Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.929
Filter
1.
Food Funct ; 15(10): 5539-5553, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38712538

ABSTRACT

A novel processing method combining short-time ozone pretreatment with hydrolysis has been developed to reduce whey protein allergenicity. The results showed that ozone treatment altered the whey protein spatial structure, initially increasing the surface hydrophobicity index, and then decreasing due to polymer formation as the time increased. Under the optimized conditions of alkaline protease-mediated hydrolysis, a 10-second pre-exposure to ozone significantly promoted the reduction in the IgE binding capacity of whey protein without compromising the hydrolysis efficiency. Compared with whey protein, the degranulation of KU812 cells stimulated by this hydrolysate decreased by 20.54%, 17.99%, and 22.80% for IL-6, ß-hexosaminidase, and histamine, respectively. In vitro simulated gastrointestinal digestion confirmed increased digestibility and reduced allergenicity. Peptidomics identification revealed that short-time ozonation exposed allergen epitopes, allowing alkaline protease to target these epitopes more effectively, particularly those associated with α-lactalbumin. These findings suggest the promising application of this processing method in mitigating the allergenicity of whey protein.


Subject(s)
Allergens , Epitopes , Ozone , Whey Proteins , Whey Proteins/chemistry , Whey Proteins/pharmacology , Ozone/chemistry , Ozone/pharmacology , Allergens/chemistry , Allergens/immunology , Humans , Epitopes/chemistry , Epitopes/immunology , Immunoglobulin E/immunology , Hydrolysis , Endopeptidases/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/immunology
2.
Compr Rev Food Sci Food Saf ; 23(3): e13340, 2024 May.
Article in English | MEDLINE | ID: mdl-38778570

ABSTRACT

Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.


Subject(s)
Allergens , Epitopes , Food Hypersensitivity , Immunoglobulin E , Allergens/chemistry , Allergens/immunology , Food Hypersensitivity/immunology , Epitopes/chemistry , Epitopes/immunology , Animals , Crystallography, X-Ray , Humans , Immunoglobulin E/immunology , Immunoglobulin E/chemistry , Cross Reactions , Protein Conformation
3.
Food Chem ; 451: 139433, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692238

ABSTRACT

Hazelnut, pistachio and cashew are tree nuts with health benefits but also with allergenic properties being prevalent food allergens in Europe. The allergic characteristics of these tree nuts after processing combining heat, pressure and enzymatic digestion were analyzed through in vitro (Western blot and ELISA) and in vivo test (Prick-Prick). In the analyzed population, the patients sensitized to Cor a 8 (nsLTP) were predominant over those sensitized against hazelnut seed storage proteins (Sprot, Cor a 9 and 14), which displayed higher IgE reactivity. The protease E5 effectively hydrolyzed proteins from hazelnut and pistachio, while E7 was efficient for cashew protein hydrolysis. When combined with pressured heating (autoclave and Controlled Instantaneous Depressurization (DIC)), these proteases notably reduced the allergenic reactivity. The combination of DIC treatment before enzymatic digestion resulted in the most effective methodology to drastically reduce or indeed eliminate the allergenic capacity of tree nuts.


Subject(s)
Allergens , Corylus , Nut Hypersensitivity , Nuts , Humans , Nut Hypersensitivity/immunology , Hydrolysis , Nuts/chemistry , Nuts/immunology , Allergens/immunology , Allergens/chemistry , Corylus/chemistry , Corylus/immunology , Hot Temperature , Pistacia/chemistry , Pistacia/immunology , Anacardium/chemistry , Anacardium/immunology , Immunoglobulin E/immunology , Female , Adult , Male , Young Adult , Food Handling , Plant Proteins/immunology , Plant Proteins/chemistry , Peptide Hydrolases/chemistry , Peptide Hydrolases/immunology , Child
4.
Food Chem ; 452: 139462, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723563

ABSTRACT

The presence of various components in the food matrix makes allergen detection difficult and inaccurate, and pretreatment is an innovative breakthrough point. Food matrices were categorised based on their composition. Subsequently, a pretreatment method was established using a combination of ultrasound-assisted n-hexane degreasing and weakly alkaline extraction systems to enhance the detection accuracy of bovine milk allergens. Results showed that more allergens were obtained with less structural destruction, as demonstrated using immunological quantification and spectral analysis. Concurrently, allergenicity preservation was confirmed through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, a KU812 cell degranulation model, and western blotting. The method exhibited good accuracy (bias, 8.47%), repeatability (RSDr, 1.52%), and stability (RSDR, 5.65%). In foods with high lipid content, such as chocolate, the allergen content was 2.29-fold higher than that of commercial kits. Laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM) analyses revealed a significant decrease in fat content after post-pretreatment using our method. In addition, colloidal stability surpassed that achieved using commercial kits, as indicated through the PSA and zeta potential results. The results demonstrated the superiority of the extractability and allergenicity maintenance of lipid matrix-specific pretreatment methods for improving the accuracy of ELISA based allergen detection in real food.


Subject(s)
Allergens , Enzyme-Linked Immunosorbent Assay , Lipids , Milk , Animals , Allergens/immunology , Allergens/chemistry , Allergens/analysis , Cattle , Lipids/chemistry , Lipids/immunology , Milk/chemistry , Tandem Mass Spectrometry , Milk Hypersensitivity/immunology , Humans , Milk Proteins/chemistry , Milk Proteins/immunology
5.
Food Chem ; 452: 139522, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723568

ABSTRACT

ß-lactoglobulin (ß-Lg) is a major food allergen, there is an urgent need to develop a rapid method for detecting ß-Lg in order to avoid contact or ingestion by allergic patients. Peptide aptamers have high affinity, specificity, and stability, and have broad prospects in the field of rapid detection. Using ß-Lg as the target, this study screened 11 peptides (P1-11) from a phage display library. Using molecular docking technology to predict binding energy and binding mode of proteins and peptides. Select the peptides with the best binding ability to ß-Lg (P5, P7, P8) through ELISA. Combining them with whey protein, casein, and bovine serum protein, it was found that P7 has the best specificity for ß-Lg, with an inhibition rate of 87.99%. Verified by molecular dynamics that P7 binds well with ß-Lg. Therefore, this peptide can be used for the recognition of ß-Lg, becoming a new recognition element for detecting ß-Lg.


Subject(s)
Lactoglobulins , Molecular Docking Simulation , Peptides , Lactoglobulins/chemistry , Peptides/chemistry , Animals , Protein Binding , Peptide Library , Cattle , Cell Surface Display Techniques , Enzyme-Linked Immunosorbent Assay , Allergens/chemistry , Allergens/immunology , Humans
6.
J Agric Food Chem ; 72(19): 11259-11267, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691423

ABSTRACT

Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.


Subject(s)
Allergens , Arachis , Peptides , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Arachis/chemistry , Arachis/immunology , Peptides/chemistry , Peptides/immunology , Allergens/analysis , Allergens/immunology , Allergens/chemistry , Biofouling/prevention & control , Food Contamination/analysis , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Proteins/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Adsorption
7.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732184

ABSTRACT

Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 but also the alder pollen allergen Aln g 1, might act as a true sensitizer of the immune system. The current investigation is aimed at the further study of the allergenic and structural features of Aln g 1. By using qPCR, we showed that Aln g 1 was able to upregulate alarmins in epithelial cells, playing an important role in sensitization. With the use of CD-spectroscopy and ELISA assays with the sera of allergic patients, we demonstrated that Aln g 1 did not completely restore its structure after thermal denaturation, which led to a decrease in its IgE-binding capacity. Using site-directed mutagenesis, we revealed that the replacement of two residues (Asp27 and Leu30) in the structure of Aln g 1 led to a decrease in its ability to bind to both IgE from sera of allergic patients and lipid ligands. The obtained data open a prospect for the development of hypoallergenic variants of the major alder allergen Aln g 1 for allergen-specific immunotherapy.


Subject(s)
Allergens , Antigens, Plant , Immunoglobulin E , Plant Proteins , Pollen , Humans , Pollen/immunology , Pollen/chemistry , Allergens/immunology , Allergens/chemistry , Antigens, Plant/immunology , Antigens, Plant/chemistry , Immunoglobulin E/immunology , Plant Proteins/immunology , Plant Proteins/chemistry , Alnus/immunology , Alnus/chemistry
8.
J Agric Food Chem ; 72(20): 11672-11681, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38713521

ABSTRACT

Crustacean shellfish are major allergens in East Asia. In the present study, a major allergic protein in crustaceans, tropomyosin, was detected accurately using multiple reaction monitoring mode-based mass spectrometry, with shared signature peptides identified through proteomic analysis. The peptides were deliberately screened through thermal stability and enzymatic digestion efficiency to improve the suitability and accuracy of the developed method. Finally, the proposed method demonstrated a linear range of 0.15 to 30 mgTM/kgfood (R2 > 0.99), with a limit of detection of 0.15 mgTM/kg food and a limit of quantification of 0.5mgTM/kgfood and successfully applied to commercially processed foods, such as potato chips, biscuits, surimi, and hot pot seasonings, which evidenced the applicability of proteomics-based methodology for food allergen analysis.


Subject(s)
Allergens , Crustacea , Mass Spectrometry , Peptides , Proteomics , Shellfish , Tropomyosin , Tropomyosin/chemistry , Tropomyosin/immunology , Tropomyosin/analysis , Animals , Proteomics/methods , Allergens/chemistry , Allergens/analysis , Peptides/chemistry , Shellfish/analysis , Mass Spectrometry/methods , Crustacea/chemistry , Arthropod Proteins/chemistry , Arthropod Proteins/immunology , Shellfish Hypersensitivity/immunology , Food Hypersensitivity/immunology , Food, Processed
9.
J Agric Food Chem ; 72(20): 11746-11758, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718253

ABSTRACT

A novel strategy combining ferulic acid and glucose was proposed to reduce ß-lactoglobulin (BLG) allergenicity and investigate whether the reduction in allergenicity was associated with gut microbiome and serum metabolism. As a result, the multistructure of BLG changed, and the modified BLG decreased significantly the contents of IgE, IgG, IgG1, and mMCP-1 in serum, improved the diversity and structural composition of gut microbiota, and increased the content of short-chain fatty acids (SCFAs) in allergic mice. Meanwhile, allergic mice induced by BLG affected arachidonic acid, tryptophan, and other metabolic pathways in serum, the modified BLG inhibited the production of metabolites in arachidonic acid metabolism pathway and significantly increased tryptophan metabolites, and this contribution helps in reducing BLG allergenicity. Overall, reduced allergenicity of BLG after ferulic acid was combined with glucose modification by regulating gut microbiota, the metabolic pathways of arachidonic acid and tryptophan. The results may offer new thoughts alleviating the allergy risk of allergenic proteins.


Subject(s)
Allergens , Coumaric Acids , Gastrointestinal Microbiome , Glucose , Lactoglobulins , Coumaric Acids/metabolism , Coumaric Acids/chemistry , Animals , Lactoglobulins/immunology , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Mice , Humans , Allergens/immunology , Allergens/chemistry , Allergens/metabolism , Glucose/metabolism , Female , Bacteria/immunology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Mice, Inbred BALB C , Immunoglobulin E/immunology , Immunoglobulin E/blood , Fatty Acids, Volatile/metabolism , Cattle , Immunoglobulin G/immunology , Immunoglobulin G/blood , Milk Hypersensitivity/immunology
10.
J Agric Food Chem ; 72(21): 12270-12280, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743450

ABSTRACT

Allergenicity of soybean 7S protein (7S) troubles many people around the world. However, many processing methods for lowering allergenicity is invalid. Interaction of 7S with phenolic acids, such as chlorogenic acid (CHA), to structurally modify 7S may lower the allergenicity. Hence, the effects of covalent (C-I, periodate oxidation method) and noncovalent interactions (NC-I) of 7S with CHA in different concentrations (0.3, 0.5, and 1.0 mM) on lowering 7S allergenicity were investigated in this study. The results demonstrated that C-I led to higher binding efficiency (C-0.3:28.51 ± 2.13%) than NC-I (N-0.3:22.66 ± 1.75%). The C-I decreased the α-helix content (C-1:21.06%), while the NC-I increased the random coil content (N-1:24.39%). The covalent 7S-CHA complexes of different concentrations had lower IgE binding capacity (C-0.3:37.38 ± 0.61; C-0.5:34.89 ± 0.80; C-1:35.69 ± 0.61%) compared with that of natural 7S (100%), while the noncovalent 7S-CHA complexes showed concentration-dependent inhibition of IgE binding capacity (N-0.3:57.89 ± 1.23; N-0.5:46.91 ± 1.57; N-1:40.79 ± 0.22%). Both interactions produced binding to known linear epitopes. This study provides the theoretical basis for the CHA application in soybean products to lower soybean allergenicity.


Subject(s)
Antigens, Plant , Chlorogenic Acid , Glycine max , Immunoglobulin E , Soybean Proteins , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Glycine max/chemistry , Glycine max/immunology , Immunoglobulin E/immunology , Soybean Proteins/chemistry , Soybean Proteins/immunology , Antigens, Plant/chemistry , Antigens, Plant/immunology , Humans , Food Hypersensitivity/immunology , Allergens/chemistry , Allergens/immunology , Protein Binding , Seed Storage Proteins/chemistry , Seed Storage Proteins/immunology
11.
J Agric Food Chem ; 72(22): 12398-12414, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38797944

ABSTRACT

Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.


Subject(s)
Food Safety , Peptides , Plant Proteins , Peptides/chemistry , Plant Proteins/chemistry , Plant Proteins/immunology , Humans , Animals , Allergens/chemistry , Allergens/immunology , Food Handling , Functional Food
12.
J Agric Food Chem ; 72(17): 9947-9954, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647139

ABSTRACT

Glycinin is an important allergenic protein. A1a is the acidic chain of the G1 subunit in glycinin (G1A1a), and it has strong allergenicity. In this study, we used phage display technology to express the protein of G1A1a and its overlapping fragments and an indirect enzyme-linked immunosorbent assay (iELISA) to determine the antigenicity and allergenicity of the expressed protein. After three rounds of screening, it was determined that fragment A1a-2-B-I (151SLENQLDQMPRRFYLAGNQEQEFLKYQQEQG181) is the allergenic domain of G1A1a destroyed by thermal processing. In addition, three overlapping peptides were synthesized from fragments A1a-2-B-I, and a linear epitope was found in this domain through methods including dot blot and iELISA. Peptide 2 (157DQMPRRFYLANGNQE170) showed allergenicity, and after replacing it with alanine, it was found that amino acids D157, Q158, M159, and Y164 were the key amino acids that affected its antigenicity, while Q158, M159, R162, and N168 affected allergenicity.


Subject(s)
Allergens , Globulins , Hot Temperature , Soybean Proteins , Allergens/immunology , Allergens/chemistry , Humans , Globulins/chemistry , Globulins/immunology , Soybean Proteins/chemistry , Soybean Proteins/immunology , Amino Acid Sequence , Food Hypersensitivity/immunology , Epitopes/chemistry , Epitopes/immunology , Protein Domains , Antigens, Plant/immunology , Antigens, Plant/chemistry , Antigens, Plant/genetics , Glycine max/chemistry , Glycine max/immunology , Enzyme-Linked Immunosorbent Assay
13.
J Agric Food Chem ; 72(17): 10031-10045, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629959

ABSTRACT

Casein (CN) is the primary allergenic protein in cow's milk, contributing to the worldwide escalating prevalence of food allergies. However, there remains limited knowledge regarding the effect of structural modifications on CN allergenicity. Herein, we prepared three modified CNs (mCN), including sodium dodecyl sulfate and dithiothreitol-induced linear CN (LCN), transglutaminase-cross-linked CN (TCN), and glucose-glycated CN (GCN). The electrophoresis results indicated widespread protein aggregation among mCN, causing variations in their molecular weights. The unique internal and external structural characteristics of mCN were substantiated by disparities in surface microstructure, alterations in the secondary structure, variations in free amino acid contents, and modifications in functional molecular groups. Despite the lower digestibility of TCN and GCN compared to LCN, they significantly suppressed IL-8 production in Caco-2 cells without significantly promoting their proliferation. Moreover, GCN showed the weakest capacity to induce LAD2 cell degranulation. Despite the therapeutic effect of TCN, GCN-treated mice displayed the most prominent attenuation of allergic reactions and a remarkably restored Th1/Th2 imbalance, while LCN administration resulted in severe allergic phenotypes and endotypes in both cellular and murine models. This study highlighted the detrimental effect of linear modifications and underscored the significance of glycation in relation to CN allergenicity.


Subject(s)
Allergens , Caseins , Mice, Inbred BALB C , Th1 Cells , Th2 Cells , Animals , Humans , Mice , Th2 Cells/immunology , Caseins/immunology , Caseins/chemistry , Th1 Cells/immunology , Allergens/immunology , Allergens/chemistry , Caco-2 Cells , Female , Glycosylation , Cattle , Homeostasis , Food Hypersensitivity/immunology
14.
Food Chem ; 449: 139304, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608611

ABSTRACT

To evaluate the effect of high voltage pulsed electric field (PEF) treatment (10-20 kV/cm, 5-15 min) on the structural characteristics and sensitization of crude extracts of arginine kinase from Fenneropenaeus chinensis. By simulated in vitro gastric juice digestion (SGF), intestinal juice digestion (SIF) and enzyme-linked immunosorbent assay (ELISA), AK sensitization was reduced by 42.5% when treated for 10 min at an electric field intensity of 15 kV/cm. After PEF treatment, the α-helix content decreased, and the α-helix content gradually changed to ß-sheet and ß-turn. Compared to the untreated group, the surface hydrophobicity increased and the sulfhydryl content decreased. SEM and AFM analyses showed that the treated sample surface formed a dense porous structure and increased roughness. The protein content, dielectric properties, and amino acid content of sample also changed significantly with the changes in the treatment conditions. Non-thermal PEF has potential applications in the development of hypoallergenic foods.


Subject(s)
Arginine Kinase , Penaeidae , Animals , Arginine Kinase/chemistry , Arginine Kinase/immunology , Arginine Kinase/metabolism , Penaeidae/chemistry , Penaeidae/enzymology , Penaeidae/immunology , Electricity , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Insect Proteins/metabolism , Humans , Allergens/chemistry , Allergens/immunology
15.
Food Funct ; 15(10): 5397-5413, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38639426

ABSTRACT

Limited research has been conducted on the differences in allergenicity among Alectryonella plicatula tropomyosin (ATM), Haliotis discus hannai tropomyosin (HTM), and Mimachlamys nobilis tropomyosin (MTM) in molluscs. Our study aimed to comprehensively analyze and compare their immunoreactivity, sensitization, and allergenicity while simultaneously elucidating the underlying molecular mechanisms involved. We assessed the immune binding activity of TM utilizing 86 sera from allergic patients and evaluated sensitization and allergenicity through two different types of mouse models. The dot-blot and basophil activation test assays revealed strong immunoreactivity for HTM, ATM, and MTM, with HTM exhibiting significantly lower levels compared to ATM. In the BALB/c mouse sensitization model, all TM groups stimulated the production of specific antibodies, elicited IgE-mediated immediate hypersensitivity responses, and caused an imbalance in the IL-4/IFN-γ ratio. Similarly, in the BALB/c mouse model of food allergy, all TM variants induced IgE-mediated type I hypersensitivity responses, leading to the development of food allergies characterized by clinical symptoms and an imbalance in the IL-4/IFN-γ ratio. The stimulation ability of sensitization and the severity of food allergies consistently ranked as ATM > MTM > HTM. Through an in-depth analysis of non-polar amino acid frequency and polar hydrogen bonds, HTM exhibited higher frequencies of non-polar amino acids in its amino acid sequence and IgE epitopes, in comparison with ATM and MTM. Furthermore, HTM demonstrated a lower number of polar hydrogen bonds in IgE epitopes. Overall, HTM exhibited the lowest allergenic potential in both allergic patients and mouse models, likely due to its lower polarity in the amino acid sequence and IgE epitopes.


Subject(s)
Allergens , Epitopes , Immunoglobulin E , Mice, Inbred BALB C , Tropomyosin , Animals , Tropomyosin/immunology , Tropomyosin/chemistry , Immunoglobulin E/immunology , Mice , Humans , Epitopes/immunology , Allergens/immunology , Allergens/chemistry , Female , Male , Adult , Amino Acids , Mollusca/immunology , Food Hypersensitivity/immunology , Young Adult , Child , Adolescent , Middle Aged , Child, Preschool , Amino Acid Sequence
16.
Biol Chem ; 405(6): 367-381, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38662449

ABSTRACT

Structural and allergenic characterization of mite profilins has not been previously pursued to a similar extent as plant profilins. Here, we describe structures of profilins originating from Tyrophagus putrescentiae (registered allergen Tyr p 36.0101) and Dermatophagoides pteronyssinus (here termed Der p profilin), which are the first structures of profilins from Arachnida. Additionally, the thermal stabilities of mite and plant profilins are compared, suggesting that the high number of cysteine residues in mite profilins may play a role in their increased stability. We also examine the cross-reactivity of plant and mite profilins as well as investigate the relevance of these profilins in mite inhalant allergy. Despite their high structural similarity to other profilins, mite profilins have low sequence identity with plant and human profilins. Subsequently, these mite profilins most likely do not display cross-reactivity with plant profilins. At the same time the profilins have highly conserved poly(l-proline) and actin binding sites.


Subject(s)
Cross Reactions , Profilins , Animals , Cross Reactions/immunology , Profilins/immunology , Profilins/chemistry , Profilins/metabolism , Humans , Mites/immunology , Mites/chemistry , Amino Acid Sequence , Hypersensitivity/immunology , Plants/immunology , Plants/chemistry , Plants/metabolism , Models, Molecular , Allergens/immunology , Allergens/chemistry
17.
J Agric Food Chem ; 72(18): 10627-10639, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38664940

ABSTRACT

Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and ß-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from ß-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.


Subject(s)
Allergens , Soy Milk , Subtilisins , Humans , Allergens/chemistry , Allergens/immunology , Allergens/metabolism , Food Hypersensitivity/prevention & control , Food Hypersensitivity/immunology , Globulins/chemistry , Globulins/immunology , Hydrolysis , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Powders/chemistry , Soy Milk/chemistry , Soybean Proteins/chemistry , Soybean Proteins/immunology , Soybean Proteins/metabolism , Structure-Activity Relationship , Subtilisins/metabolism
18.
J Agric Food Chem ; 72(14): 8189-8199, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551197

ABSTRACT

Protein from Sichuan peppers can elicit mild to severe allergic reactions. However, little is known about their allergenic proteins. We aimed to isolate, identify, clone, and characterize Sichuan pepper allergens and to determine its allergenicity and cross-reactivities. Sichuan pepper seed proteins were extracted and then analyzed by SDS-PAGE. Western blotting was performed with sera from Sichuan pepper-allergic individuals. Proteins of interest were purified using hydrophobic interaction chromatography and gel filtration and further analyzed by analytical ultracentrifugation, circular dichroism spectroscopy, and mass spectrometry (MS). Their coding region was amplified in the genome. IgE reactivity and cross-reactivity of allergens were evaluated by dot blot, enzyme-linked immunosorbent assay (ELISA), and competitive ELISA. Western blot showed IgE binding to a 55 kDa protein. This protein was homologous to the citrus proteins and has high stability and a sheet structure. Four DNA sequences were cloned. Six patients' sera (60%) showed specific IgE reactivity to this purified 11S protein, which was proved to have cross-reactivation with extracts of cashew nuts, pistachios, and citrus seeds. A novel allergen in Sichuan pepper seeds, Zan b 2, which belongs to the 11S globulin family, was isolated and identified. Its cross-reactivity with cashew nuts, pistachios, and citrus seeds was demonstrated.


Subject(s)
Allergens , Nut Hypersensitivity , Humans , Allergens/genetics , Allergens/chemistry , Legumins , Plant Proteins/genetics , Plant Proteins/chemistry , Cross Reactions , Cloning, Molecular , Immunoglobulin E/metabolism
19.
Int J Biol Macromol ; 264(Pt 2): 130613, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447836

ABSTRACT

The 2S albumins Ara h 2 and Ara h 6 have been shown to be the most important source of allergenicity in peanut. Several isoforms of these allergens have been described. Using extraction and liquid chromatography we isolated proteins with homology to Ara h 2 and characterized hitherto unknown Ara h 2 proteoforms with additional post-translational cleavage. High-resolution mass spectrometry located the cleavage site on the non-structured loop of Ara h 2 while far UV CD spectroscopy showed a comparable structure to Ara h 2. The cleaved forms of Ara h 2 were present in genotypes of peanut commonly consumed. Importantly, we revealed that newly identified Ara h 2 cleaved proteoforms showed comparable IgE-binding using sera from 28 peanut-sensitized individuals, possessed almost the same IgE binding potency and are likely similarly allergenic as intact Ara h 2. This makes these newly identified forms relevant proteoforms of peanut allergen Ara h 2.


Subject(s)
Peanut Hypersensitivity , Plant Proteins , Humans , Plant Proteins/chemistry , Antigens, Plant/chemistry , Immunoglobulin E/metabolism , 2S Albumins, Plant/chemistry , Glycoproteins/chemistry , Allergens/chemistry , Arachis/chemistry
20.
Food Chem ; 447: 138940, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38484545

ABSTRACT

The study aimed to investigate the allergenicity change in casein treated with dielectric barrier discharge (DBD) plasma during in vitro simulated digestion, focusing on the immunoglobulin E (IgE) linear epitopes and utilizing a sensitized-cell model. Results indicated that prior treatment with DBD plasma treatment (4 min) before simulated digestion led to a 10.5% reduction in the IgE-binding capacity of casein digestion products. Moreover, the release of biologically active substances induced from KU812 cells, including ß-HEX release rate, human histamine, IL-4, IL-6, and TNF-α, decreased by 2.1, 28.1, 20.6, 11.6, and 17.3%, respectively. Through a combined analysis of LC-MS/MS and immunoinformatics tools, it was revealed that DBD plasma treatment promoted the degradation of the IgE linear epitopes of casein during digestion, particularly those located in the α-helix region of αs1-CN and αs2-CN. These findings suggest that DBD plasma treatment prior to digestion may alleviate casein allergic reactions.


Subject(s)
Immunoglobulin E , Milk Hypersensitivity , Humans , Epitopes , Immunoglobulin E/metabolism , Allergens/chemistry , Caseins/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL
...