Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.126
Filter
1.
Physiol Plant ; 176(3): e14367, 2024.
Article in English | MEDLINE | ID: mdl-38837234

ABSTRACT

Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.


Subject(s)
Charcoal , Chlorophyll , Mycorrhizae , Panicum , Photosynthesis , Charcoal/pharmacology , Panicum/physiology , Panicum/drug effects , Panicum/growth & development , Photosynthesis/physiology , Chlorophyll/metabolism , Mycorrhizae/physiology , Glomeromycota/physiology , Alkalies , Biomass , Plant Leaves/physiology , Antioxidants/metabolism
2.
J Environ Manage ; 362: 121303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824885

ABSTRACT

Spent phosphor is an important secondary resource for extracting rare earth elements. Microwave absorption properties and enhanced extraction of Eu from blue phosphor by microwave alkali roasting were studied. Dielectric properties of alkali roasting system were measured by resonator perturbation method. Dielectric constant increases linearly from 250 °C until it reaches a peak at 400 °C. The dielectric loss reaches a higher value at 400-550 °C, due to the strong microwave absorption properties of molten alkali and roasted products. Effects of roasting temperature, roasting time and alkali addition amount on Eu leaching were investigated. The phosphor was completely decomposed into Eu2O3, BaCO3 and MgO at 400 °C. The alkaline decomposition process of phosphor is more consistent with diffusion control model with Eα being 28.9 kJ/mol. Effects of the main leaching conditions on Eu leaching were investigated. The leaching kinetic of Eu was in line with diffusion control model with Eα being 5.74 kJ/mol. The leaching rules of rare earths in the mixed phosphor were studied. The results showed that the presence of red and green phosphor affected the recovery of blue phosphor. The optimum process parameters of rare earth recovery in single blue phosphor and mixed phosphor were obtained, and the recovery of Eu were 97.81% and 94.80%, respectively. Microwave alkali roasting promoted the dissociation of phosphor and leaching of rare earths. The results can provide reference for the efficient and selective recovery of rare earths in phosphors.


Subject(s)
Alkalies , Metals, Rare Earth , Microwaves , Metals, Rare Earth/chemistry , Alkalies/chemistry , Europium/chemistry , Recycling , Phosphorus/chemistry
3.
Sci Rep ; 14(1): 13199, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851793

ABSTRACT

The increasing global phenomenon of soil salinization has prompted heightened interest in the physiological ecology of plant salt and alkali tolerance. Halostachys caspica belonging to Amaranthaceae, an exceptionally salt-tolerant halophyte, is widely distributed in the arid and saline-alkali regions of Xinjiang, in Northwest China. Soil salinization and alkalinization frequently co-occur in nature, but very few studies focus on the interactive effects of various salt and alkali stress on plants. In this study, the impacts on the H. caspica seed germination, germination recovery and seedling growth were investigated under the salt and alkali stress. The results showed that the seed germination percentage was not significantly reduced at low salinity at pH 5.30-9.60, but decreased with elevated salt concentration and pH. Immediately after, salt was removed, ungerminated seeds under high salt concentration treatment exhibited a higher recovery germination percentage, indicating seed germination of H. caspica was inhibited under the condition of high salt-alkali stress. Stepwise regression analysis indicated that, at the same salt concentrations, alkaline salts exerted a more severe inhibition on seed germination, compared to neutral salts. The detrimental effects of salinity or high pH alone were less serious than their combination. Salt concentration, pH value, and their interactions had inhibitory effects on seed germination, with salinity being the decisive factor, while pH played a secondary role in salt-alkali mixed stress.


Subject(s)
Alkalies , Amaranthaceae , Germination , Salt-Tolerant Plants , Seeds , Germination/drug effects , Salt-Tolerant Plants/growth & development , Amaranthaceae/growth & development , Seeds/drug effects , Seeds/growth & development , Hydrogen-Ion Concentration , Seedlings/growth & development , Seedlings/drug effects , Salinity , Stress, Physiological , Sodium Chloride/pharmacology , Salt Stress , Salt Tolerance
4.
Theor Appl Genet ; 137(7): 154, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856926

ABSTRACT

KEY MESSAGE: Our findings highlight a valuable breeding resource, demonstrating the potential to concurrently enhance grain shape, thermotolerance, and alkaline tolerance by manipulating Gγ protein in rice. Temperate Geng/Japonica (GJ) rice yields have improved significantly, bolstering global food security. However, GJ rice breeding faces challenges, including enhancing grain quality, ensuring stable yields at warmer temperatures, and utilizing alkaline land. In this study, we employed CRISPR/Cas9 gene-editing technology to knock out the GS3 locus in seven elite GJ varieties with superior yield performance. Yield component measurements revealed that GS3 knockout mutants consistently enhanced grain length and reduced plant height in diverse genetic backgrounds. The impact of GS3 on the grain number per panicle and setting rate depended on the genetic background. GS3 knockout did not affect milling quality and minimally altered protein and amylose content but notably influenced chalkiness-related traits. GS3 knockout indiscriminately improved heat and alkali stress tolerance in the GJ varieties studied. Transcriptome analysis indicated differential gene expression between the GS3 mutants and their wild-type counterparts, enriched in biological processes related to photosynthesis, photosystem II stabilization, and pathways associated with photosynthesis and cutin, suberine, and wax biosynthesis. Our findings highlight GS3 as a breeding resource for concurrently improving grain shape, thermotolerance, and alkaline tolerance through Gγ protein manipulation in rice.


Subject(s)
Edible Grain , Oryza , Plant Breeding , Plant Proteins , Thermotolerance , Oryza/genetics , Oryza/physiology , Oryza/growth & development , Oryza/metabolism , Thermotolerance/genetics , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phenotype , Gene Editing , Alkalies , CRISPR-Cas Systems , Plants, Genetically Modified/genetics
5.
J Ovarian Res ; 17(1): 108, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762521

ABSTRACT

BACKGROUND: Imbalances in alkali elements (AEs) and alkaline earth elements (AEEs) cause reproductive disorders. However, it remains unclear whether AEs/AEEs in follicular fluid have a relationship with the serious reproductive disorder known as diminished ovarian reserve (DOR). METHODS: A nested case‒control study was carried out in China. Follicular fluid samples from 154 DOR patients and 154 controls were collected and assessed for nine AEs/AEE levels. Both the mixed and single effects of the elements on DOR were estimated with a Bayesian kernel machine (BKMR) and logistic regressions. RESULTS: The DOR group had higher median concentrations of Li, Na, and K in follicular fluid (all P values < 0.05). The logistic regression showed that compared with their lowest tertile, the high tertiles of K [OR:2.45 (1.67-4.43)], Li [OR: 1.89 (1.06-3.42)], and Cs [OR: 1.97 (1.10-3.54)] were significantly associated with the odds of DOR. The BKMR model reported that the DOR likelihood increased linearly across the 25th through 75th percentiles of the nine-AE/AEE mixture, while the AE group contributed more to the overall effect. CONCLUSION: This study revealed an association in which the likelihood of DOR increased with higher overall concentrations of AE/AEEs in follicular fluid. Among the nine detected elements, K, Li, and Cs exhibited significant individual associations with DOR. We provide new clues for the environmental factors on female fertility decline. TRIAL REGISTRATION: Retrospectively registered.


Subject(s)
Follicular Fluid , Ovarian Reserve , Humans , Female , Follicular Fluid/metabolism , Follicular Fluid/chemistry , Case-Control Studies , Adult , Ovarian Reserve/physiology , Metals, Alkaline Earth/analysis , Alkalies , Infertility, Female/metabolism , Young Adult
6.
Sci Rep ; 14(1): 11454, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769105

ABSTRACT

This study focuses on pectin covalently linked in cell walls from two sources, apples and carrots, that was extracted using diluted alkali, and it describes changes in the rheological properties of diluted alkali-soluble pectin (DASP) due to enzymatic treatment. Given DASP's richness of rhamnogalacturonan I (RG-I), RG-I acetyl esterase (RGAE), rhamnogalacturonan endolyase (RGL), and arabinofuranosidase (ABF) were employed in various combinations for targeted degradation of RG-I pectin chains. Enzymatic degradations were followed by structural studies of pectin molecules using atomic force microscopy (AFM) as well as measurements of rheological and spectral properties. AFM imaging revealed a significant increase in the length of branched molecules after incubation with ABF, suggesting that arabinose side chains limit RG-I aggregation. Structural modifications were confirmed by changes in the intensity of bands in the pectin fingerprint and anomeric region on Fourier transform infrared spectra. ABF treatment led to a decrease in the stability of pectic gels, while the simultaneous use of ABF, RGAE, and RGL enzymes did not increase the degree of aggregation compared to the control sample. These findings suggest that the association of pectin chains within the DASP fraction may rely significantly on intermolecular interactions. Two mechanisms are proposed, which involve side chains as short-range attachment points or an extended linear homogalacturonan conformation favoring inter-chain interactions over self-association.


Subject(s)
Pectins , Rheology , Pectins/chemistry , Pectins/metabolism , Microscopy, Atomic Force , Alkalies/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Daucus carota/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Cell Wall/chemistry , Cell Wall/metabolism
7.
Food Res Int ; 183: 114211, 2024 May.
Article in English | MEDLINE | ID: mdl-38760139

ABSTRACT

The wheat grains that are cultivated in saline-alkali soil exhibit a richer "wheat aroma" compared to their counterparts. This study characterized the composition and content of volatiles in five wheat kernel varieties, harvested from two fields with varying pH levels and total salt content in the soil. The wheat grown in soil with high pH and total salt content had significantly lower levels (p < 0.05) of ethyl 3-methylbutanoate and 1-octen-3-one and significantly higher levels (p < 0.05) of 1-butanol and 1-octen-3-ol. Among all factors, plant site contributed the highest F-value contribution rate (more than 77 %) for these four volatile compounds. Six e-nose sensors responsive to these four compounds exhibited consistent trends. Therefore, the lower of ethyl 3-methylbutanoate and 1-octen-3-one, the higher of 1-butanol and 1-octen-3-ol in wheat, grown on saline-alkali soil, served as characteristic markers for "wheat aroma".


Subject(s)
Odorants , Soil , Triticum , Volatile Organic Compounds , Triticum/chemistry , Volatile Organic Compounds/analysis , Soil/chemistry , Odorants/analysis , Hydrogen-Ion Concentration , Alkalies/chemistry , Gas Chromatography-Mass Spectrometry , Electronic Nose
8.
Sci Rep ; 14(1): 12111, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802470

ABSTRACT

Alkaline burns to the cornea lead to loss of corneal transparency, which is essential for normal vision. We used a rat corneal alkaline burn model to investigate the effect of ophthalmic trimebutine solution on healing wounds caused by alkaline burns. Trimebutine, an inhibitor of the high-mobility group box 1-receptor for advanced glycation end products, when topically applied to the burned cornea, suppressed macrophage infiltration in the early phase and neutrophil infiltration in the late phase at the wound site. It also inhibited neovascularization and myofibroblast development in the late phase. Furthermore, trimebutine effectively inhibited interleukin-1ß expression in the injured cornea. It reduced scar formation by decreasing the expression of type III collagen. These findings suggest that trimebutine may represent a novel therapeutic strategy for corneal wounds, not only through its anti-inflammatory effects but also by preventing neovascularization.


Subject(s)
Alkalies , Burns, Chemical , Cornea , Disease Models, Animal , Eye Burns , Wound Healing , Animals , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Burns, Chemical/metabolism , Rats , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Alkalies/adverse effects , Cornea/metabolism , Cornea/pathology , Cornea/drug effects , Wound Healing/drug effects , Interleukin-1beta/metabolism , Male , Macrophages/drug effects , Macrophages/metabolism , Corneal Injuries/drug therapy , Corneal Injuries/metabolism , Corneal Injuries/pathology , Corneal Injuries/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Rats, Sprague-Dawley , Collagen Type III/metabolism , Receptor for Advanced Glycation End Products/metabolism , Anti-Inflammatory Agents/pharmacology , Ophthalmic Solutions , Myofibroblasts/metabolism , Myofibroblasts/drug effects
9.
BMC Plant Biol ; 24(1): 380, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720246

ABSTRACT

BACKGROUND: Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS: This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS: Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.


Subject(s)
Glycine max , Melatonin , Stress, Physiological , Transcriptome , Melatonin/pharmacology , Glycine max/genetics , Glycine max/drug effects , Glycine max/growth & development , Glycine max/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/drug effects , Gene Expression Regulation, Plant/drug effects , Metabolomics , Gene Expression Profiling , Alkalies , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Metabolome/drug effects
10.
J Mass Spectrom ; 59(6): e5037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752484

ABSTRACT

Bacillus cereus is responsible for foodborne outbreaks worldwide. Among the produced toxins, cereulide induces nausea and vomiting after 30 min to 6 h following the consumption of contaminated foods. Cereulide, a cyclodepsipeptide, is an ionophore selective to K+ in solution. In electrospray, the selectivity is reduced as [M + Li]+; [M + Na]+ and [M + NH4]+ can also be detected without adding corresponding salts. Two forms are possible for alkali-cationized ions: charge-solvated (CS) that exclusively dissociates by releasing a bare alkali ion and protonated salt (PS), yielding alkali product ions by covalent bond cleavages (CBC) promoted by mobile proton. Based on a modified peptide cleavage nomenclature, the PS product ion series (b, a, [b + H2O] and [b + CnH2nO] [n = 4, 5]) are produced by Na+/Li+/K+-cationized cereulide species that specifically open at ester linkages followed by proton mobilization promoting competitive ester CBC as evidenced under resonant collision activation. What is more, unlike the sodiated or lithiated cereulide, which regenerates little or no alkali cation, the potassiated forms lead to an abundant K+ regeneration. This occurs by splitting of (i) the potassiated CS forms with an appearance threshold close to that of the PS first fragment ion generation and (ii) eight to four potassiated residue product ions from the PS forms. Since from Na+/Li+-cationized cereulide, (i) the negligible Na+/Li+ regeneration results in a higher sensibility than that of potassiated forms that abundantly releasing K+, and (ii) a better sequence recovering, the use of Na+ (or Li+) should be more pertinent to sequence isocereulides and other cyclodepsipeptides.


Subject(s)
Cations , Depsipeptides , Protons , Spectrometry, Mass, Electrospray Ionization , Depsipeptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Cations/chemistry , Alkalies/chemistry , Bacillus cereus/chemistry , Salts/chemistry
11.
Environ Pollut ; 355: 124261, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815891

ABSTRACT

Municipal solid waste incineration fly ash (IFA) designated as hazardous waste poses risks to environment and human health. This study introduces a novel approach for the stabilization and solidification (S/S) of IFA: a combined approach involving alkali treatment and immobilization in low-carbon supersulfated cement (SSC). The impact of varying temperatures of alkali solution on the chemical and mineralogical compositions, as well as the pozzolanic reactivity of IFA, and the removal efficiency of heavy metals and metallic aluminum (Al) were examined. The physical characteristics, hydration kinetics and effectiveness of SSC in immobilizing IFA were also analyzed. Results showed that alkali treatment at 25 °C effectively eliminated heavy metals like manganese (Mn), barium (Ba), nickel (Ni), and chromium (Cr) to safe levels and totally removed the metallic Al, while enhancing the pozzolanic reactivity of IFA. By incorporating the alkali-treated IFA and filtrate, the density, compressive strength and hydration reaction of SSC were improved, resulting in higher hydration degree, finer pore structure, and denser microstructure compared to untreated IFA. The rich presence of calcium-aluminosilicate-hydrate (C-(A)-S-H) and ettringite (AFt) in SSC facilitated the efficient stabilization and solidification of heavy metals, leading to a significant decrease in their leaching potential. The use of SSC for treating Ca(OH)2- and 25°C-treated IFA could achieve high strength and high-efficient immobilization.


Subject(s)
Alkalies , Coal Ash , Construction Materials , Incineration , Metals, Heavy , Solid Waste , Coal Ash/chemistry , Metals, Heavy/chemistry , Alkalies/chemistry , Refuse Disposal/methods , Aluminum/chemistry
12.
Bioresour Technol ; 403: 130864, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777230

ABSTRACT

Freeze pretreatment combined with alkaline-hydrothermal method of rice straw for enzymatic hydrolysis was studied. Crystallization stress in the rice stem pores caused by water freezing at -20- -40 °C was modeled to illustrate the destruction mechanism. The stress was calculated as 22.5-38.3 MPa that were higher than the tensile yield stress of untreated stems (3.0 MPa), indicating ice formation damaging pore structure. After freeze at -20 °C, rice straw was further hydrothermally treated at 190 °C with 0.4 M Na2CO3, achieving 72.0 % lignin removal and 97.2 % cellulose recovery. Glucose yield rose to 91.1 % by 4.3 times after 24 h hydrolysis at 10 FPU loading of Cellic®CTec2 cellulase. The specific surface area of rice straw was 2.6 m2/g increased by 1.2 times after freeze. Freeze combined with alkaline-hydrothermal treatment is a green and energy-efficient method for improving enzymatic hydrolysis.


Subject(s)
Cellulase , Freezing , Oryza , Thermodynamics , Oryza/chemistry , Hydrolysis , Cellulase/metabolism , Alkalies/chemistry , Alkalies/pharmacology , Water/chemistry , Lignin/chemistry , Cellulose/chemistry , Glucose/chemistry , Temperature
13.
Chemosphere ; 359: 142393, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777198

ABSTRACT

The development of bio-friendly materials to replace single-use plastics is urgently needed. In this regard, cellulosic material from plants is a promising alternative. However, due to the risk of forest depletion, agricultural biomass stands out as a favorable choice. Toward this end, switchgrass, an underutilized grass, presents itself as a viable source of lignocellulose that can be turned into a bio-friendly material. Herein, lignocellulosic residue from switchgrass has been extracted using two different concentrations of NaOH (20% and 50% w/v), solubilized in aqueous ZnCl2 solution, and crosslinked with CaCl2 (200, 300, 400, and 500 mM) to prepare biodegradable films. The color, thickness and moisture, water solubility, water absorption, water vapor permeability, tensile strength and elongation, biodegradation, UV transmittance, and antioxidant activity of films have been studied. The films possess a high tensile strength of 14.7 MPa and elongation of 4.7%. They block UVB-radiation and hold antioxidant properties. They display good water vapor permeability of 1.410-1.6 × 10-11 gm-1s-1Pa-1 and lose over 80% of their weight at 30% soil moisture within 40 days. An increase in the CaCl2 amount decreased the water vapor permeability, elongation, UV transmittance, and biodegradation but increased the transparency, tensile strength and antioxidant property. Overall, films of alkali-digested lignocellulosic residue of switchgrass showed excellent potential to be used against lightweight plastics and support the circular economy.


Subject(s)
Antioxidants , Biodegradation, Environmental , Lignin , Permeability , Tensile Strength , Ultraviolet Rays , Lignin/chemistry , Antioxidants/chemistry , Panicum/chemistry , Alkalies/chemistry , Steam
14.
J Agric Food Chem ; 72(22): 12810-12821, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38778434

ABSTRACT

Polysaccharides derived from Agrocybe cylindracea have been demonstrated to exhibit various bioactivities. However, studies on their structural characteristics during the growth process are limited. This study aimed to compare the physicochemical properties and structural characteristics of alkali-extracted polysaccharides from A. cylindracea fruiting bodies (JACP) across four growth stages. Results showed that the extraction yields and protein levels of JACP declined along with the growth of A. cylindracea, while the contents of neutral sugar and glucose increased significantly. However, JACP exhibited structural characteristics similar to those across the four stages. Four polysaccharide subfractions were isolated from each growth stage, including JACP-Et30, JACP-Et50, JACP-Et60, and JACP-Et70. JACP-Et30 from the four stages and JACP-Et50 from the initial three stages were identified as heteroglucans with ß-1,3-d-Glcp and ß-1,6-d-Glcp residues as main chains, respectively. However, other subfractions were considered as ß-1,6-d-glucans containing minor glucuronic acid. These subfractions were predominantly replaced by Glcp residues at the O-3 and O-6 positions. Overall, while JACP exhibited variable physicochemical properties, its structural characteristics remained stable during the growth process, offering new insights into its potential applications in the food and medicinal industries.


Subject(s)
Agrocybe , Fruiting Bodies, Fungal , Polysaccharides , Agrocybe/chemistry , Agrocybe/growth & development , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Alkalies/chemistry
15.
Biomacromolecules ; 25(6): 3823-3830, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38773865

ABSTRACT

Sustainability and circularity are key issues facing the global polymer industry. The search for biodegradable and environmentally-friendly polymers that can replace conventional materials is a difficult challenge that has been met with limited success. Alternatives must be cost-effective, scalable, and provide equivalent performance. We report that latexes made by the conventional emulsion polymerization of vinyl acetate and functional vinyl ester monomers are efficient thickeners for consumer products and biodegrade in wastewater. This approach uses readily-available starting materials and polymerization is carried out in water at room temperature, in one pot, and generates negligible waste. Moreover, the knowledge that poly(vinyl ester)s are biodegradable will lead to the design of new green polymer materials.


Subject(s)
Emulsions , Emulsions/chemistry , Polymerization , Polymers/chemistry , Alkalies/chemistry , Biodegradation, Environmental , Latex/chemistry , Vinyl Compounds/chemistry , Wastewater/chemistry
16.
Food Chem ; 452: 139608, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38754171

ABSTRACT

Protein from tiger nut meal (TNP) performance high nutritional value. This study optimized the extraction parameters for TNP (DES-TNP) using deep eutectic solvent, with HBD: HBA = 5:1, Liquid: Solid = 11:1, and the moisture content was 15 %. A comprehensive comparison was conducted with the protein extracted using alkali-soluble acid precipitation (ASAE-TNP). DES-TNP demonstrated significantly higher purity (76.21 ± 2.59 %) than ASAE-TNP (67.48 ± 1.11 %). Density functional theory confirmed the successful synthesis of DES and its strong interaction with TNP. Moreover, DES-TNP and ASAE-TNP were different in structure (microscopic, secondary, and tertiary) and molecular weight distribution. The discrepancy contributed to the different functional properties, DES-TNP exhibiting better solubility, emulsification and foaming properties at pH13 compared to ASAE-TNP. For nutritional properties, DES-TNP and ASAE-TNP exhibited similar amino acid composition and digestibility, but the total amino acid content of DES-TNP was higher. This study presented a novel method for the extraction and comprehensive utilization of TNP.


Subject(s)
Alkalies , Deep Eutectic Solvents , Nutritive Value , Plant Proteins , Solubility , Plant Proteins/chemistry , Alkalies/chemistry , Deep Eutectic Solvents/chemistry , Nuts/chemistry , Amino Acids/chemistry , Chemical Precipitation , Molecular Weight
17.
Water Res ; 258: 121744, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754301

ABSTRACT

Replacing petroleum-based plastics with biodegradable polymers is a major challenge for modern society especially for food packaging applications. To date, poly(lactic acid) represents 25 % of the total biodegradable plastics and it is estimated that, in the future, it could become the main contributor to the biodegradable plastics industry. Anaerobic digestion is an interesting way for the poly(lactic acid) end of life, even if its biodegradability is limited in mesophilic conditions. The aims of this study were to identify the best pre-treatment for maximizing the methane yield, minimizing the anaerobic digestion duration and limiting residual plastic fragments in the digestate. A systematic comparison was carried out between thermal, chemical, and thermo-chemical pre-treatment. Pre-treatment with 4 M KOH for 48 h at 35°C was effective in improving the mesophilic anaerobic digestion of the poly(lactic acid). Such pre-treatment allows obtaining 90 % of the theoretical methane potential, in 24 - 30 days. Importantly, such pre-treatment completely solubilized the poly(lactic acid), leaving no solid residues in the digestate. In addition, using KOH permits to avoid the sodication of the soil due to the digestate application as fertilizer.


Subject(s)
Polyesters , Polyesters/chemistry , Anaerobiosis , Polymers/chemistry , Methane/metabolism , Lactic Acid/metabolism , Alkalies/chemistry , Hydroxides/chemistry , Potassium Compounds/chemistry , Biodegradation, Environmental , Temperature
18.
Int J Biol Macromol ; 270(Pt 1): 132311, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740154

ABSTRACT

The present study aimed to investigate the structural and physicochemical characteristics of alkali-extracted pectic polysaccharide (AkPP) and to evaluate its prebiotic effects. AkPP was obtained from pumpkin pulp using an alkaline extraction method. AkPP, which had a molecular weight (Mw) of mainly 13.67 kDa and an esterification degree of 9.60%, was composed mainly of galacturonic acid (GalA), rhamnose (Rha), galactose, and arabinose. The ratio of the homogalacturonan (HG) region to the rhamnogalacturonan-I (RG-I) region in AkPP was 48.74:43.62. In the nuclear magnetic resonance spectrum, the signals indicating α-1,4-linked D-GalA, α-1,2-linked L-Rha, α-1,2,4-linked L-Rha residues were well resolved, demonstrating the presence of the HG and RG-I regions in its molecular structure. Collectively, AkPP was low methoxyl pectin rich in the RG-I region with short side chains and had a low Mw. Thermal analysis revealed that AkPP had good thermal stability. Compared to inulin, AkPP more effectively promoted the proliferation of Lactobacillus acidophilus, Lacticaseibacillus rhamnosus GG, Lacticaseibacillus casei, and Lacticaseibacillus paracasei and the production of lactic, acetic, and propionic acids. This study presents the unique structural features of AkPP and provides a scientific basis for further investigation of the potential of AkPP as a promising prebiotic.


Subject(s)
Cucurbita , Molecular Weight , Pectins , Prebiotics , Pectins/chemistry , Cucurbita/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Rhamnose/chemistry , Alkalies/chemistry , Solutions , Hexuronic Acids
19.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791167

ABSTRACT

Polyethylene glycol can abrogate plant seed dormancy and alleviate salt-alkali stress damage to plants, but its role in embryonic dormancy abrogation and germination in Sorbus pohuashanensis is not yet clear. The mechanism by which polyethylene glycol promotes the release of embryonic dormancy may be related to the synthesis and metabolism of endogenous hormones, reactive oxygen species and reactive nitrogen. In this article, germination in indoor culture dishes was used, and the most suitable conditions for treating S. pohuashanensis embryos, with polyethylene glycol (PEG) and sodium carbonate (Na2CO3), were selected. Germination was observed and recorded, and related physiological indicators such as endogenous hormones, reactive oxygen species and reactive nitrogen were measured and analyzed to elucidate the mechanism of polyethylene glycol in alleviating salt-alkali stress in S. pohuashanensis embryos. The results showed that soaking seeds in 5% PEG for 5 days is the best condition to promote germination, which can increase the germination rate of embryos under salt-alkali stress by 1-2 times and improve indicators such as germination speed and the germination index. Polyethylene glycol led to an increase in gibberellin (GA), indole-3-acetic acid (IAA), ethylene (ETH), cytokinin (CTK), nitric oxide (NO), soluble protein and soluble sugar in the embryos under salt-alkali stress; increased activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), nitrate reductase (NR) and nitric oxide synthase (NOS) in the embryos; a reduction in the accumulation of abscisic acid (ABA), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Therefore, it is suggested that the inhibitory effect of polyethylene glycol on the salt-alkali-stress-induced germination of S. pohuashanensis embryos is closely related to the response of endogenous hormones, reactive oxygen species and nitric oxide signalling.


Subject(s)
Germination , Nitric Oxide , Plant Growth Regulators , Polyethylene Glycols , Reactive Oxygen Species , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Plant Growth Regulators/metabolism , Seeds/metabolism , Seeds/drug effects , Seeds/growth & development , Stress, Physiological , Alkalies , Plant Dormancy/drug effects
20.
Genes (Basel) ; 15(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38790241

ABSTRACT

To investigate the role of candidate genes for salt-alkali tolerance in cucumber (Cucumis sativus L.), this study screened CsTAU1 in the glutathione pathway from previous transcriptome data for cloning and functional analysis. Clone cucumber CsTAU1 contains one 675 bp open reading frame, containing one GST-N-Tau domain and one GST-C-Tau domain, and is expressed in cytoplasm. After successfully constructing overexpression vectors of CsTAU1 (+) and CsTAU1 (-), they were transferred into cucumber varieties 'D1909' (high salt alkali resistance) and 'D1604' (low salt alkali resistance) for salt-alkali resistance identification. It was found that under salt-alkali stress, CsTAU1 (+)-overexpressing plants showed strong resistance to salt-alkali stress, while CsTAU1 (-)-overexpressing plants showed the opposite situation. qRT-PCR analysis was performed on other glutathione pathway-related genes in CsTAU1-overexpressing plants. The expression patterns of LOC101219529 and LOC105434443 were the same as CsTAU1, and the introduction of CsTAU1 (+) increased the chlorophyll, α-Naphthylamine oxidation, glutathione S-transferase (GST), and catalase (CAT) content of cucumber. The research results provide a theoretical basis for cultivating salt-alkali-tolerant cucumber varieties.


Subject(s)
Cloning, Molecular , Cucumis sativus , Gene Expression Regulation, Plant , Plant Proteins , Salt Tolerance , Cucumis sativus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Alkalies/adverse effects , Salt Stress/genetics , Stress, Physiological/genetics , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Plants, Genetically Modified/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...