Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 28(7): 115378, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32089391

ABSTRACT

A set of AT-specific fluorescent dimeric bisbenzimidazoles DBPA(n) with linkers of different lengths bound to DNA in the minor groove were synthesized and their genetic, virological, and biochemical studies were performed. The DBPA(n) were shown to be effective inhibitors of the histon-like protein H-NS, a regulator of the DNA transcription factor, as well as of the Aliivibrio logei Quorum Sensing regulatory system in E. coli cells. Their antiviral activity was tested in model cell lines infected with herpes simplex virus type I. Also, it was found that DBPA(n) could inhibit catalytic activities of HIV-1 integrase at low micromolar concentrations. All of the dimeric bisbenzimidazoles DBPA(n) manifested fluorescent properties, were well soluble in water, nontoxic up to concentrations of 200 µM, and could penetrate into nuclei followed by binding to DNA.


Subject(s)
Bisbenzimidazole/chemistry , Bisbenzimidazole/pharmacology , DNA/chemistry , Aliivibrio/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Base Sequence , DNA/genetics , Drug Design , Escherichia coli/metabolism , Fluorescent Dyes , HIV Integrase , HIV Integrase Inhibitors/pharmacology , Ligands , Molecular Structure , Pyrroles , Quorum Sensing/physiology , Structure-Activity Relationship
2.
Photochem Photobiol Sci ; 12(5): 944-56, 2013 May.
Article in English | MEDLINE | ID: mdl-23493994

ABSTRACT

We have visualized redox and structural changes in the mitochondria of yeast Saccharomyces cerevisiae as a eukaryotic cell model using a genetically encoded yellow fluorescent protein (Y1-Yellow) and conventional fluorescence microscopy. Y1-Yellow originating from a yellow emitting luminous bacterium Aliivibrio sifiae Y1 was fused with a mitochondria-targeted sequence (mt-sequence). Y1-Yellow fluorescence arising only from the mitochondrial site and the color of yellow fluorescence could be easily differentiated from cellular autofluorescence and from that of conventional probes. Y1-Yellow expressing S. cerevisiae made the yellow fluorescence conspicuous at the mitochondrial site in response to reactive oxygen species (ROS) transiently derived in the wake of pretreatment with hydrogen peroxide. Based on our observation with Y1-Yellow fluorescence, we also showed that mitochondria rearrange to form a cluster structure surrounding chromosomal DNA via respiratory inhibition by cyanide, followed by the generation of ROS. In contrast, uptake of an uncoupler of oxidative phosphorylation is not responsible for mitochondrial rearrangement. These results indicate the utility of Y1-Yellow for visualization of mitochondrial vitality and morphology in living cells.


Subject(s)
Aliivibrio/metabolism , Bacterial Proteins/metabolism , Luminescent Proteins/metabolism , Mitochondria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cyanides/toxicity , Glucose/pharmacology , Hydrogen Peroxide/pharmacology , Indoles/chemistry , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Microscopy, Fluorescence , Mitochondria/chemistry , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Time-Lapse Imaging , Xanthenes/chemistry
3.
Mutat Res ; 726(1): 1-7, 2011 Nov 27.
Article in English | MEDLINE | ID: mdl-21871580

ABSTRACT

To monitor cytotoxic and genotoxic effects of aflatoxin, a luminescent assay employing Aliivibrio fischeri as a test organism and a colorimetric assay based on the SOS-Chromotest were adapted to our needs. The aim of this method-developing work was to be able to select - from a collection of environmental isolates - microbes that degrade aflatoxin without production of harmful intermediates and by-products, in a fast and cost-effective way. By the combination of the two modified assays, microbes that met these criteria have been successfully selected. Among thirty-three isolates, the strain Rhodococcus rhodochrous NI2 proved to be the best aflatoxin-B1-degrading microbe, with the weakest harmful biological effects throughout aflatoxin-B1-degradation. Our findings underline the necessity to employ bio-tests in biodegradation assays, as cytotoxicity and/or genotoxicity may occur even after substantial degradation of the toxins.


Subject(s)
Aflatoxin B1/metabolism , Biodegradation, Environmental , Aliivibrio/metabolism , Mutagenicity Tests/methods , Rhodococcus/metabolism , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...