Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
1.
Parasit Vectors ; 17(1): 200, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704595

ABSTRACT

BACKGROUND: Mayaro virus (MAYV) is an emerging alphavirus, primarily transmitted by the mosquito Haemagogus janthinomys in Central and South America. However, recent studies have shown that Aedes aegypti, Aedes albopictus and various Anopheles mosquitoes can also transmit the virus under laboratory conditions. MAYV causes sporadic outbreaks across the South American region, particularly in areas near forests. Recently, cases have been reported in European and North American travelers returning from endemic areas, raising concerns about potential introductions into new regions. This study aims to assess the vector competence of three potential vectors for MAYV present in Europe. METHODS: Aedes albopictus from Italy, Anopheles atroparvus from Spain and Culex pipiens biotype molestus from Belgium were exposed to MAYV and maintained under controlled environmental conditions. Saliva was collected through a salivation assay at 7 and 14 days post-infection (dpi), followed by vector dissection. Viral titers were determined using focus forming assays, and infection rates, dissemination rates, and transmission efficiency were calculated. RESULTS: Results indicate that Ae. albopictus and An. atroparvus from Italy and Spain, respectively, are competent vectors for MAYV, with transmission possible starting from 7 dpi under laboratory conditions. In contrast, Cx. pipiens bioform molestus was unable to support MAYV infection, indicating its inability to contribute to the transmission cycle. CONCLUSIONS: In the event of accidental MAYV introduction in European territories, autochthonous outbreaks could potentially be sustained by two European species: Ae. albopictus and An. atroparvus. Entomological surveillance should also consider certain Anopheles species when monitoring MAYV transmission.


Subject(s)
Aedes , Alphavirus Infections , Alphavirus , Culex , Mosquito Vectors , Animals , Aedes/virology , Mosquito Vectors/virology , Alphavirus/physiology , Alphavirus/isolation & purification , Culex/virology , Europe , Alphavirus Infections/transmission , Alphavirus Infections/virology , Saliva/virology , Anopheles/virology , Spain , Italy , Female , Belgium
2.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793690

ABSTRACT

The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Viral , Genotype , Phylogeny , Americas/epidemiology , Humans , Alphavirus/genetics , Alphavirus/classification , Alphavirus/isolation & purification , Animals , Recombination, Genetic , Alphavirus Infections/virology , Alphavirus Infections/epidemiology
4.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: mdl-35215862

ABSTRACT

Alphaviruses (Togaviridae) are arthropod-borne viruses responsible for several emerging diseases, maintained in nature through transmission between hematophagous arthropod vectors and susceptible vertebrate hosts. Although bats harbor many species of viruses, their role as reservoir hosts in emergent zoonoses has been verified only in a few cases. With bats being the second most diverse order of mammals, their implication in arbovirus infections needs to be elucidated. Reports on arbovirus infections in bats are scarce, especially in South American indigenous species. In this work, we report the genomic detection and identification of two different alphaviruses in oral swabs from bats captured in Northern Uruguay. Phylogenetic analysis identified Río Negro virus (RNV) in two different species: Tadarida brasiliensis (n = 6) and Myotis spp. (n = 1) and eastern equine encephalitis virus (EEEV) in Myotis spp. (n = 2). Previous studies of our group identified RNV and EEEV in mosquitoes and horse serology, suggesting that they may be circulating in enzootic cycles in our country. Our findings reveal that bats can be infected by these arboviruses and that chiropterans could participate in the viral natural cycle as virus amplifiers or dead-end hosts. Further studies are warranted to elucidate the role of these mammals in the biological cycle of these alphaviruses in Uruguay.


Subject(s)
Alphavirus Infections/veterinary , Alphavirus/isolation & purification , Arboviruses/isolation & purification , Chiroptera/virology , Encephalitis Virus, Eastern Equine/isolation & purification , Alphavirus/classification , Alphavirus/genetics , Alphavirus Infections/virology , Animals , Arbovirus Infections/veterinary , Arbovirus Infections/virology , Arboviruses/classification , Arboviruses/genetics , Encephalitis Virus, Eastern Equine/classification , Encephalitis Virus, Eastern Equine/genetics , Phylogeny , Uruguay
5.
PLoS Negl Trop Dis ; 16(1): e0010020, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34979534

ABSTRACT

BACKGROUND: The Old world Alphavirus, Middelburg virus (MIDV), is not well known and although a few cases associated with animal illness have previously been described from Southern Africa, there has been no investigation into the association of the virus with human illness. The current study aimed to investigate possible association of MIDV infection with febrile or neurological manifestations in hospitalized or symptomatic patients fromGauteng, South Africa. METHODS: This study is a descriptive retrospective and prospective laboratory based study. Archived cerebrospinal fluid (CSF) samples submitted to the National Health Laboratory Service (NHLS), Tshwane Academic division for viral investigation from public sector hospitals in Gauteng as well as EDTA (ethylenediaminetetraacetic acid) whole blood samples from ad hoc cases of veterinary students, presenting with neurological and febrile illness, were selected and screened for the presence of alphaviruses using real-time reverse transcription(rtRT) PCR.Virus isolations from rtRT-PCR positive samples were conducted in Vero cell culture and used to obtain full genome sequences. Basic descriptive statistical analysis was conducted using EpiInfo. RESULTS: MIDV was detected by rtRT-PCR in 3/187 retrospective CSF specimens obtained from the NHLS from hospitalised patients in the Tshwane region of Gauteng and 1/2 EDTA samples submitted in the same year (2017) from ad hoc query arbovirus cases from veterinary students from the Faculty of Veterinary Science University of Pretoria.Full genome sequences were obtained for virus isolates from two cases; one from an EDTA whole blood sample (ad hoc case) and another from a CSF sample (NHLS sample).Two of the four Middelburg virus positive cases,for which clinical information was available, had other comorbidities or infections at the time of infection. CONCLUSION: Detection of MIDV in CSF of patients with neurological manifestations suggests that the virus should be investigated as a human pathogen with the potential of causing or contributing to neurological signs in children and adults.


Subject(s)
Alphavirus Infections/cerebrospinal fluid , Alphavirus Infections/virology , Alphavirus/genetics , Central Nervous System Infections/cerebrospinal fluid , Central Nervous System Infections/virology , Genome, Viral , Adolescent , Adult , Alphavirus/isolation & purification , Alphavirus Infections/blood , Alphavirus Infections/epidemiology , Central Nervous System Infections/blood , Central Nervous System Infections/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Phylogeny , South Africa/epidemiology , Young Adult
6.
PLoS One ; 16(11): e0259419, 2021.
Article in English | MEDLINE | ID: mdl-34807932

ABSTRACT

The Greater Everglades Region of South Florida is one of the largest natural wetlands and the only subtropical ecosystem found in the continental United States. Mosquitoes are seasonally abundant in the Everglades where several potentially pathogenic mosquito-borne arboviruses are maintained in natural transmission cycles involving vector-competent mosquitoes and reservoir-competent vertebrate hosts. The fragile nature of this ecosystem is vulnerable to many sources of environmental change, including a wetlands restoration project, climate change, invasive species and residential development. In this study, we obtained baseline data on the distribution and abundance of both mosquitos and arboviruses occurring in the southern Everglades region during the summer months of 2013, when water levels were high, and in 2014, when water levels were low. A total of 367,060 mosquitoes were collected with CO2-baited CDC light traps at 105 collection sites stratified among the major landscape features found in Everglades National Park, Big Cypress National Preserve, Fakahatchee State Park Preserve and Picayune State Forest, an area already undergoing restoration. A total of 2,010 pools of taxonomically identified mosquitoes were cultured for arbovirus isolation and identification. Seven vertebrate arboviruses were isolated: Everglades virus, Tensaw virus, Shark River virus, Gumbo Limbo virus, Mahogany Hammock virus, Keystone virus, and St. Louis encephalitis virus. Except for Tensaw virus, which was absent in 2013, the remaining viruses were found to be most prevalent in hardwood hammocks and in Fakahatchee, less prevalent in mangroves and pinelands, and absent in cypress and sawgrass. In contrast, in the summer of 2014 when water levels were lower, these arboviruses were far less prevalent and only found in hardwood hammocks, but Tensaw virus was present in cypress, sawgrass, pinelands, and a recently burned site. Major environmental changes are anticipated in the Everglades, many of which will result in increased water levels. How these might lead to the emergence of arboviruses potentially pathogenic to both humans and wildlife is discussed.


Subject(s)
Arboviruses/isolation & purification , Culicidae/virology , Alphavirus/isolation & purification , Animals , Climate Change , Ecosystem , Florida , Introduced Species , Mosquito Vectors/virology , Orthobunyavirus/isolation & purification
7.
Sci Rep ; 11(1): 20060, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625631

ABSTRACT

GETV, an arbo-borne zoonotic virus of the genus Alphavirus, which causes diarrhea and reproduction disorders in swine, lead to serious economic losses to the swine industry in China. At present, the existing methods for GETV detection are time-consuming and low sensitivity, so, a rapid, accurate and sensitive GETV detection method is urgently needed. In this study, a fluorescent reverse transcription recombinase-assisted amplification method (RT-RAA) was successfully established for the rapid detection of GETV. The sensitivity of this method to GETV was 8 copies/reaction and 20 TCID50/reaction. No cross-reaction with other viruses. A total of 118 samples were prepared for GETV detection using fluorescent RT-RAA and SYBR Green I RT-qPCR, the coincidence rate of the two methods was 100%. The results suggest that the RT-RAA method is rapid, sensitive and specific for GETV detection and can be applied in the clinical.


Subject(s)
Alphavirus Infections/diagnosis , Alphavirus Infections/veterinary , Alphavirus/genetics , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Swine Diseases/diagnosis , Alphavirus/isolation & purification , Alphavirus Infections/virology , Animals , RNA, Viral/analysis , Swine , Swine Diseases/virology
8.
J Microbiol ; 59(11): 1044-1055, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34570337

ABSTRACT

Getah virus (GETV), which was first isolated in Malaysia in 1955, and Sagiyama virus (SAGV), isolated in Japan in 1956, are members of the genus Alphavirus in the family Togaviridae. It is a consensus view that SAGV is a variant of GETV. In the present study, we determined the complete sequences of the prototype GETV MM2021 and SAGV M6-Mag132 genomic RNA extracted from plaque-purified viruses. The MM2021 genome was 11,692 nucleotides (nt) in length in the absence of 3' poly(A) tail, and the length of M6-Mag132 genome was 11,698 nt. Through sequence alignment of MM2021 and M6-Mag132, we located all the amino acid differences between these two strains, which were scattered in all the encoded proteins. Subsequently, we validated the close evolutionary relationship between GETV and SAGV by constructing phylogenetic trees based on either complete genomes or structural genomes. We eventually analyzed the growth kinetics of GETV and SAGV as well as other representative alphaviruses in various mammalian and insect cell lines. It was shown that human-oriented cell lines such as HEK-293T and Hela cells were relatively resistant to GETV and SAGV infection due to absence of proviral factors or species-specific barrier. On the other hand, both GETV and SAGV replicated efficiently in non-human cell lines. Our results provide essential genetic information for future epidemiological surveillance on Alphaviruses and lay the foundation for developing effective interventions against GETV and SAGV.


Subject(s)
Alphavirus/genetics , Genome, Viral , Host Specificity , Ross River virus/genetics , Alphavirus/classification , Alphavirus/isolation & purification , Alphavirus/physiology , Animals , Cell Line , Humans , Phylogeny , RNA, Viral/genetics , Ross River virus/classification , Ross River virus/isolation & purification , Ross River virus/physiology , Sequence Analysis, DNA
9.
PLoS One ; 16(2): e0243684, 2021.
Article in English | MEDLINE | ID: mdl-33606747

ABSTRACT

The microbial communities that live in symbiosis with the mucosal surfaces of animals provide the host with defense strategies against pathogens. These microbial communities are largely shaped by the environment and the host genetics. Triploid Atlantic salmon (Salmo salar) are being considered for aquaculture as they are reproductively sterile and thus cannot contaminate the natural gene pool. It has not been previously investigated how the microbiome of triploid salmon compares to that of their diploid counterparts. In this study, we compare the steady-state skin and gill microbiome of both diploid and triploid salmon, and determine the effects of salmonid alphavirus 3 experimental infection on their microbial composition. Our results show limited differences in the skin-associated microbiome between triploid and diploid salmon, irrespective of infection. In the gills, we observed a high incidence of the bacterial pathogen Candidatus Branchiomonas, with higher abundance in diploid compared to triploid control fish. Diploid salmon infected with SAV3 showed greater histopathological signs of epitheliocystis compared to controls, a phenomenon not observed in triploid fish. Our results indicate that ploidy can affect the alpha diversity of the gills but not the skin-associated microbial community. Importantly, during a natural outbreak of Branchiomonas sp. the gill microbiome of diploid Atlantic salmon became significantly more dominated by this pathogen than in triploid animals. Thus, our results suggest that ploidy may play a role on Atlantic salmon gill health and provide insights into co-infection with SAV3 and C. Branchiomonas in Atlantic salmon.


Subject(s)
Alphavirus Infections/veterinary , Fish Diseases/genetics , Fish Diseases/virology , Salmo salar/genetics , Salmo salar/virology , Alphavirus/isolation & purification , Alphavirus Infections/genetics , Alphavirus Infections/microbiology , Alphavirus Infections/virology , Animals , Aquaculture , Diploidy , Fish Diseases/microbiology , Gills/metabolism , Gills/microbiology , Gills/virology , Microbiota , Salmo salar/microbiology , Skin/metabolism , Skin/microbiology , Skin/virology , Triploidy
10.
Arch Virol ; 166(3): 881-884, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33433694

ABSTRACT

In the present study, we serosurveyed the exposure of 222 draft horses to different arboviruses in the city of Santa Fe, Argentina. Plaque reduction neutralization tests confirmed exposure to Fort Sherman virus (FSV), Saint Louis encephalitis virus (SLEV), West Nile virus (WNV), and Río Negro virus (RNV). Apparently, Western and Eastern equine encephalitis viruses did not circulate in the population tested. The confirmation of five seroconversions for WNV, FSV, and SLEV and the association between prevalence and age are indicative of recent circulation. These results highlight the importance of considering draft horses in arboviral surveillance in urban and rural areas of developing countries.


Subject(s)
Alphavirus Infections/epidemiology , Antibodies, Viral/blood , Bunyaviridae Infections/epidemiology , Encephalitis, St. Louis/epidemiology , Horse Diseases/epidemiology , West Nile Fever/epidemiology , Alphavirus/immunology , Alphavirus/isolation & purification , Alphavirus Infections/veterinary , Animals , Argentina/epidemiology , Bunyaviridae Infections/veterinary , Encephalitis Virus, St. Louis/immunology , Encephalitis Virus, St. Louis/isolation & purification , Encephalitis, St. Louis/veterinary , Horse Diseases/virology , Horses , Orthobunyavirus/immunology , Orthobunyavirus/isolation & purification , Seroconversion , West Nile Fever/veterinary , West Nile virus/immunology , West Nile virus/isolation & purification
11.
Virus Res ; 291: 198187, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33075445

ABSTRACT

The family Togaviridae comprises several significant human and veterinary mosquito-borne pathogens. Two togaviruses (genus Alphavirus) have been previously identified in association with marine mammals, the southern elephant seal virus (SESV) and Eastern equine encephalitis virus (EEEV) from a fatal captive harbor seal infection. Herein we report the ultrastructural and phylogenomic characterization of a novel marine togavirus, the first isolated from a cetacean, an Alaskan harbor porpoise (Phocoena phocoena) displaying ulcerative dermatitis. A skin sample was processed for virus isolation on Vero.DogSLAMtag cells and cytopathic effects (CPE) were observed on primary isolation approximately 20 days post-infection. Transmission electron microscopy of the infected Vero.DogSLAMtag cells revealed typical alphavirus particles budding from both plasma and vacuolar membranes of infected cells. A next-generation sequencing approach was used to determine the near complete genome of the Alaskan harbor porpoise alphavirus (AHPV). Phylogenetic analysis supported the AHPV as the sister species to the SESV, forming a marine mammal alphavirus clade separate from the recognized alphavirus antigenic complexes. Genetic comparison of the protein coding sequence of the AHPV to other alphaviruses demonstrated amino acid identities ranging from 42.1-67.1%, with the highest identity to the SESV. Based on its genetic divergence, we propose the AHPV represents a novel alphavirus species, pending formal proposal to and ratification by the International Committee on Taxonomy of Viruses. The ecological and genetic characteristics of the AHPV and the SESV also suggest they represent a novel antigenic complex within the genus Alphavirus, which we propose to be named the Marine Mammal Virus Complex. The role of the AHPV in the associated harbor porpoise cutaneous pathology, if any, remains unclear. Further research is needed to determine AHPV's route(s) of transmission and potential vectors, host range, prevalence, and pathogenicity in cetaceans including harbour porpoises.


Subject(s)
Alphavirus Infections/veterinary , Alphavirus/classification , Alphavirus/genetics , Dermatitis/veterinary , Phocoena/virology , Alaska , Alphavirus/isolation & purification , Alphavirus/ultrastructure , Alphavirus Infections/virology , Animals , Dermatitis/virology , Genome, Viral , Host Specificity , Microscopy, Electron, Transmission , Phylogeny , Skin/pathology , Skin/virology , Whole Genome Sequencing
12.
Methods Mol Biol ; 2183: 63-81, 2021.
Article in English | MEDLINE | ID: mdl-32959241

ABSTRACT

Alphavirus-based vectors present an efficient approach for antigen preparation applied for vaccine development. Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been engineered for high-level expression of antigens targeting infectious diseases and tumors. Alphaviruses possess a large application range as vectors can be delivered as naked RNA replicons, recombinant viral particles, and layered DNA plasmids. Immunization studies in animal models have provided protection against challenges with lethal doses of pathogenic infectious agents and tumor cells. So far, a limited number of clinical trials have been conducted for alphavirus vectors in humans.


Subject(s)
Alphavirus/physiology , Antigens/immunology , Genetic Vectors/genetics , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Alphavirus/isolation & purification , Animals , Antigens/genetics , Cell Line , Cloning, Molecular , Genetic Engineering/methods , Genetic Vectors/administration & dosage , Genetic Vectors/isolation & purification , Humans , Immunization , Mice , Plasmids/genetics , RNA, Viral/genetics , Replicon , Transfection/methods , Vaccines, DNA/administration & dosage , Vaccines, DNA/isolation & purification , Vaccines, Virus-Like Particle
13.
Virology ; 551: 58-63, 2020 12.
Article in English | MEDLINE | ID: mdl-33032077

ABSTRACT

Alphaviruses (genus Alphavirus; family Togaviridae) are a medically relevant family of viruses that include chikungunya virus and Mayaro virus. Infectious cDNA clones of these viruses are necessary molecular tools to understand viral biology. Traditionally, rescuing virus from an infectious cDNA clone requires propagating plasmids in bacteria, which can result in mutations in the viral genome due to bacterial toxicity or recombination and requires specialized equipment and knowledge to propagate the bacteria. Here, we present an alternative- rolling circle amplification (RCA), an in vitro technology. We demonstrate that the viral yield of transfected RCA product is comparable to midiprepped plasmid, albeit with a slight delay in kinetics. RCA, however, is cheaper and less time-consuming. Further, sequential RCA did not introduce mutations into the viral genome, subverting the need for glycerol stocks and retransformation. These results indicate that RCA is a viable alternative to traditional plasmid-based approaches to viral rescue.


Subject(s)
Alphavirus , Nucleic Acid Amplification Techniques/methods , Alphavirus/genetics , Alphavirus/isolation & purification , Animals , Chlorocebus aethiops , Cricetinae , DNA, Complementary , Fibroblasts , Genome, Viral , HEK293 Cells , Humans , Vero Cells
14.
Mol Cell Probes ; 53: 101650, 2020 10.
Article in English | MEDLINE | ID: mdl-32781023

ABSTRACT

In the present study, Getah virus (GETV) isolate, GETV-V1, was isolated from a commercial PRRSV attenuated live vaccine (MLV), which has been widely used to immunize pigs against porcine reproductive and respiratory syndrome virus (PRRSV). Further analysis demonstrated that nine batches of the PRRSV MLV vaccine (three batches per year from 2017 to 2019) from the same manufacturer were all positive for GETV. Genomic analyses indicated that the GETV-V1 isolate shared the highest sequence identity with the GETV strain, 16-I-674, which was isolated from horses in Japan. The phylogenetic analysis based on the genomic sequences showed that the GETV-V1 strain was clustered with the Japanese GETV strains. Taken together, this is the first report of GETV contamination in live swine vaccines in China. Our findings demonstrate that immunization with commercial live vaccines might be a potential novel route of GETV transmission in swine. This highlights the need for more extensive monitoring of commercial live vaccines.


Subject(s)
Alphavirus/classification , Porcine Reproductive and Respiratory Syndrome/prevention & control , Viral Vaccines/analysis , Alphavirus/genetics , Alphavirus/isolation & purification , Animals , Cell Line , China , Drug Contamination , Horses , Japan , Phylogeny , Phylogeography , Swine
15.
Parasit Vectors ; 13(1): 329, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600472

ABSTRACT

BACKGROUND: Indonesia has high mosquito diversity, with circulating malaria and arboviruses. Human landing catches (HLC) are ethically questionable where arboviral transmission occurs. The host decoy trap (HDT) is an exposure-free alternative outdoor sampling device. To determine HDT efficacy for local culicids, and to characterize local mosquito fauna, the trapping efficacy of the HDT was compared to that of HLCs in one peri-urban (Lakkang) and one rural (Pucak) village in Sulawesi, Indonesia. RESULTS: In Lakkang the outdoor HLCs collected significantly more Anopheles per night (n = 22 ± 9) than the HDT (n = 3 ± 1), while the HDT collected a significantly greater nightly average of Culex mosquitoes (n = 110 ± 42), than the outdoor HLC (n = 15.1 ± 6.0). In Pucak, there was no significant difference in Anopheles collected between trap types; however, the HDT collected significantly more Culex mosquitoes than the outdoor HLC nightly average (n = 53 ± 11 vs 14 ± 3). Significantly higher proportions of blood-fed mosquitoes were found in outdoor HLC (n = 15 ± 2%) compared to HDT (n = 2 ± 0%). More blood-fed culicines were collected with outdoor HLC compared to the HDT, while Anopheles blood-fed proportions did not differ. For the HDT, 52.6%, 36.8% and 10.5% of identified blood meals were on cow, human, and dog, respectively. Identified blood meals for outdoor HLCs were 91.9% human, 6.3% cow, and 0.9% each dog and cat. Mosquitoes from Pucak were tested for arboviruses, with one Culex pool and one Armigeres pool positive for flavivirus, and one Anopheles pool positive for alphavirus. CONCLUSIONS: The HDT collected the highest abundance of culicine specimens. Outdoor HLCs collected the highest abundance of Anopheles specimens. Although the HDT can attract a range of different Asian mosquito genera and species, it remains to be optimized for Anopheles in Asia. The high proportion of human blood meals in mosquitoes collected by outdoor HLCs raises concerns on the potential exposure risk to collectors using this methodology and highlights the importance of continuing to optimize a host-mimic trap such as the HDT.


Subject(s)
Feeding Behavior , Mosquito Control/methods , Mosquito Vectors , Alphavirus/isolation & purification , Animals , Anopheles , Arbovirus Infections/transmission , Culex , Data Collection/methods , Disease Vectors , Entomology/methods , Flavivirus/isolation & purification , Humans , Indonesia , Malaria/transmission , Pathology, Molecular/methods , Rural Population , Vector Borne Diseases/transmission
16.
BMC Microbiol ; 20(1): 225, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32723369

ABSTRACT

BACKGROUND: Mosquito-borne diseases involving arboviruses represent expanding threats to sub-Saharan Africa imposing as considerable burden to human and veterinary public health. In Mozambique over one hundred species of potential arbovirus mosquito vectors have been identified, although their precise role in maintaining such viruses in circulation in the country remains to be elucidated. The aim of this study was to screen for the presence of flaviviruses, alphaviruses and bunyaviruses in mosquitoes from different regions of Mozambique. RESULTS: Our survey analyzed 14,519 mosquitoes, and the results obtained revealed genetically distinct insect-specific flaviviruses, detected in multiple species of mosquitoes from different genera. In addition, smaller flavivirus-like NS5 sequences, frequently detected in Mansonia seemed to correspond to defective viral sequences, present as viral DNA forms. Furthermore, three lineages of putative members of the Phenuiviridae family were also detected, two of which apparently corresponding to novel viral genetic lineages. CONCLUSION: This study reports for the first-time novel insect-specific flaviviruses and novel phenuiviruses, as well as frequent flavivirus-like viral DNA forms in several widely known vector species. This unique work represents recent investigation of virus screening conducted in mosquitoes from Mozambique and an important contribution to inform the establishment of a vector control program for arbovirus in the country and in the region.


Subject(s)
Culicidae/virology , Mosquito Vectors/virology , RNA Viruses/genetics , Alphavirus/classification , Alphavirus/genetics , Alphavirus/isolation & purification , Animals , Arboviruses/classification , Arboviruses/genetics , Arboviruses/isolation & purification , Bunyaviridae/classification , Bunyaviridae/genetics , Bunyaviridae/isolation & purification , Cell Line , Culicidae/classification , DNA, Viral/genetics , Flavivirus/classification , Flavivirus/genetics , Flavivirus/isolation & purification , Mosquito Vectors/classification , Mozambique , Phylogeny , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Viral/genetics , Viral Proteins/genetics
17.
PLoS One ; 15(6): e0232381, 2020.
Article in English | MEDLINE | ID: mdl-32584818

ABSTRACT

Alphaviruses such as Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV) are arboviruses that can cause severe zoonotic disease in humans. Both VEEV and EEEV are highly infectious when aerosolized and can be used as biological weapons. Vaccines and therapeutics are urgently needed, but efficacy determination requires animal models. The cynomolgus macaque (Macaca fascicularis) provides a relevant model of human disease, but questions remain whether vaccines or therapeutics can mitigate CNS infection or disease in this model. The documentation of alphavirus encephalitis in animals relies on traditional physiological biomarkers and behavioral/neurological observations by veterinary staff; quantitative measurements such as electroencephalography (EEG) and intracranial pressure (ICP) can recapitulate underlying encephalitic processes. We detail a telemetry implantation method suitable for continuous monitoring of both EEG and ICP in awake macaques, as well as methods for collection and analysis of such data. We sought to evaluate whether changes in EEG/ICP suggestive of CNS penetration by virus would be seen after aerosol exposure of naïve macaques to VEEV IC INH9813 or EEEV V105 strains compared to mock-infection in a cohort of twelve adult cynomolgus macaques. Data collection ran continuously from at least four days preceding aerosol exposure and up to 50 days thereafter. EEG signals were processed into frequency spectrum bands (delta: [0.4 - 4Hz); theta: [4 - 8Hz); alpha: [8-12Hz); beta: [12-30] Hz) and assessed for viral encephalitis-associated changes against robust background circadian variation while ICP data was assessed for signal fidelity, circadian variability, and for meaningful differences during encephalitis. Results indicated differences in delta, alpha, and beta band magnitude in infected macaques, disrupted circadian rhythm, and proportional increases in ICP in response to alphavirus infection. This novel enhancement of the cynomolgus macaque model offers utility for timely determination of onset, severity, and resolution of encephalitic disease and for the evaluation of vaccine and therapeutic candidates.


Subject(s)
Alphavirus Infections/pathology , Brain/physiology , Encephalitis, Viral/pathology , Intracranial Pressure/physiology , Alphavirus/isolation & purification , Alphavirus/pathogenicity , Alphavirus Infections/metabolism , Animals , Biomarkers/metabolism , Circadian Rhythm , Disease Models, Animal , Electroencephalography/methods , Encephalitis, Viral/metabolism , Female , Macaca , Male , Severity of Illness Index , Telemetry
18.
Sci Rep ; 10(1): 10393, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587341

ABSTRACT

Salmonid alphavirus infection results in pancreas disease causing severe economic losses for Atlantic salmon aquaculture. Knowledge about genes and pathways contributing to resistance is limited. A 54 K SNP panel was used to genotype 10 full-sibling families each consisting of ~ 110 offspring challenged with salmonid alphavirus subtype 3. Relative heart viral load was assessed at 4- and 10-weeks post-infection using quantitative PCR. A moderate genomic heritability of viral load at 4 weeks (0.15-0.21) and a high positive correlation with survival (0.91-0.98) were detected. Positions of QTL detected on chromosome 3 matched those for survival detected by other studies. The SNP of highest significance occurred in the 3' untranslated region of gig1, a fish-specific antiviral effector. Locus B of immunoglobulin heavy chain mapped to an area containing multiple SNPs with genome-wide association. Heart mRNA-seq comparing parr from families with high- versus low-genomic breeding value, and matching sample genotypes for SNPs, identified two eQTL for salmonid alphavirus load. Immune genes associated with trans-eQTL were numerous and spread throughout the genome. QTL regions contained several genes with known or predicted immune functions, some differentially expressed. The putative functional genes and variants identified could help improve marker-based selection for pancreas disease resistance.


Subject(s)
Alphavirus Infections/genetics , Disease Resistance/genetics , Fish Diseases/genetics , Host-Pathogen Interactions/genetics , Pancreatic Diseases/veterinary , Quantitative Trait Loci , Salmo salar/genetics , Alphavirus/isolation & purification , Alphavirus Infections/virology , Animals , Chromosome Mapping , Fish Diseases/virology , Gene Expression Regulation , Genome-Wide Association Study , Pancreatic Diseases/genetics , Pancreatic Diseases/virology , Polymorphism, Single Nucleotide , Salmo salar/virology
19.
PLoS Negl Trop Dis ; 14(4): e0007518, 2020 04.
Article in English | MEDLINE | ID: mdl-32287269

ABSTRACT

Newly emerging or re-emerging arthropod-borne viruses (arboviruses) are important causes of human morbidity and mortality worldwide. Arboviruses such as Dengue (DENV), Zika (ZIKV), Chikungunya (CHIKV), and West Nile virus (WNV) have undergone extensive geographic expansion in the tropical and sub-tropical regions of the world. In the Americas the main vectors of DENV, ZIKV, and CHIKV are mosquito species adapted to urban environments, namely Aedes aegypti and Aedes albopictus, whereas the main vector of WNV is Culex quinquefasciatus. Given the widespread distribution in the Americas and high permissiveness to arbovirus infection, these mosquito species may play a key role in the epidemiology of other arboviruses normally associated with sylvatic vectors. Here, we test this hypothesis by determining the vector competence of Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus to Mayaro (MAYV) virus, a sylvatic arbovirus transmitted mainly by Haemagogus janthinomys that has been causing an increasing number of outbreaks in South America, namely in Brazil. Using field mosquitoes from Brazil, female mosquitoes were experimentally infected, and their competence for infection and transmission rates of MAYV was evaluated. We found consistent infection rate for MAYV in Ae. aegypti (57.5%) and Ae. albopictus (61.6%), whereas very low rates were obtained for Cx. quinquefasciatus (2.5%). Concordantly, we observed high potential transmission ability in Ae. aegypti and Ae. albopictus (69.5% and 71.1% respectively), in contrast to Cx. quinquefasciatus, which could not transmit the MAYV. Notably, we found that very low quantities of virus present in the saliva (undetectable by RT-qPCR) were sufficiently virulent to guarantee transmission. Although Ae. aegypti and Ae. albopictus mosquitoes are not the main vectors for MAYV, our studies suggest that these mosquitoes could play a significant role in the transmission of this arbovirus, since both species showed significant vector competence for MAYV (Genotype D), under laboratory conditions.


Subject(s)
Aedes/virology , Alphavirus Infections/virology , Alphavirus/isolation & purification , Culex/virology , Disease Transmission, Infectious , Alphavirus/genetics , Alphavirus/growth & development , Alphavirus Infections/transmission , Animals , Brazil , Female , Real-Time Polymerase Chain Reaction , Saliva/virology , Viral Load
20.
Zhonghua Liu Xing Bing Xue Za Zhi ; 41(4): 571-579, 2020 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-32344484

ABSTRACT

Objective: To investigate the types and distribution of blood-sucking insects and arboviruses in Inner Mongolia autonomous region, and provide basic data for the prevention of arbovirus transmitted disease. Methods: Blood-sucking insects were collected by lamp trapping method in nature. Mosquito samples were classified according to morphologic characteristics and then stored at liquid nitrogen. Viruses were isolated in cell culture and characterized, using molecular biological methods. Results: A total of 24 240 mosquitoes and 17 110 aphids were collected from 2 sites of 5 counties (Flags) in Inner Mongolia in 2014 and during 2017-2018. Among them, Japanese encephalitis virus gene was detected in Culex pipiens pallens, and 4 virus strains isolates which could be stably passaged. The isolates were identified as Getah virus and densonucleosis virus by molecular biology identification. Phylogenetic analysis on the E2 gene of the Getah virus (NMDK1813-1) showed that it belonged to the same evolutionary branch of the Gansu isolates (GS10-2) and having six common amino acid variation sites. Conclusions: The emergence of Japanese encephalitis virus and Getah virus from specimen of mosquitoes in Inner Mongolia indicated the new challenges on the prevention and control of arbovirus and related diseases. The results pf this study provided basic data for the prevention and control stretagies of arbovirus transmitted diseases in Inner Mongolia.


Subject(s)
Alphavirus/isolation & purification , Culicidae/virology , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/isolation & purification , Encephalitis, Japanese , Mosquito Vectors/virology , RNA, Viral/genetics , Animals , China , Phylogeny , RNA, Viral/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...