Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Nat Commun ; 15(1): 622, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245515

ABSTRACT

Alphaviruses are arboviruses transmitted by mosquitoes and are pathogenic to humans and livestock, causing a substantial public health burden. So far, several receptors have been identified for alphavirus entry; however, they cannot explain the broad host range and tissue tropism of certain alphaviruses, such as Getah virus (GETV), indicating the existence of additional receptors. Here we identify the evolutionarily conserved low-density lipoprotein receptor (LDLR) as a new cell entry factor for GETV, Semliki Forest virus (SFV), Ross River virus (RRV) and Bebaru virus (BEBV). Ectopic expression of LDLR facilitates cellular binding and internalization of GETV, which is mediated by the interaction between the E2-E1 spike of GETV and the ligand-binding domain (LBD) of LDLR. Antibodies against LBD block GETV infection in cultured cells. In addition, the GST-LBD fusion protein inhibits GETV infection both in vitro and in vivo. Notably, we identify the key amino acids in LDLR-LBD that played a crucial role in viral entry; specific mutations in the CR4 and CR5 domain of LDLR-LBD reduce viral entry to cells by more than 20-fold. These findings suggest that targeting the LDLR-LBD could be a potential strategy for the development of antivirals against multiple alphaviruses.


Subject(s)
Alphavirus Infections , Alphavirus , Culicidae , Animals , Humans , Alphavirus/genetics , Virus Internalization , Semliki forest virus/genetics , Semliki forest virus/metabolism , Alphavirus Infections/genetics
2.
J Virol ; 98(1): e0135023, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38169284

ABSTRACT

Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.


Subject(s)
Alphavirus Infections , Antigens, Surface , GPI-Linked Proteins , N-Terminal Acetyltransferases , Sindbis Virus , Virus Replication , Humans , Alphavirus Infections/genetics , Antigens, Surface/genetics , Cytidine/analogs & derivatives , GPI-Linked Proteins/genetics , RNA, Messenger/genetics , Sindbis Virus/physiology , Cell Line , N-Terminal Acetyltransferases/genetics , RNA Stability
3.
PLoS Negl Trop Dis ; 16(6): e0010507, 2022 06.
Article in English | MEDLINE | ID: mdl-35763539

ABSTRACT

Mayaro virus (MAYV) is an arboviral pathogen in the genus Alphavirus that is circulating in South America with potential to spread to naïve regions. MAYV is also one of the few viruses with the ability to be transmitted by mosquitoes in the genus Anopheles, as well as the typical arboviral transmitting mosquitoes in the genus Aedes. Few studies have investigated the infection response of Anopheles mosquitoes. In this study we detail the transcriptomic and small RNA responses of An. stephensi to infection with MAYV via infectious bloodmeal at 2, 7, and 14 days post infection (dpi). 487 unique transcripts were significantly regulated, 78 putative novel miRNAs were identified, and an siRNA response is observed targeting the MAYV genome. Gene ontology analysis of transcripts regulated at each timepoint shows a number of proteases regulated at 2 and 7 dpi, potentially representative of Toll or melanization pathway activation, and repression of pathways related to autophagy and apoptosis at 14 dpi. These findings provide a basic understanding of the infection response of An. stephensi to MAYV and help to identify host factors which might be useful to target to inhibit viral replication in Anopheles mosquitoes.


Subject(s)
Alphavirus Infections , Alphavirus , Anopheles , Arboviruses , MicroRNAs , Alphavirus/genetics , Alphavirus Infections/genetics , Animals , Anopheles/physiology , Arboviruses/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Transcriptome
4.
J Virol ; 95(20): e0035521, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34319783

ABSTRACT

Alphaviruses have positive-strand RNA genomes containing two open reading frames (ORFs). The first ORF encodes the nonstructural (ns) polyproteins P123 and P1234 that act as precursors for the subunits of the viral RNA replicase (nsP1 to nsP4). Processing of P1234 leads to the formation of a negative-strand replicase consisting of nsP4 (RNA polymerase) and P123 components. Subsequent processing of P123 results in a positive-strand replicase. The second ORF encoding the structural proteins is expressed via the synthesis of a subgenomic RNA. Alphavirus replicase is capable of using template RNAs that contain essential cis-active sequences. Here, we demonstrate that the replicases of nine alphaviruses, expressed in the form of separate P123 and nsP4 components, are active. Their activity depends on the abundance of nsP4. The match of nsP4 to its template strongly influences efficient subgenomic RNA synthesis. nsP4 of Barmah Forest virus (BFV) formed a functional replicase only with matching P123, while nsP4s of other alphaviruses were compatible also with several heterologous P123s. The P123 components of Venezuelan equine encephalitis virus and Sindbis virus (SINV) required matching nsP4s, while P123 of other viruses could form active replicases with different nsP4s. Chimeras of Semliki Forest virus, harboring the nsP4 of chikungunya virus, Ross River virus, BFV, or SINV were viable. In contrast, chimeras of SINV, harboring an nsP4 from different alphaviruses, exhibited a temperature-sensitive phenotype. These findings highlight the possibility for formation of new alphaviruses via recombination events and provide a novel approach for the development of attenuated chimeric viruses for vaccination strategies. IMPORTANCE A key element of every virus with an RNA genome is the RNA replicase. Understanding the principles of RNA replicase formation and functioning is therefore crucial for understanding and responding to the emergence of new viruses. Reconstruction of the replicases of nine alphaviruses from nsP4 and P123 polyproteins revealed that the nsP4 of the majority of alphaviruses, including the mosquito-specific Eilat virus, could form a functional replicase with P123 originating from a different virus, and the corresponding chimeric viruses were replication-competent. nsP4 also had an evident role in determining the template RNA preference and the efficiency of RNA synthesis. The revealed broad picture of the compatibility of the replicase components of alphaviruses is important for understanding the formation and functioning of the alphavirus RNA replicase and highlights the possibilities for recombination between different alphavirus species.


Subject(s)
Alphavirus/genetics , Viral Nonstructural Proteins/metabolism , Viral Replicase Complex Proteins/genetics , Alphavirus/metabolism , Alphavirus Infections/genetics , Animals , Base Sequence , Cell Line , DNA-Directed RNA Polymerases/metabolism , Humans , Polyproteins/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/genetics , Viral Replicase Complex Proteins/metabolism , Virus Replication/genetics , Virus Replication/physiology
5.
Sci Rep ; 11(1): 6369, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737658

ABSTRACT

O'nyong-nyong virus is an alphavirus closely related to chikungunya virus, causing arthralgia, rash and fever. Alphaviruses mainly target synovial fibroblasts and persists in the joints of patients, possibly leading to chronic arthritis. To date, no specific antiviral treatment is available for ONNV infection and induced-inflammation. Primary human synovial fibroblasts cells were used to assess infection by ONNV and the resulting cytokine responses. Phenolics (gallic acid, caffeic acid and chlorogenic acid, curcumin and quercetin) and a curcuminoids-rich extract from turmeric were tested for their antiviral and anti-inflammatory capacities. We showed that infection occurred in HSF cells and increased gene expression and protein secretion of two major proinflammatory CCL-2 and IL-1ß markers. In ONNV-infected HSF cells (MOI 1), we found that non-cytotoxic concentrations of phenolics (10 µM) reduced the level of viral RNA (E1, E2, nsP1, nsP2) and downregulated CCL-2 and IL-1ß expression and secretion. These results highlighted the high value of the flavonol quercetin to reduce viral RNA levels and inflammatory status induced by ONNV in HSF cells.


Subject(s)
Alphavirus Infections/drug therapy , Chemokine CCL2/genetics , Immunity, Innate/genetics , Interleukin-1beta/genetics , Alphavirus Infections/genetics , Alphavirus Infections/pathology , Alphavirus Infections/virology , Caffeic Acids/pharmacology , Chlorogenic Acid/pharmacology , Curcumin/pharmacology , Cytokines/genetics , Fibroblasts/virology , Gallic Acid/pharmacology , Humans , Immunity, Innate/drug effects , O'nyong-nyong Virus/genetics , O'nyong-nyong Virus/pathogenicity , Quercetin/pharmacology , Synovial Fluid/drug effects , Synovial Fluid/virology
6.
PLoS One ; 16(2): e0243684, 2021.
Article in English | MEDLINE | ID: mdl-33606747

ABSTRACT

The microbial communities that live in symbiosis with the mucosal surfaces of animals provide the host with defense strategies against pathogens. These microbial communities are largely shaped by the environment and the host genetics. Triploid Atlantic salmon (Salmo salar) are being considered for aquaculture as they are reproductively sterile and thus cannot contaminate the natural gene pool. It has not been previously investigated how the microbiome of triploid salmon compares to that of their diploid counterparts. In this study, we compare the steady-state skin and gill microbiome of both diploid and triploid salmon, and determine the effects of salmonid alphavirus 3 experimental infection on their microbial composition. Our results show limited differences in the skin-associated microbiome between triploid and diploid salmon, irrespective of infection. In the gills, we observed a high incidence of the bacterial pathogen Candidatus Branchiomonas, with higher abundance in diploid compared to triploid control fish. Diploid salmon infected with SAV3 showed greater histopathological signs of epitheliocystis compared to controls, a phenomenon not observed in triploid fish. Our results indicate that ploidy can affect the alpha diversity of the gills but not the skin-associated microbial community. Importantly, during a natural outbreak of Branchiomonas sp. the gill microbiome of diploid Atlantic salmon became significantly more dominated by this pathogen than in triploid animals. Thus, our results suggest that ploidy may play a role on Atlantic salmon gill health and provide insights into co-infection with SAV3 and C. Branchiomonas in Atlantic salmon.


Subject(s)
Alphavirus Infections/veterinary , Fish Diseases/genetics , Fish Diseases/virology , Salmo salar/genetics , Salmo salar/virology , Alphavirus/isolation & purification , Alphavirus Infections/genetics , Alphavirus Infections/microbiology , Alphavirus Infections/virology , Animals , Aquaculture , Diploidy , Fish Diseases/microbiology , Gills/metabolism , Gills/microbiology , Gills/virology , Microbiota , Salmo salar/microbiology , Skin/metabolism , Skin/microbiology , Skin/virology , Triploidy
7.
mBio ; 11(6)2020 12 01.
Article in English | MEDLINE | ID: mdl-33262258

ABSTRACT

Alphaviruses are positive-sense RNA viruses that utilize a 5' cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5' cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity, respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to those of wild-type infection. Although the D355A mutation resulted in decreased antiviral gene expression and increased resistance to interferon in vitro, mice infected with the D355A mutant showed significantly reduced mortality and morbidity compared to mice infected with wild-type virus. Interestingly, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNAs aid in viral pathogenesis.IMPORTANCE Mosquito-transmitted alphaviruses have been the cause of widespread outbreaks of disease that can range from mild illness to lethal encephalitis or severe polyarthritis. There are currently no safe and effective vaccines or therapeutics with which to prevent or treat alphaviral disease, highlighting the need to better understand alphaviral pathogenesis to develop novel antiviral strategies. This report reveals production of noncapped genomic RNAs (ncgRNAs) to be a novel determinant of alphaviral virulence and offers insight into the importance of inflammation to pathogenesis. Taken together, the findings reported here suggest that the ncgRNAs contribute to alphaviral pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease.


Subject(s)
Alphavirus Infections/virology , Gene Expression Regulation, Viral , Genome, Viral , RNA, Viral , Sindbis Virus/genetics , Alphavirus Infections/genetics , Alphavirus Infections/metabolism , Animals , Brain/metabolism , Brain/virology , Cell Line , Cell Survival , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators , Interferon Type I/metabolism , Mice , Neurons/virology , RNA Caps , Sindbis Virus/pathogenicity , Virulence , Virus Replication
8.
Fish Shellfish Immunol ; 106: 792-795, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32871248

ABSTRACT

Salmonid alphavirus (SAV), the causative agent of pancreas disease, is a serious pathogen of farmed Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Given the economic impact of SAV outbreaks, much effort is focussed upon understanding the fish immune response following infection and the exploitation of this knowledge to reduce disease impact. Herein we examine the utility of the long-term Atlantic salmon kidney (ASK) cell line as a tool to study antiviral responses upon infection with SAV. Following infection with SAV subtype 1 (isolate V4640) we examined the kinetics and magnitude of induction of IFNa, IFN-regulatory factor (IRF) genes IRF1, IRF3, and IRF7b, as well as the antiviral effector Mx by RT-qPCR. SAV-1 non-structural protein (nsp1) transcript levels increased continuously over the experimental period, indicating viral replication, but cytopathic effect (CPE) was not observed. All the immune genes studied showed an increase in transcript levels over the 96-h study period following SAV infection, with strongest induction of Mx. Our data confirm that ASK cells are a suitable model to study the virus-associated immune responses of salmonids and may be a useful tool when assaying the effectiveness of potential prophylactic or antiviral treatments.


Subject(s)
Alphavirus Infections/immunology , Fish Diseases/immunology , Interferons/immunology , Kidney/cytology , Salmo salar/immunology , Alphavirus , Alphavirus Infections/genetics , Alphavirus Infections/veterinary , Animals , Cell Line , Fish Diseases/genetics , Gene Expression , Interferons/genetics , Salmo salar/genetics
9.
BMC Genomics ; 21(1): 388, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493246

ABSTRACT

BACKGROUND: Pancreas disease (PD) is a contagious disease caused by salmonid alphavirus (SAV) with significant economic and welfare impacts on salmon farming. Previous work has shown that higher resistance against PD has underlying additive genetic components and can potentially be improved through selective breeding. To better understand the genetic basis of PD resistance in Atlantic salmon, we challenged 4506 smolts from 296 families of the SalmoBreed strain. Fish were challenged through intraperitoneal injection with the most virulent form of the virus found in Norway (i.e., SAV3). Mortalities were recorded, and more than 900 fish were further genotyped on a 55 K SNP array. RESULTS: The estimated heritability for PD resistance was 0.41 ± 0.017. The genetic markers on two chromosomes, ssa03 and ssa07, showed significant associations with higher disease resistance. Collectively, markers on these two QTL regions explained about 60% of the additive genetic variance. We also sequenced and compared the cardiac transcriptomics of moribund fish and animals that survived the challenge with a focus on candidate genes within the chromosomal segments harbouring QTL. Approximately 200 genes, within the QTL regions, were found to be differentially expressed. Of particular interest, we identified various components of immunoglobulin-heavy-chain locus B (IGH-B) on ssa03 and immunoglobulin-light-chain on ssa07 with markedly higher levels of transcription in the resistant animals. These genes are closely linked to the most strongly QTL associated SNPs, making them likely candidates for further investigation. CONCLUSIONS: The findings presented here provide supporting evidence that breeding is an efficient tool for increasing PD resistance in Atlantic salmon populations. The estimated heritability is one of the largest reported for any disease resistance in this species, where the majority of the genetic variation is explained by two major QTL. The transcriptomic analysis has revealed the activation of essential components of the innate and the adaptive immune responses following infection with SAV3. Furthermore, the complementation of the genomic with the transcriptomic data has highlighted the possible critical role of the immunoglobulin loci in combating PD virus.


Subject(s)
Alphavirus Infections/veterinary , Alphavirus/pathogenicity , Disease Resistance , Fish Diseases/virology , Pancreatic Diseases/virology , Quantitative Trait, Heritable , Salmo salar/genetics , Alphavirus Infections/genetics , Alphavirus Infections/mortality , Animals , Chromosome Mapping , Fish Diseases/genetics , Fish Diseases/mortality , Fish Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation , Genetic Linkage , Genetic Markers , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Myocardium/chemistry , Norway , Pancreatic Diseases/genetics , Pancreatic Diseases/mortality , Pancreatic Diseases/veterinary , Polymorphism, Single Nucleotide , Selective Breeding , Sequence Analysis, RNA
10.
Emerg Microbes Infect ; 9(1): 1580-1589, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32576094

ABSTRACT

The RNA interference (RNAi) pathway directs an important antiviral immunity mechanism in plants and invertebrates. Recently, we and others have demonstrated that the antiviral RNAi response is also conserved in mammals, at least to five distinct RNA viruses, including Zika virus (ZIKV). ZIKV may preferentially infect neuronal progenitor cells (NPCs) in the developing foetal brain. Ex vivo ZIKV infection induces RNAi-mediated antiviral response in human NPCs, but not in the more differentiated NPCs or somatic cells. However, litter is known about the in vivo property or function of the virus-derived small-interfering RNAs (vsiRNAs) targeting ZIKV. Here we report a surprising observation: different from ex vivo observations, viral small RNAs (vsRNAs) targeting ZIKV were produced in vivo upon infection in both central neuron system (CNS) and muscle tissues. In addition, our findings demonstrate the production of canonical vsiRNAs in murine CNS upon antiviral RNAi activation by Sindbis virus (SINV), suggesting the possibility of antiviral immune strategy applied by mammals in the CNS.


Subject(s)
Alphavirus Infections/genetics , Alphavirus/immunology , Neural Stem Cells/virology , RNA, Small Interfering/metabolism , RNA, Viral/immunology , Alphavirus/genetics , Alphavirus Infections/immunology , Alphavirus Infections/virology , Animals , Cell Differentiation , Cell Line , Central Nervous System/immunology , Central Nervous System/virology , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , Muscle, Skeletal/immunology , Muscle, Skeletal/virology , Neural Stem Cells/immunology , RNA, Viral/antagonists & inhibitors , Sindbis Virus/genetics , Sindbis Virus/immunology , Vero Cells , Virus Replication , Zika Virus/genetics , Zika Virus/immunology
11.
Sci Rep ; 10(1): 10393, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587341

ABSTRACT

Salmonid alphavirus infection results in pancreas disease causing severe economic losses for Atlantic salmon aquaculture. Knowledge about genes and pathways contributing to resistance is limited. A 54 K SNP panel was used to genotype 10 full-sibling families each consisting of ~ 110 offspring challenged with salmonid alphavirus subtype 3. Relative heart viral load was assessed at 4- and 10-weeks post-infection using quantitative PCR. A moderate genomic heritability of viral load at 4 weeks (0.15-0.21) and a high positive correlation with survival (0.91-0.98) were detected. Positions of QTL detected on chromosome 3 matched those for survival detected by other studies. The SNP of highest significance occurred in the 3' untranslated region of gig1, a fish-specific antiviral effector. Locus B of immunoglobulin heavy chain mapped to an area containing multiple SNPs with genome-wide association. Heart mRNA-seq comparing parr from families with high- versus low-genomic breeding value, and matching sample genotypes for SNPs, identified two eQTL for salmonid alphavirus load. Immune genes associated with trans-eQTL were numerous and spread throughout the genome. QTL regions contained several genes with known or predicted immune functions, some differentially expressed. The putative functional genes and variants identified could help improve marker-based selection for pancreas disease resistance.


Subject(s)
Alphavirus Infections/genetics , Disease Resistance/genetics , Fish Diseases/genetics , Host-Pathogen Interactions/genetics , Pancreatic Diseases/veterinary , Quantitative Trait Loci , Salmo salar/genetics , Alphavirus/isolation & purification , Alphavirus Infections/virology , Animals , Chromosome Mapping , Fish Diseases/virology , Gene Expression Regulation , Genome-Wide Association Study , Pancreatic Diseases/genetics , Pancreatic Diseases/virology , Polymorphism, Single Nucleotide , Salmo salar/virology
12.
J Virol ; 94(9)2020 04 16.
Article in English | MEDLINE | ID: mdl-32102877

ABSTRACT

MicroRNAs (miRNAs) are small regulatory RNAs which act by modulating the expression of target genes. In addition to their role in maintaining essential physiological functions in the cell, miRNAs can also regulate viral infections. They can do so directly by targeting RNAs of viral origin or indirectly by targeting host mRNAs, and this can result in a positive or negative outcome for the virus. Here, we performed a fluorescence-based miRNA genome-wide screen in order to identify cellular miRNAs involved in the regulation of arbovirus infection in human cells. We identified 16 miRNAs showing a positive effect on Sindbis virus (SINV) expressing green fluorescent protein (GFP), among which were a number of neuron-specific ones such as miR-124. We confirmed that overexpression of miR-124 increases both SINV structural protein translation and viral production and that this effect is mediated by its seed sequence. We further demonstrated that the SINV genome possesses a binding site for miR-124. Both inhibition of miR-124 and silent mutations to disrupt this binding site in the viral RNA abolished positive regulation. We also proved that miR-124 inhibition reduces SINV infection in human differentiated neuronal cells. Finally, we showed that the proviral effect of miR-124 is conserved in other alphaviruses, as its inhibition reduces chikungunya virus (CHIKV) production in human cells. Altogether, our work expands the panel of positive regulation of the viral cycle by direct binding of host miRNAs to the viral RNA and provides new insights into the role of cellular miRNAs as regulators of alphavirus infection.IMPORTANCE Arthropod-borne (arbo) viruses are part of a class of pathogens that are transmitted to their final hosts by insects. Because of climate change, the habitat of some of these insects, such as mosquitoes, is shifting, thereby facilitating the emergence of viral epidemics. Among the pathologies associated with arbovirus infection, neurological diseases such as meningitis and encephalitis represent a significant health burden. Using a genome-wide miRNA screen, we identified neuronal miR-124 as a positive regulator of the Sindbis and chikungunya alphaviruses. We also showed that this effect was in part direct, thereby opening novel avenues to treat alphavirus infections.


Subject(s)
Alphavirus Infections/genetics , Alphavirus/genetics , MicroRNAs/genetics , Alphavirus/metabolism , Alphavirus Infections/diagnosis , Cell Line , Chikungunya Fever/genetics , Chikungunya virus/genetics , Fluorescence , High-Throughput Screening Assays/methods , Host-Pathogen Interactions , Humans , MicroRNAs/metabolism , Neurons/metabolism , RNA, Viral/metabolism , Sindbis Virus/genetics , Virus Replication
13.
Virology ; 542: 63-70, 2020 03.
Article in English | MEDLINE | ID: mdl-32056669

ABSTRACT

Sindbis virus (SINV) produces the small membrane protein TF from the 6K gene via a (-1) programmed ribosomal frameshifting. While several groups have shown that TF-deficient virus exhibits reduced virulence, the mechanism(s) by which this occurs remain unknown. Here, we demonstrate a role for TF in antagonizing the host interferon response. Using wild-type and type 1 interferon receptor-deficient mice and primary cells derived from these animals, we show that TF controls the induction of the host interferon response at early times during infection. Loss of TF production leads to elevated interferon and a concurrent reduction in viral loads with a loss of pathogenicity. Palmitoylation of TF has been shown to be important for particle assembly and morphology. We find that palmitoylation of TF also contributes to the ability of TF to antagonize host interferon responses as dysregulated palmitoylation of TF reduces virulence in a manner similar to loss of TF.


Subject(s)
Interferon Type I/biosynthesis , Sindbis Virus/immunology , Sindbis Virus/metabolism , Viral Proteins/immunology , Viral Proteins/metabolism , Alphavirus Infections/genetics , Alphavirus Infections/immunology , Alphavirus Infections/virology , Animals , Female , Genes, Viral , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Lipoylation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Sindbis Virus/genetics , Viral Proteins/genetics , Virulence/genetics , Virulence/immunology , Virulence/physiology
14.
J Virol ; 94(2)2020 01 06.
Article in English | MEDLINE | ID: mdl-31666378

ABSTRACT

Ross River virus (RRV), an alphavirus of the Togaviridae family, is the most medically significant mosquito-borne virus of Australia. Past RRV phylogenetic and evolutionary analyses have been based on partial genome analyses only. Three geographically distinct RRV lineages, the Eastern, the Western, and the supposedly extinct North-Eastern lineage, were classified previously. We sought to expand on past phylogenies through robust genome-scale phylogeny to better understand RRV genetic diversity and evolutionary dynamics. We analyzed 106 RRV complete coding sequences, which included 13 genomes available on NCBI and 94 novel sequences derived for this study, sampled throughout Western Australia (1977-2014) and during the substantial Pacific Islands RRV epidemic (1979-1980). Our final data set comprised isolates sampled over 59 years (1959-2018) from a range of locations. Four distinct genotypes were defined, with the newly described genotype 4 (G4) found to be the contemporary lineage circulating in Western Australia. The prior geographical classification of RRV lineages was not supported by our findings, with evidence of geographical and temporal cocirculation of distinct genetic groups. Bayesian Markov chain Monte Carlo (MCMC) analysis revealed that RRV lineages diverged from a common ancestor approximately 94 years ago, with distinct lineages emerging roughly every 10 years over the past 50 years in periodic bursts of genetic diversity. Our study has enabled a more robust analysis of RRV evolutionary history and resolved greater genetic diversity that had been previously defined by partial E2 gene analysis.IMPORTANCE Ross River virus (RRV) causes the most common mosquito-borne infection in Australia and causes a significant burden of suffering to infected individuals as well as being a large burden to the Australian economy. The genetic diversity of RRV and its evolutionary history have so far only been studied using partial E2 gene analysis with a limited number of isolates. Robust whole-genome analysis has not yet been conducted. This study generated 94 novel near-whole-genome sequences to investigate the evolutionary history of RRV to better understand its genetic diversity through comprehensive whole-genome phylogeny. A better understanding of RRV genetic diversity will enable better diagnostics, surveillance, and potential future vaccine design.


Subject(s)
Alphavirus Infections , Epidemics , Evolution, Molecular , Phylogeny , Ross River virus/genetics , Alphavirus Infections/epidemiology , Alphavirus Infections/genetics , Animals , Humans , Ross River virus/classification , Western Australia/epidemiology
15.
Nat Immunol ; 20(12): 1610-1620, 2019 12.
Article in English | MEDLINE | ID: mdl-31740798

ABSTRACT

The initial response to viral infection is anticipatory, with host antiviral restriction factors and pathogen sensors constantly surveying the cell to rapidly mount an antiviral response through the synthesis and downstream activity of interferons. After pathogen clearance, the host's ability to resolve this antiviral response and return to homeostasis is critical. Here, we found that isoforms of the RNA-binding protein ZAP functioned as both a direct antiviral restriction factor and an interferon-resolution factor. The short isoform of ZAP bound to and mediated the degradation of several host interferon messenger RNAs, and thus acted as a negative feedback regulator of the interferon response. In contrast, the long isoform of ZAP had antiviral functions and did not regulate interferon. The two isoforms contained identical RNA-targeting domains, but differences in their intracellular localization modulated specificity for host versus viral RNA, which resulted in disparate effects on viral replication during the innate immune response.


Subject(s)
Alphavirus Infections/immunology , Interferons/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Repressor Proteins/metabolism , Sindbis Virus/physiology , Alphavirus Infections/genetics , Feedback, Physiological , HEK293 Cells , Hep G2 Cells , Homeostasis , Humans , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Protein Binding , Protein Isoforms/genetics , RNA/genetics , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Virus Replication
16.
Viruses ; 11(9)2019 08 29.
Article in English | MEDLINE | ID: mdl-31470617

ABSTRACT

Mayaro virus (MAYV) is an emerging arthritogenic alphavirus belonging to the Togaviridae family. Infection leads to a dengue-like illness accompanied by severe polyarthralgia. However, the molecular and cellular mechanisms of arthritis as a result of MAYV infection remain poorly understood. In the present study, we assess the susceptibility of human chondrocytes (HC), fibroblast-like synoviocytes and osteoblasts that are the major cell types involved in osteoarthritis, to infection with MAYV. We show that these cells are highly permissive to MAYV infection and that viral RNA copy number and viral titers increase over time in infected cells. Knowing that HC are the primary cells in articular cartilage and are essential for maintaining the cartilaginous matrix, gene expression studies were conducted in MAYV-infected primary HC using polymerase chain reaction (PCR) arrays. The infection of the latter cells resulted in an induction in the expression of several matrix metalloproteinases (MMP) including MMP1, MMP7, MMP8, MMP10, MMP13, MMP14 and MMP15 which could be involved in the destruction of articular cartilage. Infected HC were also found to express significantly increased levels of various IFN-stimulated genes and arthritogenic mediators such as TNF-α and IL-6. In conclusion, MAYV-infected primary HC overexpress arthritis-related genes, which may contribute to joint degradation and pathogenesis.


Subject(s)
Alphavirus Infections/virology , Alphavirus/physiology , Arthritis/genetics , Chondrocytes/virology , Alphavirus/immunology , Alphavirus Infections/genetics , Alphavirus Infections/immunology , Cell Adhesion/genetics , Cell Survival , Cells, Cultured , Chondrocytes/immunology , Cytokines/genetics , Cytokines/metabolism , Extracellular Matrix/genetics , Gene Expression Profiling , Humans , Matrix Metalloproteinases/genetics , Osteoblasts/virology , RNA, Viral/metabolism , Synoviocytes/virology
17.
J Gen Virol ; 100(10): 1375-1389, 2019 10.
Article in English | MEDLINE | ID: mdl-31418676

ABSTRACT

RNA processing bodies (P-bodies) are non-membranous cytoplasmic aggregates of mRNA and proteins involved in mRNA decay and translation repression. P-bodies actively respond to environmental stresses, associated with another type of RNA granules, known as stress granules (SGs). Alphaviruses were previously shown to block SG induction at late stages of infection, which is important for efficient viral growth. In this study, we found that P-bodies were disassembled or reduced in number very early in infection with Semliki Forest virus (SFV) or chikungunya virus (CHIKV) in a panel of cell lines. Similar to SGs, reinduction of P-bodies by a second stress (sodium arsenite) was also blocked in infected cells. The disassembly of P-bodies still occurred in non-phosphorylatable eIF2α mouse embryonal fibroblasts (MEFs) that are impaired in SG assembly. Studies of translation status by ribopuromycylation showed that P-body disassembly is independent of host translation shutoff, which requires the phosphorylation of eIF2α in the SFV- or CHIKV-infected cells. Labelling of newly synthesized RNA with bromo-UTP showed that host transcription shutoff correlated with P-body disassembly at the same early stage (3-4 h) after infection. However, inhibition of global transcription with actinomycin D (ActD) failed to disassemble P-bodies as effectively as the viruses did. Interestingly, blocking nuclear import with importazole led to an efficient P-bodies loss. Our data reveal that P-bodies are disassembled independently from SG formation at early stages of Old World alphavirus infection and that nuclear import is involved in the dynamic of P-bodies.


Subject(s)
Alphavirus Infections/genetics , Alphavirus Infections/virology , Arenaviruses, Old World/physiology , RNA, Messenger/genetics , Alphavirus Infections/metabolism , Animals , Arenaviruses, Old World/genetics , Cell Line , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Humans , Mice , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Virus Replication
18.
J Virol ; 92(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30232189

ABSTRACT

Sindbis virus (SINV) is a representative member of the Alphavirus genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE.IMPORTANCE Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.


Subject(s)
Alphavirus Infections/pathology , Cysteine Endopeptidases/metabolism , Cytopathogenic Effect, Viral , Protein Biosynthesis , Sindbis Virus/physiology , Transcription, Genetic , Viral Nonstructural Proteins/metabolism , Alphavirus Infections/genetics , Alphavirus Infections/metabolism , Alphavirus Infections/virology , Animals , Cysteine Endopeptidases/genetics , Genome, Viral , Mice , NIH 3T3 Cells , Viral Nonstructural Proteins/genetics , Virion , Virus Replication
19.
Methods Mol Biol ; 1813: 297-316, 2018.
Article in English | MEDLINE | ID: mdl-30097877

ABSTRACT

Recently we characterized the mono(ADP-ribosyl) hydrolase (MAR hydrolase) activity of the macrodomain of nonstructural protein 3 (nsP3MD) of chikungunya virus. Using recombinant viruses with targeted mutations in the macrodomain, we demonstrated that hydrolase function is important for viral replication in cultured neuronal cells and for neurovirulence in mice. Here, we describe the general cell culture and animal model infection protocols for alphaviruses and the technical details for biochemical characterization of the MAR hydrolase activity of nsP3MD mutants and the preparation of recombinant viruses incorporating those mutations through site-directed mutagenesis of an infectious cDNA virus clone.


Subject(s)
ADP-Ribosylation/genetics , Alphavirus/genetics , Molecular Biology/methods , Viral Nonstructural Proteins/chemistry , Alphavirus/pathogenicity , Alphavirus Infections/genetics , Alphavirus Infections/virology , Animals , Cell Culture Techniques/methods , Cell Line , Disease Models, Animal , Mice , Mutagenesis, Site-Directed/methods , Neurons/virology , Viral Nonstructural Proteins/genetics , Virus Replication/genetics
20.
PLoS One ; 13(4): e0195720, 2018.
Article in English | MEDLINE | ID: mdl-29634777

ABSTRACT

Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.


Subject(s)
Anopheles/genetics , Anopheles/parasitology , Plasmodium falciparum/pathogenicity , Alphavirus Infections/genetics , Alphavirus Infections/virology , Animals , Animals, Genetically Modified , Biological Control Agents , Female , Host-Parasite Interactions/genetics , Humans , Insecticide Resistance/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Male , Mosquito Vectors/parasitology , O'nyong-nyong Virus/pathogenicity , Wolbachia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...