice , Wound Healing/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Methacrylates/chemistry , Dopamine/chemistry , Dopamine/pharmacology , Keratinocytes/drug effects
14.
Molecules ; 29(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998951

ABSTRACT

In our search for a biocompatible composite hemostatic dressing, we focused on the design of a novel biomaterial composed of two natural biological components, collagen and sodium alginate (SA), cross-linked using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) and oxidized sodium alginate (OSA). We conducted a series of tests to evaluate the physicochemical properties, acute systemic toxicity, skin irritation, intradermal reaction, sensitization, cytotoxicity, and in vivo femoral artery hemorrhage model. The results demonstrated the excellent biocompatibility of the collagen/sodium alginate (C/SA)-based dressings before and after crosslinking. Specifically, the femoral artery hemorrhage model revealed a significantly shortened hemostasis time of 132.5 ± 12.82 s for the EDC/NHS cross-linked dressings compared to the gauze in the blank group (hemostasis time of 251.43 ± 10.69 s). These findings indicated that C/SA-based dressings exhibited both good biocompatibility and a significant hemostatic effect, making them suitable for biomedical applications.


Subject(s)
Alginates , Bandages , Collagen , Hemostatics , Alginates/chemistry , Alginates/pharmacology , Animals , Collagen/chemistry , Collagen/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Hemorrhage/drug therapy , Male , Rats , Hemostasis/drug effects , Femoral Artery
15.
Int J Nanomedicine ; 19: 6359-6376, 2024.
Article in English | MEDLINE | ID: mdl-38946885

ABSTRACT

Background: Bone tissue engineering (BTE) is a promising alternative to autologous bone grafting for the clinical treatment of bone defects, and inorganic/organic composite hydrogels as BTE scaffolds are a hot spot in current research. The construction of nano-hydroxyapatite/gelatin methacrylate/oxidized sodium alginate (nHAP/GelMA/OSA), abbreviated as HGO, composite hydrogels loaded with bone morphogenetic protein 7 (BMP7) will provide a suitable 3D microenvironment to promote cell aggregation, proliferation, and differentiation, thus facilitating bone repair and regeneration. Methods: Dually-crosslinked hydrogels were fabricated by combining GelMA and OSA, while HGO hydrogels were formulated by incorporating varying amounts of nHAP. The hydrogels were physically and chemically characterized followed by the assessment of their biocompatibility. BMP7-HGO (BHGO) hydrogels were fabricated by incorporating suitable concentrations of BMP7 into HGO hydrogels. The osteogenic potential of BHGO hydrogels was then validated through in vitro experiments and using rat femoral defect models. Results: The addition of nHAP significantly improved the physical properties of the hydrogel, and the composite hydrogel with 10% nHAP demonstrated the best overall performance among all groups. The selected concentration of HGO hydrogel served as a carrier for BMP7 loading and was evaluated for its osteogenic potential both in vivo and in vitro. The BHGO hydrogel demonstrated superior in vitro osteogenic induction and in vivo potential for repairing bone tissue compared to the outcomes observed in the blank control, BMP7, and HGO groups. Conclusion: Using hydrogel containing 10% HGO appears promising for bone tissue engineering scaffolds, especially when loaded with BMP7 to boost its osteogenic potential. However, further investigation is needed to optimize the GelMA, OSA, and nHAP ratios, along with the BMP7 concentration, to maximize the osteogenic potential.


Subject(s)
Alginates , Bone Morphogenetic Protein 7 , Bone Regeneration , Durapatite , Gelatin , Hydrogels , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Alginates/chemistry , Alginates/pharmacology , Animals , Bone Morphogenetic Protein 7/chemistry , Bone Morphogenetic Protein 7/pharmacology , Gelatin/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Hydrogels/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Osteogenesis/drug effects , Rats , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley , Methacrylates/chemistry , Male , Humans , Bone and Bones/drug effects
16.
Sci Rep ; 14(1): 15695, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977824

ABSTRACT

Hydrogels are extensively explored as biomaterials for tissue scaffolds, and their controlled fabrication has been the subject of wide investigation. However, the tedious mechanical property adjusting process through formula control hindered their application for diverse tissue scaffolds. To overcome this limitation, we proposed a two-step process to realize simple adjustment of mechanical modulus over a broad range, by combining digital light processing (DLP) and post-processing steps. UV-curable hydrogels (polyacrylamide-alginate) are 3D printed via DLP, with the ability to create complex 3D patterns. Subsequent post-processing with Fe3+ ions bath induces secondary crosslinking of hydrogel scaffolds, tuning the modulus as required through soaking in solutions with different Fe3+ concentrations. This innovative two-step process offers high-precision (10 µm) and broad modulus adjusting capability (15.8-345 kPa), covering a broad range of tissues in the human body. As a practical demonstration, hydrogel scaffolds with tissue-mimicking patterns were printed for cultivating cardiac tissue and vascular scaffolds, which can effectively support tissue growth and induce tissue morphologies.


Subject(s)
Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Humans , Alginates/chemistry , Biocompatible Materials/chemistry , Acrylic Resins/chemistry , Elastic Modulus , Light
17.
Acta Cir Bras ; 39: e393324, 2024.
Article in English | MEDLINE | ID: mdl-39016358

ABSTRACT

PURPOSE: Bacterial cellulose (BC) has shown high capacity for the treatment of wounds and burns, providing a moisty environment. Calcium alginate can be associated with BC to create gels that aid in wound debridement and contribute to appropriate wound healing. This study is aimed at characterizing and evaluating the use of bacterial cellulose/alginate gel in skin burns in rats. METHODS: Cellulose and cellulose/alginate gels were compared regarding the capacity of liquid absorption, moisture, viscosity, and potential cytotoxicity. The 2nd degree burns were produced using an aluminum metal plate (2.0cm) at 120ºC for 20s on the back of rats. The animals were divided into non-treated, CMC(Carboxymethylcellulose), Cellulose(CMC with bacterial cellulose), and Cellulose/alginate(CMC with bacterial cellulose and alginate). The animals received topical treatment 3 times/week. Biochemical (MPO, NAG and oxidative stress), histomorphometry and immunohistochemical assays (IL-1ß IL-10 and VEGF) were conducted on the 14th, 21st, 28th, and 35th days. RESULTS: Cellulose/Alginate gel showed higher absorption capacity and viscosity compared to Cellulose gel, with no cytotoxic effects. Cellulose/alginate presented lower MPO values, a higher percentage of IL-10, with greater and balanced oxidative stress profile. CONCLUSIONS: The use of cellulose/alginate gel reduced neutrophils and macrophage activation and showed greater anti-inflammatory response, which can contribute to healing chronic wounds and burns.


Subject(s)
Alginates , Burns , Cellulose , Hydrogels , Rats, Wistar , Wound Healing , Animals , Alginates/therapeutic use , Cellulose/therapeutic use , Burns/drug therapy , Burns/therapy , Wound Healing/drug effects , Hydrogels/therapeutic use , Male , Rats , Glucuronic Acid/therapeutic use , Hexuronic Acids/therapeutic use , Reproducibility of Results , Viscosity , Oxidative Stress/drug effects , Immunohistochemistry , Time Factors , Skin/injuries , Skin/drug effects
18.
Carbohydr Res ; 542: 109189, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971003

ABSTRACT

There has been a long-standing bottleneck in the quantitative analysis of the frequencies of homoblock polyads beyond triads using 1H and 13C NMR for linear polysaccharides, primarily because monosaccharides within a long homoblock share similar chemical environments due to identical neighboring units, resulting in indistinct NMR peaks. In this study, through rigorous mathematical induction, inequality relations were established that enabled the calculation of frequency ranges of homoblock polyads from historically reported NMR-derived frequency values of diads and/or triads of alginates, chitosans, homogalacturonans, and galactomannans. The calculated homoblock frequency ranges were then applied to evaluate three chain growth statistical models, including the Bernoulli chain, first-order Markov chain, and second-order Markov chain, for predicting homoblock frequencies in these polysaccharides. Furthermore, based on the mathematically derived inequality relations, a novel 2D array was constructed, enabling the graphical visualization of homoblock features in polysaccharides. It was demonstrated, as a proof of concept, that the novel 2D array, along with a 1D code generated from it, could serve as an effective feature engineering tool for polymer classification using machine learning algorithms.


Subject(s)
Alginates , Magnetic Resonance Spectroscopy , Mannans , Mannans/chemistry , Alginates/chemistry , Galactose/chemistry , Galactose/analogs & derivatives , Pectins
19.
J Microencapsul ; 41(5): 375-389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945166

ABSTRACT

AIMS: This study aimed to encapsulate natural killer (NK) cells in a hydrogel to sustain their function within the hypoxic tumour microenvironments. METHODS: An alginate-gelatine hydrogel was generated via electrospray technology. Hydrogel biocompatibility was assessed through cell counting kit-8 and Live/Dead assays to ascertain cell. Moreover, we analysed lactate dehydrogenase assays to evaluate the cytotoxicity against tumours and utilised RT-qPCR to analyse cytokine gene level. RESULTS: Alginate and gelatine formed hydrogels with diameters ranging from 489.2 ± 23.0 µm, and the encapsulation efficiency was 34.07 ± 1.76%. Encapsulated NK cells exhibited robust proliferation and tumour-killing capabilities under normoxia and hypoxia. Furthermore, encapsulation provided a protective shield against cell viability under hypoxia. Importantly, tumour-killing cytotoxicity through cytokines upregulation such as granzyme B and interferon-gamma was preserved under hypoxia. CONCLUSION: The encapsulation of NK cells not only safeguards their viability but also reinforces anticancer capacity, countering the inhibition of activation induced by hypoxia.


Subject(s)
Alginates , Cell Proliferation , Gelatin , Hydrogels , Killer Cells, Natural , Microspheres , Alginates/chemistry , Alginates/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Cell Proliferation/drug effects , Gelatin/chemistry , Cell Survival/drug effects , Cell Hypoxia/drug effects , Cell Encapsulation/methods , Animals , Tumor Microenvironment/drug effects , Cell Line, Tumor , Mice
20.
Int J Biol Macromol ; 273(Pt 2): 132643, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823751

ABSTRACT

In the field of building energy conservation, the development of biodegradable biomass aerogels with excellent mechanical performance, flame retardancy and thermal insulation properties is of particular importance. Here, a directional freeze-drying method was used for fabricating composite sodium alginate (SA) aerogels containing functionalized ammonium polyphosphate (APP) flame retardant. In particular, APP was coated with melamine (MEL) and phytic acid (PA) by a supramolecular assembly process. Through optimizing the flame retardant addition, the SA-20 AMP sample exhibited excellent flame retardant and thermal insulation properties, with the limiting oxygen index of 38.2 % and the UL-94 rating of V-0. Such aerogels with anisotropic morphology demonstrated a low thermal conductivity of 0.0288 (W/m·K) in the radial direction (perpendicular to the lamellar structure). In addition, as-obtained aerogels displayed remarkable water stability and mechanical properties, indicating significant potential for practical applications.


Subject(s)
Alginates , Flame Retardants , Gels , Alginates/chemistry , Gels/chemistry , Triazines/chemistry , Thermal Conductivity , Phytic Acid/chemistry , Polyphosphates/chemistry , Phosphorus/chemistry , Nitrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...