Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.117
Filter
1.
PeerJ ; 12: e17500, 2024.
Article in English | MEDLINE | ID: mdl-38827286

ABSTRACT

Plants growing along wide elevation gradients in mountains experience considerable variations in environmental factors that vary across elevations. The most pronounced elevational changes are in climate conditions with characteristic decrease in air temperature with an increase in elevation. Studying intraspecific elevational variations in plant morphological traits and biomass allocation gives opportunity to understand how plants adapted to steep environmental gradients that change with elevation and how they may respond to climate changes related to global warming. In this study, phenotypic variation of an alpine plant Soldanella carpatica Vierh. (Primulaceae) was investigated on 40 sites distributed continuously across a 1,480-m elevation gradient in the Tatra Mountains, Central Europe. Mixed-effects models, by which plant traits were fitted to elevation, revealed that on most part of the gradient total leaf mass, leaf size and scape height decreased gradually with an increase in elevation, whereas dry mass investment in roots and flowers as well as individual flower mass did not vary with elevation. Unexpectedly, in the uppermost part of the elevation gradient overall plant size, including both below-and aboveground plant parts, decreased rapidly causing abrupt plant miniaturization. Despite the plant miniaturization at the highest elevations, biomass partitioning traits changed gradually across the entire species elevation range, namely, the leaf mass fraction decreased continuously, whereas the flower mass fraction and the root:shoot ratio increased steadily from the lowest to the highest elevations. Observed variations in S. carpatica phenotypes are seen as structural adjustments to environmental changes across elevations that increase chances of plant survival and reproduction at different elevations. Moreover, results of the present study agreed with the observations that populations of species from the 'Soldanella' intrageneric group adapted to alpine and subnival zones still maintain typical 'Soldanella'-like appearance, despite considerable reduction in overall plant size.


Subject(s)
Altitude , Biomass , Plant Leaves , Plant Leaves/anatomy & histology , Flowers/anatomy & histology , Flowers/growth & development , Climate Change
2.
Sci Rep ; 14(1): 12859, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834673

ABSTRACT

External eye appearance in avian taxa has been proposed to be driven by social and ecological functions. Recent research in primates suggests, instead, that, photoprotective functions are important drivers of external eye appearance. Using similar methods, we examined the variation in external eye appearance of 132 parrot species (Psittaciformes) in relation to their ecology and sociality. Breeding systems, flock size and sexual dimorphism, as well as species' latitude and maximum living altitude, and estimated UV-B incidence in species' ranges were used to explore the contribution of social and ecological factors in driving external eye appearance. We measured the hue and brightness of visible parts of the eye and the difference in measurements of brightness between adjacent parts of the eye. We found no link between social variables and our measurements. We did, however, find a negative association between the brightness of the inner part of the iris and latitude and altitude. Darker inner irises were more prevalent farther away from the equator and for those species living at higher altitudes. We found no link between UV-B and brightness measurements of the iris, or tissue surrounding the eye. We speculate that these results are consistent with an adaptation for visual functions. While preliminary, these results suggest that external eye appearance in parrots is influenced by ecological, but not social factors.


Subject(s)
Altitude , Parrots , Animals , Parrots/physiology , Eye/anatomy & histology , Female , Male , Ultraviolet Rays
3.
Food Res Int ; 187: 114392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763654

ABSTRACT

Variations in cultivars and cultivation altitudes have significant impacts on tea flavour compounds however lack of comprehensive understanding. This study provided insights into differential accumulation of crucial flavour compounds in response to cultivars, cultivation altitudes, and processing. Twelve flavonoids (262.4 âˆ¼ 275.4 mg•g-1) and 20 amino acids (AAs) (56.5 âˆ¼ 64.8 mg•g-1) were comparative analyzed in 'Longjing 43' and 'Qunti' fresh leaves harvested at low (80 m, LA) and high (500 m, HA) altitudes. Additionally, an in-depth correlation unravelling of 31 alkaloids, 25 fatty acids, 31 saccharides, 8 organic acids, and 7 vitamins and flavonoids/AAs during green tea (GT) and black tea (BT) processing was performed. Enhenced flavonoid accumulation alongside higher AAs and saccharides in HA GT promoted a sweet/mellow flavour. Abundant flavonoids, AAs, and saccharides derivates in LA BT gave rise to a sweet aftertaste. The study presents an integrated illustration of major flavour compounds' differential accumulation patterns and their interrelations, providing new insights into the influence of cultivation conditions on tea flavour.


Subject(s)
Altitude , Camellia sinensis , Flavonoids , Plant Leaves , Tea , Plant Leaves/chemistry , Plant Leaves/metabolism , Flavonoids/analysis , Tea/chemistry , Camellia sinensis/chemistry , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Taste , Amino Acids/analysis , Amino Acids/metabolism , Food Handling/methods , Flavoring Agents/analysis , Alkaloids/analysis , Alkaloids/metabolism
4.
PeerJ ; 12: e17148, 2024.
Article in English | MEDLINE | ID: mdl-38708360

ABSTRACT

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield. Yet, little is known about the effects of temperature on pollen thermotolerance of wild plant species. To fill this gap, we selected Lotus corniculatus s.l. (Fabaceae), a species common to many European habitats and conducted laboratory experiments to test its pollen thermotolerance in response to artificial increase in temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland (389-451 m a.s.l.) and six highland (841-1,030 m a.s.l.) populations. We observed pollen germination in vitro at 15 °C, 25 °C, 30 °C, and 40 °C. While lowland plants maintained a stable germination percentage across a broad temperature range (15-30 °C) and exhibited reduced germination only at extremely high temperatures (40 °C), highland plants experienced reduced germination even at 30 °C-temperatures commonly exceeded in lowlands during warm summers. This suggests that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination percentage significantly differed between lowland and highland populations, with highland populations displaying higher germination percentage. On the other hand, the average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen thermotolerance of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermotolerance.


Subject(s)
Lotus , Pollen , Thermotolerance , Pollen/physiology , Thermotolerance/physiology , Lotus/physiology , Lotus/growth & development , Adaptation, Physiological/physiology , Global Warming , Germination/physiology , Altitude , Climate Change , Temperature , Acclimatization/physiology
5.
J Ethnobiol Ethnomed ; 20(1): 54, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764009

ABSTRACT

BACKGROUND: In northwestern Pakistan, Lotkuh is a high-altitude terrain nestled within the eastern Hindu Kush region. Enclaved by towering peaks and harboring a unique culture, the region mirrors the geographical and cultural diversity of Pakistan. In this geographically isolated region, a treasure trove of ethnobotanical knowledge unfolds through generations of interaction between the inhabitants and indigenous plants, resulting in a profound understanding of the plant uses in nutritional, medicinal, cultural, and ritual contexts. Thus, the study seeks to gather, analyze, and document the indigenous knowledge of plant utilization of the distinct tribal culture. METHODS: Through semi-structured questionnaires, inventory interviews, and participatory workshops, data were collected by engaging a cohort of 120 local respondents. The collected data were then classified into nine distinct use categories, following which quantitative indices were calculated. RESULTS: The research identified a total of 150 plant species spanning across 59 different families and categorized them into 9 distinct usage groups. Among these, Astragalus oihorensis, Astragalus owirensis, Cicer nuristanicum, Geranium parmiricum, and Rochelia chitralensis stand out as novel species with distinctive applications. Notably, medicinal use garnered 600 reports, while animal feed, veterinary applications, human consumption, and toxicity recorded 500, 450, 425, and 104 reports, respectively. Informant consensus was high ranging between 0.8 and 0.9 with most agreement on human food and animal feed category. Platanus orientalis and Juglans regia, with RFC 0.91, were the most cited. The Family Importance Value (FIV) of Juglandaceae and Platanaceae, each with an FIV of 0.91, and Capparidaceae with an FIV of 0.83 indicate the intricate role the families play. CONCLUSIONS: In this study, we explore 150 ethnobotanical species, uncovering novel entries within ethnobotanical literature. Among these, several species showcase unique uses previously undocumented in Pakistani literature. Our research sheds light on the intricate interaction between plants and the distinct cultural landscape of the Lotkuh region.


Subject(s)
Altitude , Ethnobotany , Plants, Medicinal , Pakistan , Humans , Female , Male , Adult , Middle Aged , Phytotherapy , Medicine, Traditional , Surveys and Questionnaires
6.
Sci Total Environ ; 931: 172930, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701932

ABSTRACT

Similarly to other European mountain areas, in Serra da Estrela the grazing pressure has been reducing due to social and economic drivers that have pushed shepherds and sheep to the foothill, or plainly out of the sector. Shrub encroachment on commons and other previously grazed land is one of the most tangible effects of pastoral abandonment in Serra de Estrela. The impacts of the resulting increase in landscape continuity and biomass availability were made clear in the severe fires of 2017 and 2022. As fire risk is likely to increase with climate change, it becomes urgent to understand what strategies can be deployed to keep fragmentation in these landscapes. Key actors such as shepherds should be involved in this discussion to understand their perceptions, points of view and reasons for abandoning upland pastures. In this study, we use fuzzy cognitive mapping to identify the key variables and mechanisms affecting the pastoral system according to local shepherds. In our study, we developed with local stakeholders a framework outlining the local pastoral system. Based on that, we carried out the fuzzy cognitive mapping collecting 14 questionnaires. We found that shepherds' income is a central issue, but that it is highly dependent on many factors. Increasing the Common Agricultural Policy payments alone is not enough to incentivise the use of upland pastures. More targeted strategies, such as more support for shrub clearing, and direct payments conditional to transhumance are more impactful. Despite a contentious discourse between conservation and shepherding values in Serra da Estrela, we find that shepherd's values are aligned with biodiversity conservation and a potential nature-based solution for minimizing fire risk through woody fuel management. This opens up possibilities for new governance strategies, that put Serra da Estrela's social, environmental and cultural values at its core.


Subject(s)
Altitude , Conservation of Natural Resources , Animals , Spain , Climate Change , Fuzzy Logic , Agriculture , Grassland
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230116, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705191

ABSTRACT

Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Altitude , Animal Migration , Flight, Animal , Insecta , Animals , Flight, Animal/physiology , Europe , Insecta/physiology , Seasons
8.
Reprod Domest Anim ; 59(5): e14582, 2024 May.
Article in English | MEDLINE | ID: mdl-38715452

ABSTRACT

Crossbred cattle are commonly used for milk production in the tropics, combining the potential benefits of pure breeds with the heterosis effects of the offspring. However, no comprehensive assessment of lifetime productivity for crossbred versus purebred cattle in low-altitude tropical environments has been carried out. The present study compares the lifetime productivity of purebred Holstein (HO, n = 17,269), Gyr (GY4, n = 435), and Brahman (BR4, n = 622) with crossbreds Gyr × Holstein (GY × HO, n = 5521) and Brahman×Holstein (BR × HO, n = 5429) cows from dairy farms located in low and medium altitude tropical regions in Costa Rica. The production traits of interest were age at first calving (AFC), days open (DO), milk production per lactation (TMP), lactation length (LLEN), age at culling (ACUL), and number of lactations (NLAC). Estimates of heterosis were also calculated. The AFC for GY × HO crosses (33-34 months) was not significantly different (p > .05) from HO (33.8 months). For BR × HO crosses, a significant (p < .05) decrease in AFC (BR3HO1 35.6 months, BR2HO2 34.5 months, and BR1H03 33.3 months) was observed as the fraction of HO breed increased. Estimates of heterosis for AFC were favourable for both crosses, of a magnitude close to 3%. The DO for F1 crosses (GY2HO2 94 days; BR2HO2 96 days) was significantly (p < .05) lower than HO (123 days). Estimates of heterosis for DO were also favourable and above 15% for both crosses. The TMP and LLEN were higher for HO (TMP = 5003 kg; LLEN = 324 days) compared with GY × HO (TMP = 4428 to 4773 kg; LLEN = 298 to 312 days) and BR × HO (TMP = 3950 to 4761 kg; LLEN = 273 to 313 days) crosses. Heterosis for TMP was favourable but low for both crosses, with a magnitude below 3.0%. The NLAC for HO (4.6 lactations) was significantly (p < .05) lower than F1 (GY2HO2, 5.8 lactations; BR2HO2, 5.4 lactations). Heterosis for NLAC was above 6.0% for both crosses. Overall, estimates of lifetime income over feed costs per cow on average were USD 2637 (30.3%) and USD 734 (8.4%) higher in F1 GY × HO and BR × HO, respectively, compared to HO. In conclusion, crossbred animals, specifically those with Gyr and Brahman genetics, extend the productive lifespan, increasing economic returns.


Subject(s)
Hybrid Vigor , Lactation , Milk , Tropical Climate , Animals , Cattle/genetics , Cattle/physiology , Lactation/genetics , Lactation/physiology , Female , Costa Rica , Breeding , Hybridization, Genetic , Altitude , Crosses, Genetic
9.
BMC Plant Biol ; 24(1): 371, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724940

ABSTRACT

Variations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range). Importantly, most researches have concerned with differences in mean trait values and ignored intraspecific trait variation. Here, we measured functional traits of desert plants along a wide elevational gradient in the Tibetan Plateau and adjacent areas and explored functional trait patterns over elevation in species with different elevational distributions. We decomposed trait variation and further investigated characterizations of intraspecific variation. Ultimately, the main drivers of trait variation were identified using redundancy analysis. We found that species' elevational distributions significantly influenced the relationship of functional traits such as plant height, leaf dry matter content, leaf thickness, leaf nitrogen and carbon content with elevation. Species with a lower elevational preference showed greater trait variation than species with a higher elevational preference, suggesting that species that prefer high elevation are more conservative facing environmental changes. We provide evidence that interspecific trait variation in leaf thickness and leaf carbon content decreased with increasing species' range, indicating that increased variations in resistance traits within species make greater responsiveness to environmental changes, enabling species a wider range. Elevation, temperature and precipitation were the main drivers of trait variation in species with a low elevational preference, while the effect of precipitation on trait variation in species with a high elevational preference was not significant. This study sheds new insights on how plants with different elevational distributions regulate their ecological strategies to cope with changing environments.


Subject(s)
Altitude , Desert Climate , Tibet , Plant Leaves/physiology , Plant Leaves/anatomy & histology
10.
Food Res Int ; 186: 114379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729702

ABSTRACT

The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.


Subject(s)
Altitude , Metabolomics , Tea , Volatile Organic Compounds , Tea/chemistry , Volatile Organic Compounds/analysis , Humans , Odorants/analysis , Taste , Antioxidants/analysis , Camellia sinensis/chemistry , Amino Acids/analysis , Flavonoids/analysis , Male , China , Female
11.
Nat Commun ; 15(1): 3970, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730227

ABSTRACT

High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.


Subject(s)
Altitude Sickness , Altitude , Gene Expression Regulation , Hypoxia , Animals , Altitude Sickness/genetics , Altitude Sickness/metabolism , Sheep , Hypoxia/genetics , Hypoxia/metabolism , Humans , Acclimatization/genetics , Transcription, Genetic , Single-Cell Analysis , Female , Multiomics
12.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731803

ABSTRACT

This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the myocardium during acute exercise and altitude/hypoxic training remains less understood. We aimed to determine how a single bout of intense interval exercise and a four-week period of high-intensity endurance training under normobaric hypoxia affect cardiac marker activity in swimmers. Sixteen young male swimmers were divided into two groups: one undergoing training in hypoxia and the other in normoxia. Cardiac markers, including troponin I and T (cTnI and cTnT), heart-type fatty acid-binding protein (H-FABP), creatine kinase-MB isoenzyme (CK-MB), and myoglobin (Mb), were analyzed to assess the myocardium's response. We found no significant differences in the physiological response of the cardiac muscle to intense physical exertion between hypoxia and normoxia. Four weeks of IHT did not alter the resting levels of cTnT, cTnI, and H-FABP, but it resulted in a noteworthy decrease in the resting concentration of CK-MB, suggesting enhanced cardiac muscle adaptation to exercise. In contrast, a reduction in resting Mb levels was observed in the control group training in normoxia. These findings suggest that IHT at moderate altitudes does not adversely affect cardiac muscle condition and may support cardiac muscle adaptation, affirming the safety and efficacy of IHT as a training method for athletes.


Subject(s)
Athletes , Biomarkers , Hypoxia , Humans , Male , Hypoxia/metabolism , Pilot Projects , Swimming/physiology , Young Adult , Myocardium/metabolism , Myoglobin/metabolism , Troponin I/metabolism , Fatty Acid Binding Protein 3/metabolism , Adolescent , Fatty Acid-Binding Proteins/metabolism , Physical Endurance/physiology , Creatine Kinase, MB Form/blood , Creatine Kinase, MB Form/metabolism , Adaptation, Physiological , Altitude
13.
BMJ Open ; 14(5): e078018, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692719

ABSTRACT

OBJECTIVE: To investigate the differences in myopia prevalence and ocular biometry in children and adolescents in Chongqing and Tibet, China. DESIGN: Cross-sectional study. SETTING: The study included children and adolescents aged 6-18 years in Chongqing, a low-altitude region, and in Qamdo, a high-altitude region of Tibet. PARTICIPANTS: A total of 448 participants in Qamdo, Tibet, and 748 participants in Chongqing were enrolled in this study. METHODS: All participants underwent uncorrected visual acuity assessment, non-cycloplegic refraction, axial length (AL) measurement, intraocular pressure (IOP) measurement and corneal tomography. And the participants were grouped according to age (6-8, 9-11, 12-14 and 15-18 years group), and altitude of location (primary school students: group A (average altitude: 325 m), group B (average altitude: 2300 m), group C (average altitude: 3250 and 3170 m) and group D (average altitude: 3870 m)). RESULTS: There was no statistical difference in mean age (12.09±3.15 vs 12.2±3.10, p=0.549) and sex distribution (males, 50.4% vs 47.6%, p=0.339) between the two groups. The Tibet group presented greater spherical equivalent (SE, -0.63 (-2.00, 0.13) vs -0.88 (-2.88, -0.13), p<0.001), shorter AL (23.45±1.02 vs 23.92±1.19, p<0.001), lower prevalence of myopia (39.7% vs 47.6%, p=0.008) and flatter mean curvature power of the cornea (Km, 43.06±1.4 vs 43.26±1.36, p=0.014) than the Chongqing group. Further analysis based on age subgroups revealed that the Tibet group had a lower prevalence of myopia and higher SE in the 12-14, and 15-18 years old groups, shorter AL in the 9-11, 12-14 and 15-18 years old groups, and lower AL to corneal radius of curvature ratio (AL/CR) in all age subgroups compared with the Chongqing group, while Km was similar between the two groups in each age subgroup. Simple linear regression analysis showed that SE decreased with age in both the Tibet and Chongqing groups, with the Tibet group exhibiting a slower rate of decrease (p<0.001). AL and AL/CR increased with age in both the Tibet and Chongqing groups, but the rate of increase was slower in the Tibet group (p<0.001 of both). Multiple linear regression analysis revealed that AL had the greatest effect on SE in both groups, followed by Km. In addition, the children and adolescents in Tibet presented thinner corneal thickness (CCT, p<0.001), smaller white to white distance (WTW, p<0.001), lower IOP (p<0.001) and deeper anterior chamber depth (ACD, p=0.015) than in Chongqing. Comparison of altitude subgroups showed that the prevalence of myopia (p=0.002), SE (p=0.031), AL (p=0.001) and AL/CR (p<0.001) of children at different altitudes was statistically different but the Km (p=0.189) were similar. The highest altitude, Tengchen County, exhibited the lowest prevalence of myopia and greatest SE among children, and the mean AL also decreased with increasing altitude. CONCLUSIONS: Myopia prevalence in Tibet was comparable with that in Chongqing for students aged 6-8 and 9-11 years but was lower and myopia progressed more slowly for students aged 12-14 and 15-18 years than in Chongqing, and AL was the main contributor for this difference, which may be related to higher ultraviolet radiation exposure and lower IOP in children and adolescents at high altitude in Tibet. Differences in AL and AL/CR between Tibet and Chongqing children and adolescents manifested earlier than in SE, underscoring the importance of AL measurement in myopia screening.


Subject(s)
Altitude , Biometry , Myopia , Refraction, Ocular , Humans , Adolescent , Child , Cross-Sectional Studies , Male , Female , Tibet/epidemiology , Myopia/epidemiology , Prevalence , China/epidemiology , Refraction, Ocular/physiology , Visual Acuity , Axial Length, Eye/diagnostic imaging , Intraocular Pressure/physiology , Cornea/diagnostic imaging , Cornea/pathology , Cornea/anatomy & histology
14.
Gut Microbes ; 16(1): 2350151, 2024.
Article in English | MEDLINE | ID: mdl-38715346

ABSTRACT

The extreme environmental conditions of a plateau seriously threaten human health. The relationship between gut microbiota and human health at high altitudes has been extensively investigated. However, no universal gut microbiota biomarkers have been identified in the plateau population, limiting research into gut microbiota and high-altitude adaptation. 668 16s rRNA samples were analyzed using meta-analysis to reduce batch effects and uncover microbiota biomarkers in the plateau population. Furthermore, the robustness of these biomarkers was validated. Mendelian randomization (MR) results indicated that Tibetan gut microbiota may mediate a reduced erythropoietic response. Functional analysis and qPCR revealed that butyrate may be a functional metabolite in high-altitude adaptation. A high-altitude rat model showed that butyrate reduced intestinal damage caused by high altitudes. According to cell experiments, butyrate may downregulate hypoxia-inducible factor-1α (HIF-1α) expression and blunt cellular responses to hypoxic stress. Our research found universally applicable biomarkers and investigated their potential roles in promoting human health at high altitudes.


Subject(s)
Altitude , Biomarkers , Butyrates , Gastrointestinal Microbiome , Hypoxia-Inducible Factor 1, alpha Subunit , Humans , Tibet , Butyrates/metabolism , Butyrates/analysis , Biomarkers/analysis , Animals , Rats , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Male , Adaptation, Physiological , Mendelian Randomization Analysis
15.
Sleep Med Clin ; 19(2): 327-337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692756

ABSTRACT

In a variety of physiologic and pathologic states, people may experience both chronic sustained hypoxemia and intermittent hypoxemia ("combined" or "overlap" hypoxemia). In general, hypoxemia in such instances predicts a variety of maladaptive outcomes, including excess cardiovascular disease or mortality. However, hypoxemia may be one of the myriad phenotypic effects in such states, making it difficult to ascertain whether adverse outcomes are primarily driven by hypoxemia, and if so, whether these effects are due to intermittent versus sustained hypoxemia.


Subject(s)
Altitude , Hypoxia , Sleep Apnea Syndromes , Humans , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/therapy , Chronic Disease , Lung Diseases/complications
16.
Sensors (Basel) ; 24(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794099

ABSTRACT

Basketball involves frequent high-intensity movements requiring optimal aerobic power. Altitude training can enhance physiological adaptations, but research examining its effects in basketball is limited. This study aimed to characterize the internal/external workload of professional basketball players during preseason and evaluate the effects of altitude and playing position. Twelve top-tier professional male basketball players (Liga Endesa, ACB; guards: n = 3, forwards: n = 5, and centers: n = 4) participated in a crossover study design composed of two training camps with nine sessions over 6 days under two different conditions: high altitude (2320 m) and sea level (10 m). Internal loads (heart rate, %HRMAX) and external loads (total distances covered across speed thresholds, accelerations/decelerations, impacts, and jumps) were quantified via wearable tracking and heart rate telemetry. Repeated-measures MANOVA tested the altitude x playing position effects. Altitude increased the total distance (+10%), lower-speed running distances (+10-39%), accelerations/decelerations (+25-30%), average heart rate (+6%), time in higher-intensity HR zones (+23-63%), and jumps (+13%) across all positions (p < 0.05). Positional differences existed, with guards accruing more high-speed running and centers exhibiting greater cardiovascular demands (p < 0.05). In conclusion, a 6-day altitude block effectively overloads training, providing a stimulus to enhance fitness capacities when structured appropriately. Monitoring workloads and individualizing training by playing position are important when implementing altitude training, given the varied responses.


Subject(s)
Altitude , Basketball , Heart Rate , Workload , Humans , Basketball/physiology , Male , Heart Rate/physiology , Adult , Young Adult , Cross-Over Studies , Athletic Performance/physiology , Acceleration , Running/physiology , Athletes
17.
Front Public Health ; 12: 1355659, 2024.
Article in English | MEDLINE | ID: mdl-38807991

ABSTRACT

Background: The Tibetan population residing in high-altitude (HA) regions has adapted to extreme hypoxic environments. However, there is limited understanding of the genetic basis of body compositions in Tibetan population adapted to HA. Methods: We performed a genome-wide association study (GWAS) to identify genetic variants associated with HA and HA-related body composition traits. A total of 755,731 single nucleotide polymorphisms (SNPs) were genotyped using the precision medicine diversity array from 996 Tibetan college students. T-tests and Pearson correlation analysis were used to estimate the association between body compositions and altitude. The mixed linear regression identified the SNPs significantly associated with HA and HA-related body compositions. LASSO regression was used to screen for important SNPs in HA and body compositions. Results: Significant differences were observed in lean body mass (LBW), muscle mass (MM), total body water (TBW), standard weight (SBW), basal metabolic rate (BMR), total protein (TP), and total inorganic salt (Is) in different altitudes stratification. We identified three SNPs in EPAS1 (rs1562453, rs7589621 and rs7583392) that were significantly associated with HA (p < 5 × 10-7). GWAS analysis of 7 HA-related body composition traits, we identified 14 SNPs for LBM, 11 SNPs for TBW, 15 SNPs for MM, 16 SNPs for SBW, 9 SNPs for BMR, 12 SNPs for TP, and 26 SNPs for Is (p < 5.0 × 10-5). Conclusion: These findings provide insight into the genetic basis of body composition in Tibetan college students adapted to HA, and lay the foundation for further investigation into the molecular mechanisms underlying HA adaptation.


Subject(s)
Altitude , Body Composition , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Tibet , Polymorphism, Single Nucleotide/genetics , Male , Female , Body Composition/genetics , Young Adult , Adult , Adaptation, Physiological/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Genotype , East Asian People
18.
Sci Rep ; 14(1): 11585, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773195

ABSTRACT

High-altitude cerebral edema (HACE) is a severe neurological condition that can occur at high altitudes. It is characterized by the accumulation of fluid in the brain, leading to a range of symptoms, including severe headache, confusion, loss of coordination, and even coma and death. Exosomes play a crucial role in intercellular communication, and their contents have been found to change in various diseases. This study analyzed the metabolomic characteristics of blood exosomes from HACE patients compared to those from healthy controls (HCs) with the aim of identifying specific metabolites or metabolic pathways associated with the development of HACE conditions. A total of 21 HACE patients and 21 healthy controls were recruited for this study. Comprehensive metabolomic profiling of the serum exosome samples was conducted using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS). Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to identify the metabolic pathways affected in HACE patients. Twenty-six metabolites, including ( +)-camphoric acid, choline, adenosine, adenosine 5'-monophosphate, deoxyguanosine 5'-monophosphate, guanosine, and hypoxanthine-9-ß-D-arabinofuranoside, among others, exhibited significant changes in expression in HACE patients compared to HCs. Additionally, these differentially abundant metabolites were confirmed to be potential biomarkers for HACE. KEGG pathway enrichment analysis revealed several pathways that significantly affect energy metabolism regulation (such as purine metabolism, thermogenesis, and nucleotide metabolism), estrogen-related pathways (the estrogen signaling pathway, GnRH signaling pathway, and GnRH pathway), cyclic nucleotide signaling pathways (the cGMP-PKG signaling pathway and cAMP signaling pathway), and hormone synthesis and secretion pathways (renin secretion, parathyroid hormone synthesis, secretion and action, and aldosterone synthesis and secretion). In patients with HACE, adenosine, guanosine, and hypoxanthine-9-ß-D-arabinofuranoside were negatively correlated with height. Deoxyguanosine 5'-monophosphate is negatively correlated with weight and BMI. Additionally, LPE (18:2/0:0) and pregnanetriol were positively correlated with age. This study identified potential biomarkers for HACE and provided valuable insights into the underlying metabolic mechanisms of this disease. These findings may lead to potential targets for early diagnosis and therapeutic intervention in HACE patients.


Subject(s)
Biomarkers , Brain Edema , Exosomes , Metabolomics , Humans , Male , Female , Adult , Metabolomics/methods , Brain Edema/blood , Brain Edema/metabolism , Brain Edema/etiology , Biomarkers/blood , Exosomes/metabolism , Tandem Mass Spectrometry , Altitude Sickness/blood , Altitude Sickness/metabolism , Middle Aged , Metabolic Networks and Pathways , Metabolome , Case-Control Studies , Altitude
19.
Front Public Health ; 12: 1414945, 2024.
Article in English | MEDLINE | ID: mdl-38813422

ABSTRACT

Background: With global climate change, the health impacts of cold spells and air pollution caused by PM2.5 are increasingly aggravated, especially in high-altitude areas, which are particularly sensitive. Exploring their interactions is crucial for public health. Methods: We collected time-series data on meteorology, air pollution, and various causes of death in Xining. This study employed a time-stratified case-crossover design and conditional logistic regression models to explore the association between cold spells, PM2.5 exposure, and various causes of death, and to assess their interaction. We quantitatively analyzed the interaction using the relative excess odds due to interaction (REOI), attributable proportion due to interaction (AP), and synergy index (S). Moreover, we conducted stratified analyses by average altitude, sex, age, and educational level to identify potential vulnerable groups. Results: We found significant associations between cold spells, PM2.5, and various causes of death, with noticeable effects on respiratory disease mortality and COPD mortality. We identified significant synergistic effects (REOI>0, AP > 0, S > 1) between cold spells and PM2.5 on various causes of death, which generally weakened with a stricter definition of cold spells and longer duration. It was estimated that up to 9.56% of non-accidental deaths could be attributed to concurrent exposure to cold spells and high-level PM2.5. High-altitude areas, males, the older adults, and individuals with lower educational levels were more sensitive. The interaction mainly varied among age groups, indicating significant impacts and a synergistic action that increased mortality risk. Conclusion: Our study found that in high-altitude areas, exposure to cold spells and PM2.5 significantly increased the mortality risk from specific diseases among the older adults, males, and those with lower educational levels, and there was an interaction between cold spells and PM2.5. The results underscore the importance of reducing these exposures to protect public health.


Subject(s)
Air Pollution , Altitude , Cold Temperature , Cross-Over Studies , Particulate Matter , Humans , Particulate Matter/adverse effects , Male , Female , Middle Aged , Aged , Cold Temperature/adverse effects , Adult , Air Pollution/adverse effects , China/epidemiology , Environmental Exposure/adverse effects , Cause of Death , Air Pollutants/adverse effects , Young Adult , Adolescent , Mortality/trends , Aged, 80 and over
20.
Environ Sci Pollut Res Int ; 31(24): 35864-35877, 2024 May.
Article in English | MEDLINE | ID: mdl-38743335

ABSTRACT

Microplastic (MP) contamination represents an issue of global concern for both aquatic and terrestrial ecosystems, but only in recent years, the study of MPs has been focused on freshwaters. Several monitoring surveys have detected the presence of a wide array of MPs differing in size, shape, and polymer composition in rivers and lakes worldwide. Because of their role of sink for plastic particles, the abundance of MPs was investigated in waters, and deep and shoreline sediments from diverse lakes, confirming the ubiquity of this contamination. Although diverse factors, including those concerning anthropogenic activities and physical characteristics of lakes, have been supposed to affect MP abundances, very few studies have directly addressed these links. Thus, the aim of the present study was to explore the levels of MP contamination in mountain and subalpine lakes from Northern Italy. Fourteen lakes dislocated at different altitudes and characterized by dissimilar anthropic pressures were visited. Lakeshore sediments were collected close to the drift line to assess MPs contamination. Our results showed the presence of MPs in lakeshore sediments from all the lakes, with a mean (± standard deviation) expressed as MPs/Kg dry sediment accounting to 14.42 ± 13.31 (range 1.57-61.53), while expressed as MPs/m2, it was 176.07 ± 172.83 (range 25.00-666.67). The MP abundance measured for Garda Lake was significantly higher compared to all the other ones (F1,13 = 7.344; P < 0.001). The pattern of contamination was dominated by fibers in all the lakes, but they were the main contributors in mountain lakes. These findings showed that the MP abundance varied according to the altitude of the lakes, with higher levels measured in subalpine lakes located at low altitudes and surrounded by populated areas.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Microplastics , Water Pollutants, Chemical , Lakes/chemistry , Italy , Geologic Sediments/chemistry , Microplastics/analysis , Water Pollutants, Chemical/analysis , Altitude
SELECTION OF CITATIONS
SEARCH DETAIL
...