Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 658
Filter
1.
Cells ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38994981

ABSTRACT

Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little is known about the different triggers that induce a senescence phenotype in different disease backgrounds and its role in CLD pathogenesis. Therefore, we characterized senescence in primary human lung fibroblasts (phLF) from control, IPF, or COPD patients at baseline and after exposure to disease-relevant insults (H2O2, bleomycin, TGF-ß1) and studied their capacity to support progenitor cell potential in a lung organoid model. Bulk-RNA sequencing revealed that phLF from IPF and COPD activate different transcriptional programs but share a similar senescence phenotype at baseline. Moreover, H2O2 and bleomycin but not TGF-ß1 induced senescence in phLF from different disease origins. Exposure to different triggers resulted in distinct senescence programs in phLF characterized by different SASP profiles. Finally, co-culture with bleomycin- and H2O2-treated phLF reduced the progenitor cell potential of alveolar epithelial progenitor cells. In conclusion, phLF from COPD and IPF share a conserved senescence response that varies depending on the insult and impairs alveolar epithelial progenitor capacity ex vivo.


Subject(s)
Bleomycin , Cellular Senescence , Fibroblasts , Hydrogen Peroxide , Idiopathic Pulmonary Fibrosis , Lung , Stem Cells , Humans , Cellular Senescence/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Lung/cytology , Lung/pathology , Bleomycin/pharmacology , Stem Cells/metabolism , Stem Cells/drug effects , Stem Cells/cytology , Hydrogen Peroxide/pharmacology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Cells, Cultured
2.
Nutrients ; 16(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999871

ABSTRACT

IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health.


Subject(s)
Apoptosis , Cell Proliferation , DNA Damage , Interleukin-17 , Iridoid Glucosides , Iridoids , Oxidative Stress , Humans , Oxidative Stress/drug effects , Interleukin-17/metabolism , Iridoid Glucosides/pharmacology , Cell Proliferation/drug effects , A549 Cells , DNA Damage/drug effects , Apoptosis/drug effects , Iridoids/pharmacology , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Cell Survival/drug effects , Lung/drug effects , Lung/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Membrane Potential, Mitochondrial/drug effects , Olive Oil/pharmacology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism
3.
Ecotoxicol Environ Saf ; 281: 116680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964057

ABSTRACT

Inhaling polyhexamethylene guanidine (PHMG) aerosol, a broad-spectrum disinfectant, can lead to severe pulmonary fibrosis. Ferroptosis, a form of programmed cell death triggered by iron-dependent lipid peroxidation, is believed to play a role in the chemical-induced pulmonary injury. This study aimed to investigate the mechanism of ferroptosis in the progression of PHMG-induced pulmonary fibrosis. C57BL/6 J mice and the alveolar type II cell line MLE-12 were used to evaluate the toxicity of PHMG in vivo and in vitro, respectively. The findings indicated that iron deposition was observed in PHMG induced pulmonary fibrosis mouse model and ferroptosis related genes have changed after 8 weeks PHMG exposure. Additionally, there were disturbances in the antioxidant system and mitochondrial damage in MLE-12 cells following a 12-hour treatment with PHMG. Furthermore, the study observed an increase in lipid peroxidation and a decrease in GPX4 activity in MLE-12 cells after exposure to PHMG. Moreover, pretreatment with the ferroptosis inhibitors Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) not only restored the antioxidant system and GPX4 activity but also mitigated lipid peroxidation. Current data exhibit the role of ferroptosis pathway in PHMG-induced pulmonary fibrosis and provide a potential target for future treatment.


Subject(s)
Ferroptosis , Guanidines , Lipid Peroxidation , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , Pulmonary Fibrosis , Animals , Ferroptosis/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Mice , Lipid Peroxidation/drug effects , Cell Line , Guanidines/toxicity , Guanidines/pharmacology , Male , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Cyclohexylamines/pharmacology , Phenylenediamines , Quinoxalines , Spiro Compounds
4.
Respir Res ; 25(1): 276, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010105

ABSTRACT

BACKGROUND: The pathogenesis of acute lung injury (ALI) involves a severe inflammatory response, leading to significant morbidity and mortality. N6-methylation of adenosine (m6A), an abundant mRNA nucleotide modification, plays a crucial role in regulating mRNA metabolism and function. However, the precise impact of m6A modifications on the progression of ALI remains elusive. METHODS: ALI models were induced by either intraperitoneal injection of lipopolysaccharide (LPS) into C57BL/6 mice or the LPS-treated alveolar type II epithelial cells (AECII) in vitro. The viability and proliferation of AECII were assessed using CCK-8 and EdU assays. The whole-body plethysmography was used to record the general respiratory functions. M6A RNA methylation level of AECII after LPS insults was detected, and then the "writer" of m6A modifications was screened. Afterwards, we successfully identified the targets that underwent m6A methylation mediated by METTL3, a methyltransferase-like enzyme. Last, we evaluated the regulatory role of METTL3-medited m6A methylation at phosphatase and tensin homolog (Pten) in ALI, by assessing the proliferation, viability and inflammation of AECII. RESULTS: LPS induced marked damages in respiratory functions and cellular injuries of AECII. The m6A modification level in mRNA and the expression of METTL3, an m6A methyltransferase, exhibited a notable rise in both lung tissues of ALI mice and cultured AECII cells subjected to LPS treatment. METTL3 knockdown or inhibition improved the viability and proliferation of LPS-treated AECII, and also reduced the m6A modification level. In addition, the stability and translation of Pten mRNA were enhanced by METTL3-mediated m6A modification, and over-expression of PTEN reversed the protective effect of METTL3 knockdown in the LPS-treated AECII. CONCLUSIONS: The progression of ALI can be attributed to the elevated levels of METTL3 in AECII, as it promotes the stability and translation of Pten mRNA through m6A modification. This suggests that targeting METTL3 could offer a novel approach for treating ALI.


Subject(s)
Acute Lung Injury , Alveolar Epithelial Cells , Cell Proliferation , Methyltransferases , Mice, Inbred C57BL , PTEN Phosphohydrolase , RNA, Messenger , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Mice , Cell Proliferation/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Male , RNA, Messenger/metabolism , Cell Survival/physiology , Cell Survival/drug effects , Methylation , Adenosine/analogs & derivatives , Adenosine/metabolism , Lipopolysaccharides/toxicity , RNA Stability , Cells, Cultured
5.
Article in Chinese | MEDLINE | ID: mdl-38964903

ABSTRACT

Objective: To investigate the role of connective tissue growth factor (CTGF) and PI3K/Akt signaling pathways in paraquat (PQ) -induced alterations in alveolar epithelial cell mesenchymalization (EMT) . Methods: In February 2023, RLE-6TN cells were divided into 2 groups, which were set as uncontaminated group and contaminated group (200 µmol/L PQ), and cellular EMT alteration, CTGF and PI3K/Akt signaling pathway related molecules expression were detected by cell scratch assay, qRT-PCR and western-blot assay. Using shRNA interference technology to specifically inhibit the expression of CTGF, RLE-6TN cells were divided into four groups: control group, PQ group (200 µmol/L PQ), interference group (transfected with a plasmid with shRNA-CTGF+200 µmol/L PQ), and null-loaded group (transfected with a plasmid with scramble- CTGF+200 µmol/L PQ), qRT-PCR and western blot were used to examine the alteration of the cellular EMT and the expression of molecules related to the activity of PI3K/Akt pathway. The PI3K/Akt signaling pathway was blocked by the PI3K inhibitor LY294002, and the expression of EMT-related molecules in cells of the control group, PQ group (200 µmol/L PQ), and inhibitor group (200 µmol/L PQ+20 µmol/L LY294002) was examined by qRT-PCR and western blot.The t-test was used to compare the differences between the two groups, while the analysis of variance (ANOVA) was applied to compare the differences among multiple groups. For further pairwise comparisons, the Bonferroni method was adopted. Results: The results of cell scratch test showed that compared with the uncontaminated group, RLE-6TN cells in the contaminated group had faster migration rate, lower mRNA and protein expression levels of E-Cadherin, and higher mRNA and protein expression levels of α-SMA, CTGF, PI3K and Akt, with statistical significance (P<0.05). After specific inhibition of CTGF expression, the mRNA and protein expression of CTGF, PI3K, Akt, and α-SMA in the cells of the interference group were significantly lower than that of the PQ group and the null-loaded group (P<0.05/6), whereas that of E-Cadherin was higher than that of the PQ group and the null-loaded group (P<0.05/6). Specifically blocking the PI3K/Akt signaling pathway, the mRNA and protein expression of PI3K, Akt and α-SMA in the cells of the inhibitor group was decreased compared with that of the PQ group (P<0.05/3), while the expression of E-Cadherin was elevated compared with that of the PQ group (P<0.05/3) . Conclusion: CTGF may promote PQ-induced alveolar epithelial cell EMT through activation of the PI3K/Akt signaling pathway. Inhibition of CTGF expression or blockade of PI3K/Akt signaling pathway activity can alleviate the extent of PQ-induced alveolar epithelial cell EMT.


Subject(s)
Connective Tissue Growth Factor , Epithelial-Mesenchymal Transition , Paraquat , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Connective Tissue Growth Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Epithelial-Mesenchymal Transition/drug effects , Paraquat/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Animals , Rats , Cell Line , Morpholines/pharmacology , Chromones/pharmacology , Cadherins/metabolism
6.
Redox Biol ; 74: 103224, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865904

ABSTRACT

BACKGROUND: Silicosis, characterized by interstitial lung inflammation and fibrosis, poses a significant health threat. ATII cells play a crucial role in alveolar epithelial repair and structural integrity maintenance. Inhibiting ATII cell senescence has shown promise in silicosis treatment. However, the mechanism behind silica-induced senescence remains elusive. METHODS: The study employed male C57BL/6 N mice and A549 human alveolar epithelial cells to investigate silicosis and its potential treatment. Silicosis was induced in mice via intratracheal instillation of crystalline silica particles, with honokiol administered intraperitoneally for 14 days. Silica-induced senescence in A549 cells was confirmed, and SIRT3 knockout and overexpression cell lines were generated. Various analyses were conducted, including immunoblotting, qRT-PCR, histology, and transmission electron microscopy. Statistical significance was determined using one-way ANOVA with Tukey's post-hoc test. RESULTS: This study elucidates how silica induces ATII cell senescence, emphasizing mtDNA damage. Notably, honokiol (HKL) emerges as a promising anti-senescence and anti-fibrosis agent, acting through sirt3. honokiol effectively attenuated senescence in ATII cells, dependent on sirt3 expression, while mitigating mtDNA damage. Sirt3, a class III histone deacetylase, regulates senescence and mitochondrial stress. HKL activates sirt3, protecting against pulmonary fibrosis and mitochondrial damage. Additionally, HKL downregulated cGAS expression in senescent ATII cells induced by silica, suggesting sirt3's role as an upstream regulator of the cGAS/STING signaling pathway. Moreover, honokiol treatment inhibited the activation of the NF-κB signaling pathway, associated with reduced oxidative stress and mtDNA damage. Notably, HKL enhanced the activity of SOD2, crucial for mitochondrial function, through sirt3-mediated deacetylation. Additionally, HKL promoted the deacetylation activity of sirt3, further safeguarding mtDNA integrity. CONCLUSIONS: This study uncovers a natural compound, HKL, with significant anti-fibrotic properties through activating sirt3, shedding light on silicosis pathogenesis and treatment avenues.


Subject(s)
Alveolar Epithelial Cells , Biphenyl Compounds , Cellular Senescence , Lignans , Signal Transduction , Silicosis , Sirtuin 3 , Animals , Silicosis/metabolism , Silicosis/drug therapy , Silicosis/pathology , Silicosis/etiology , Sirtuin 3/metabolism , Sirtuin 3/genetics , Cellular Senescence/drug effects , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Biphenyl Compounds/pharmacology , Humans , Lignans/pharmacology , Signal Transduction/drug effects , Male , A549 Cells , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Disease Models, Animal , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , DNA Damage/drug effects , Allyl Compounds , Phenols
7.
Phytomedicine ; 130: 155482, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38824823

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is characterized by acute pulmonary inflammatory infiltration. Alveolar epithelial cells (AECs) release numerous pro-inflammatory cytokines, which result in the pathological changes seen in ALI. Ophiopogonin D (OD), extracted from the roots of Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), reduces inflammation; however, the efficacy of OD in ALI has not been reported and the underlying molecular mechanisms remain unclear. PURPOSE: This study investigated the anti-inflammatory effects of OD, as well as the underlying mechanisms, in AECs and a mouse ALI model. METHODS: Lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were used to stimulate macrophages and A549 cells, and a mouse ALI model was established by intratracheal LPS administration. The anti-inflammatory effects and mechanisms of OD in the TNF-α-induced in vitro inflammation model was evaluated using real-time quantitative polymerase chain reaction qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting, nuclear and cytoplasmic protein extraction, and immunofluorescence. The in vivo anti-inflammatory activity of OD was evaluated using hematoxylin and eosin staining, qPCR, ELISA, and western blotting. RESULTS: The bronchoalveolar lavage fluid and lung tissue of LPS-induced ALI mice exhibited increased TNF-α expression. TNF-α induced a significantly greater pro-inflammatory effect in AECs than LPS. OD reduced inflammation and mitogen-activated protein kinase (MAPK) and transcription factor p65 phosphorylation in vivo and in vitro and promoted signal transducer and activator of transcription 3 (STAT3) phosphorylation and A20 expression, thereby inducing apoptosis signal-regulating kinase 1 (ASK1) proteasomal degradation. CONCLUSION: OD exerts an anti-inflammatory effect by promoting STAT3-dependent A20 expression and ASK1 degradation. OD may therefore have therapeutic value in treating ALI and other TNF-α-related inflammatory diseases.


Subject(s)
Acute Lung Injury , Anti-Inflammatory Agents , Lipopolysaccharides , STAT3 Transcription Factor , Saponins , Spirostans , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Animals , Saponins/pharmacology , Spirostans/pharmacology , Mice , STAT3 Transcription Factor/metabolism , Humans , Anti-Inflammatory Agents/pharmacology , Male , MAP Kinase Kinase Kinase 5/metabolism , A549 Cells , Disease Models, Animal , Tumor Necrosis Factor-alpha/metabolism , RAW 264.7 Cells , Mice, Inbred C57BL , Ophiopogon/chemistry , Inflammation/drug therapy , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Signal Transduction/drug effects , Plant Roots/chemistry
8.
Int Immunopharmacol ; 137: 112426, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38878491

ABSTRACT

BACKGROUND: Azithromycin (AZM) has been proposed as a potential therapeutic drug in acute pulmonary injury due to its immunomodulatory and anti-inflammatory properties. However, its therapeutic mechanism remains not fully understood. METHODS: LPS was used to stimulate MLE-12 cells and RAW264.7 macrophages. Analyses of viability and apoptosis were performed by CCK-8 assay and flow cytometry, respectively. Protein analysis was performed by immunoblotting, and mRNA expression was tested by quantitative PCR. The secretion levels of TNF-α and IL-6 were detected by ELISA. MDA, GSH, ROS and Fe2+ contents were analyzed using assay kits. RESULTS: Administration of AZM or depletion of methyltransferase-like 3 (Mettl3) could attenuate LPS-triggered apoptosis, inflammation and ferroptosis in MLE-12 alveolar cells, as well as enhance M2 polarization of LPS-stimulated RAW264.7 macrophages. In LPS-exposed MLE-12 and RAW264.7 cells, AZM reduced Mettl3 protein expression and inactivated the NF-κB signaling through downregulation of Mettl3. Furthermore, Mettl3 restoration abated AZM-mediated anti-apoptosis, anti-inflammation and anti-ferroptosis effects in LPS-exposed MLE-12 cells and reversed AZM-mediated M2 polarization enhancement of LPS-exposed RAW264.7 macrophages. CONCLUSION: Our study indicates that AZM can promote M2 polarization of LPS-exposed RAW264.7 macrophages and attenuate LPS-triggered injury of MLE-12 alveolar cells by inactivating the Mettl3-mediated NF-κB pathway.


Subject(s)
Apoptosis , Azithromycin , Lipopolysaccharides , Methyltransferases , NF-kappa B , Signal Transduction , Animals , Mice , Methyltransferases/metabolism , NF-kappa B/metabolism , RAW 264.7 Cells , Azithromycin/pharmacology , Signal Transduction/drug effects , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Cell Line
9.
Int Immunopharmacol ; 137: 112488, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38889510

ABSTRACT

Monomethyl fumarate (MMF), a potent anti-inflammatory agent used to treat multiple sclerosis, has demonstrated efficacy in various inflammatory and ischemia/reperfusion (IR) models; however, its impact on IR-induced acute lung injury (ALI) has not been explored. We investigated, for the first time, whether MMF attenuates lung IR injury through inhibition of the GAPDH/Siah1 signaling pathway. Rats were subjected to IR injury using an isolated perfused lung model, and proximity ligation assays were employed to evaluate the presence and distribution of the GAPDH/Siah1 complex. In vitro studies involved pretreating human primary alveolar epithelial cells (HPAECs) with MMF and/or inducing GAPDH overexpression or silencing, followed by exposure to hypoxia-reoxygenation. The findings revealed significantly reduced lung damage indicators, including edema, proinflammatory cytokines, oxidative stress and apoptosis, in MMF-treated rats. Notably, MMF treatment inhibited GAPDH/Siah1 complex formation and nuclear translocation, indicating that disruption of the GAPDH/Siah1 cascade was the primary cause of these improvements. Our in vitro studies on pretreated HPAECs corroborate these in vivo findings, further strengthening this interpretation. Our study results suggest that the protective effects of MMF against lung IR injury may be attributed, at least in part, to its ability to disrupt the GAPDH/Siah1 signaling cascade, thereby attenuating inflammatory and apoptotic responses. Given these encouraging results, MMF has emerged as a promising therapeutic candidate for the management of lung IR injury.


Subject(s)
Acute Lung Injury , Rats, Sprague-Dawley , Reperfusion Injury , Signal Transduction , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Signal Transduction/drug effects , Humans , Male , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Rats , Fumarates/pharmacology , Fumarates/therapeutic use , Apoptosis/drug effects , Lung/pathology , Lung/drug effects , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Oxidative Stress/drug effects , Cells, Cultured , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism
10.
Sci Adv ; 10(24): eado4791, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865465

ABSTRACT

The stemness loss-associated dysregeneration of impaired alveolar type 2 epithelial (AT2) cells abolishes the reversible therapy of idiopathic pulmonary fibrosis (IPF). We here report an inhalable mucus-penetrating lipid nanoparticle (LNP) for codelivering dual mRNAs, promoting realveolarization via restoring AT2 stemness for IPF treatment. Inhalable LNPs were first formulated with dipalmitoylphosphatidylcholine and our in-house-made ionizable lipids for high-efficiency pulmonary mucus penetration and codelivery of dual messenger RNAs (mRNAs), encoding cytochrome b5 reductase 3 and bone morphogenetic protein 4, respectively. After being inhaled in a bleomycin model, LNPs reverses the mitochondrial dysfunction through ameliorating nicotinamide adenine dinucleotide biosynthesis, which inhibits the accelerated senescence of AT2 cells. Concurrently, pathological epithelial remodeling and fibroblast activation induced by impaired AT2 cells are terminated, ultimately prompting alveolar regeneration. Our data demonstrated that the mRNA-LNP system exhibited high protein expression in lung epithelial cells, which markedly extricated the alveolar collapse and prolonged the survival of fibrosis mice, providing a clinically viable strategy against IPF.


Subject(s)
Bleomycin , Mucus , Nanoparticles , Animals , Nanoparticles/chemistry , Mice , Mucus/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Disease Models, Animal , Administration, Inhalation , Lipids/chemistry , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Liposomes
11.
Environ Sci Technol ; 58(28): 12330-12342, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38772857

ABSTRACT

Thorium-232 (Th), the most abundant naturally occurring nuclear fuel, has been identified as a sustainable source of energy. In view of its large-scale utilization and human evidence of lung disorders and carcinogenicity, it is imperative to understand the effect of Th exposure on lung cells. The present study investigated the effect of Th-dioxide (1-100 µg/mL, 24-48 h) on expression of surfactant proteins (SPs) (SP-A, SP-B, SP-C, and SP-D, which are essential to maintain lung's surface tension and host-defense) in human lung cells (WI26 and A549), representative of alveolar cell type-I and type-II, respectively. Results demonstrated the inhibitory effect of Th on transcriptional expression of SP-A, SP-B, and SP-C. However, Th promoted the mRNA expression of SP-D in A549 and reduced its expression in WI26. To a significant extent, the effect of Th on SPs was found to be in accordance with their protein levels. Moreover, Th exposure altered the extracellular release of SP-D/A from A549, which remained unaltered in WI26. Our results suggested the differential role of oxidative stress and ATM and HSP90 signaling in Th-induced alterations of SPs. These effects of Th were found to be consistent in lung tissues of mice exposed to Th aerosols, suggesting a potential role of SPs in Th-associated lung disorders.


Subject(s)
Alveolar Epithelial Cells , Thorium , Humans , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Mice , Animals , A549 Cells , Pulmonary Surfactant-Associated Proteins/metabolism
12.
Biochem Biophys Res Commun ; 718: 150083, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735138

ABSTRACT

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), represent critical clinical syndromes with multifactorial origins, notably stemming from sepsis within intensive care units (ICUs). Despite their high mortality rates, no selective cure is available beside ventilation support. Apoptosis plays a complex and pivotal role in the pathophysiology of acute lung injury. Excessive apoptosis of alveolar epithelial and microvascular endothelial cells can lead to disruption of lung epithelial barrier integrity, impairing the body's ability to exchange blood and gas. At the same time, apoptosis of damaged or dysfunctional cells, including endothelial and epithelial cells, can help maintain tissue integrity and accelerate recovery from organ pro-inflammatory stress. The balance between pro-survival and pro-apoptotic signals in lung injury determines patient outcomes, making the modulation of apoptosis an area of intense research in the quest for more effective therapies. Here we found that protein tyrosine phosphatase receptor type O (PTPRO), a poorly understood receptor-like protein tyrosine phosphatase, is consistently upregulated in multiple tissue types of mice under septic conditions and in the lung alveolar epithelial cells. PTPRO reduction by its selective short-interfering RNA (siRNA) leads to excessive apoptosis in lung alveolar epithelial cells without affecting cell proliferation. Consistently PTPRO overexpression by a DNA construct attenuates apoptotic signaling induced by LPS. These effects of PTPTO on cellular apoptosis are dependent on an ErbB2/PI3K/Akt/NFκB signaling pathway. Here we revealed a novel regulatory pathway of cellular apoptosis by PTPRO in lung alveolar epithelial cells during sepsis.


Subject(s)
Alveolar Epithelial Cells , Apoptosis , Lipopolysaccharides , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Animals , Humans , Male , Mice , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Apoptosis/drug effects , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Sepsis/metabolism , Sepsis/pathology , Signal Transduction/drug effects
13.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709307

ABSTRACT

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Lactic Acid , Lipopolysaccharides , Monocarboxylic Acid Transporters , Pulmonary Fibrosis , Symporters , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/antagonists & inhibitors , Animals , Epithelial-Mesenchymal Transition/drug effects , Lipopolysaccharides/pharmacology , Symporters/metabolism , Symporters/genetics , Symporters/antagonists & inhibitors , Mice , Lactic Acid/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Mice, Inbred C57BL , Cell Line , Male , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/drug effects , Up-Regulation/drug effects
14.
Part Fibre Toxicol ; 21(1): 26, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778339

ABSTRACT

BACKGROUND: During inhalation, airborne particles such as particulate matter ≤ 2.5 µm (PM2.5), can deposit and accumulate on the alveolar epithelial tissue. In vivo studies have shown that fractions of PM2.5 can cross the alveolar epithelium to blood circulation, reaching secondary organs beyond the lungs. However, approaches to quantify the translocation of particles across the alveolar epithelium in vivo and in vitro are still not well established. In this study, methods to assess the translocation of standard diesel exhaust particles (DEPs) across permeable polyethylene terephthalate (PET) inserts at 0.4, 1, and 3 µm pore sizes were first optimized with transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-VIS), and lock-in thermography (LIT), which were then applied to study the translocation of DEPs across human alveolar epithelial type II (A549) cells. A549 cells that grew on the membrane (pore size: 3 µm) in inserts were exposed to DEPs at different concentrations from 0 to 80 µg.mL- 1 ( 0 to 44 µg.cm- 2) for 24 h. After exposure, the basal fraction was collected and then analyzed by combining qualitative (TEM) and quantitative (UV-VIS and LIT) techniques to assess the translocated fraction of the DEPs across the alveolar epithelium in vitro. RESULTS: We could detect the translocated fraction of DEPs across the PET membranes with 3 µm pore sizes and without cells by TEM analysis, and determine the percentage of translocation at approximatively 37% by UV-VIS (LOD: 1.92 µg.mL- 1) and 75% by LIT (LOD: 0.20 µg.cm- 2). In the presence of cells, the percentage of DEPs translocation across the alveolar tissue was determined around 1% at 20 and 40 µg.mL- 1 (11 and 22 µg.cm- 2), and no particles were detected at higher and lower concentrations. Interestingly, simultaneous exposure of A549 cells to DEPs and EDTA can increase the translocation of DEPs in the basal fraction. CONCLUSION: We propose a combination of analytical techniques to assess the translocation of DEPs across lung tissues. Our results reveal a low percentage of translocation of DEPs across alveolar epithelial tissue in vitro and they correspond to in vivo findings. The combination approach can be applied to any traffic-generated particles, thus enabling us to understand their involvement in public health.


Subject(s)
Particulate Matter , Pulmonary Alveoli , Vehicle Emissions , Humans , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , A549 Cells , Particulate Matter/toxicity , Particulate Matter/analysis , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Particle Size , Microscopy, Electron, Transmission , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/toxicity , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Air Pollutants/toxicity , Air Pollutants/analysis
15.
Front Public Health ; 12: 1385387, 2024.
Article in English | MEDLINE | ID: mdl-38799687

ABSTRACT

Background: Nanoplastics, an emerging form of pollution, are easily consumed by organisms and pose a significant threat to biological functions due to their size, expansive surface area, and potent ability to penetrate biological systems. Recent findings indicate an increasing presence of airborne nanoplastics in atmospheric samples, such as polystyrene (PS), raising concerns about potential risks to the human respiratory system. Methods: This study investigates the impact of 800 nm diameter-PS nanoparticles (PS-NPs) on A549, a human lung adenocarcinoma cell line, examining cell viability, redox balance, senescence, apoptosis, and internalization. We also analyzed the expression of hallmark genes of these processes. Results: We demonstrated that PS-NPs of 800 nm in diameter significantly affected cell viability, inducing oxidative stress, cellular senescence, and apoptosis. PS-NPs also penetrated the cytoplasm of A549 cells. These nanoparticles triggered the transcription of genes comprised in the antioxidant network [SOD1 (protein name: superoxide dismutase 1, soluble), SOD2 (protein name: superoxide dismutase 2, mitochondrial), CAT (protein name: catalase), Gpx1 (protein name: glutathione peroxidase 1), and HMOX1 (protein name: heme oxygenase 1)], senescence-associated secretory phenotype [Cdkn1a (protein name: cyclin-dependent kinase inhibitor 1A), IL1A (protein name: interleukin 1 alpha), IL1B (protein name: interleukin 1 beta), IL6 (protein name: interleukin 6), and CXCL8 (protein name: C-X-C motif chemokine ligand 8)], and others involved in the apoptosis modulation [BAX (protein name: Bcl2 associated X, apoptosis regulator), CASP3 (protein name: caspase 3), and BCL2 (protein name: Bcl2, apoptosis regulator)]. Conclusion: Collectively, this investigation underscores the importance of concentration (dose-dependent effect) and exposure duration as pivotal factors in assessing the toxic effects of PS-NPs on alveolar epithelial cells. Greater attention needs to be directed toward comprehending the risks of cancer development associated with air pollution and the ensuing environmental toxicological impacts on humans and other terrestrial mammals.


Subject(s)
Alveolar Epithelial Cells , Apoptosis , Cellular Senescence , Nanoparticles , Oxidative Stress , Polystyrenes , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Polystyrenes/toxicity , Cellular Senescence/drug effects , A549 Cells , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Cell Survival/drug effects , Microplastics/toxicity
16.
Part Fibre Toxicol ; 21(1): 25, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760786

ABSTRACT

Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.


Subject(s)
Air Pollution, Indoor , Cell Survival , Particulate Matter , Humans , Air Pollution, Indoor/adverse effects , Particulate Matter/toxicity , Cell Survival/drug effects , A549 Cells , Cytokines/metabolism , THP-1 Cells , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Air Pollutants/toxicity , Inflammation/chemically induced , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology
17.
Theranostics ; 14(7): 2687-2705, 2024.
Article in English | MEDLINE | ID: mdl-38773980

ABSTRACT

Rationale: Pulmonary fibrosis is a chronic progressive lung disease with limited therapeutic options. We previously revealed that there is iron deposition in alveolar epithelial type II cell (AECII) in pulmonary fibrosis, which can be prevented by the iron chelator deferoxamine. However, iron in the cytoplasm and the mitochondria has two relatively independent roles and regulatory systems. In this study, we aimed to investigate the role of mitochondrial iron deposition in AECII injury and pulmonary fibrosis, and to find potential therapeutic strategies. Methods: BLM-treated mice, MLE-12 cells, and primary AECII were employed to establish the mouse pulmonary fibrosis model and epithelial cells injury model, respectively. Mitochondrial transplantation, siRNA and plasmid transfection, western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), polymerase chain reaction (PCR), immunofluorescence, immunoprecipitation (IP), MitoSOX staining, JC-1 staining, oxygen consumption rate (OCR) measurement, and Cell Counting Kit-8 (CCK8) assay were utilized to elucidate the role of mitochondrial iron deposition in cell and lung fibrosis and determine its mechanism. Results: This study showed that prominent mitochondrial iron deposition occurs within AECII in bleomycin (BLM)-induced pulmonary fibrosis mouse model and in BLM-treated MLE-12 epithelial cells. Further, the study revealed that healthy mitochondria rescue BLM-damaged AECII mitochondrial iron deposition and cell damage loss. Mitoferrin-2 (MFRN2) is the main transporter that regulates mitochondrial iron metabolism by transferring cytosolic iron into mitochondria, which is upregulated in BLM-treated MLE-12 epithelial cells. Direct overexpression of MFRN2 causes mitochondrial iron deposition and cell damage. In this study, decreased ubiquitination of the ubiquitin ligase F-box/LRR-repeat protein 5 (FBXL5) degraded iron-reactive element-binding protein 2 (IREB2) and promoted MFRN2 expression as well as mitochondrial iron deposition in damaged AECII. Activation of the prostaglandin E2 receptor EP4 subtype (EP4) receptor signaling pathway counteracted mitochondrial iron deposition by downregulating IREB2-MFRN2 signaling through upregulation of FBXL5. This intervention not only reduced mitochondrial iron content but also preserved mitochondrial function and protected against AECII damage after BLM treatment. Conclusion: Our findings highlight the unexplored roles, mechanisms, and regulatory approaches of abnormal mitochondrial iron metabolism of AECII in pulmonary fibrosis. Therefore, this study deepens the understanding of the mechanisms underlying pulmonary fibrosis and offers a promising strategy for developing effective therapeutic interventions using the EP4 receptor activator.


Subject(s)
Alveolar Epithelial Cells , Bleomycin , Disease Models, Animal , Iron , Mitochondria , Pulmonary Fibrosis , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Mice , Iron/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Mice, Inbred C57BL , Cell Line , Male
18.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38695251

ABSTRACT

Although exogenous calcitonin gene­related peptide (CGRP) protects against hyperoxia­induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia­induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit­8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl­2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non­selective currents through TRPV1 channels. The CGRP­induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia­induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.


Subject(s)
Alveolar Epithelial Cells , Calcitonin Gene-Related Peptide , Hyperoxia , Lung Injury , Humans , A549 Cells , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Apoptosis/drug effects , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Cell Proliferation/drug effects , Hyperoxia/metabolism , Hyperoxia/pathology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Signal Transduction/drug effects , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Lung Injury/metabolism , Lung Injury/pathology
19.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791361

ABSTRACT

Newborn infants face a rapid surge of oxygen and a more protracted rise of unconjugated bilirubin after birth. Bilirubin has a strong antioxidant capacity by scavenging free radicals, but it also exerts direct toxicity. This study investigates whether cultured rat alveolar epithelial cells type II (AEC II) react differently to bilirubin under different oxygen concentrations. The toxic threshold concentration of bilirubin was narrowed down by means of a cell viability test. Subsequent analyses of bilirubin effects under 5% oxygen and 80% oxygen compared to 21% oxygen, as well as pretreatment with bilirubin after 4 h and 24 h of incubation, were performed to determine the induction of apoptosis and the gene expression of associated transcripts of cell death, proliferation, and redox-sensitive transcription factors. Oxidative stress led to an increased rate of cell death and induced transcripts of redox-sensitive signaling pathways. At a non-cytotoxic concentration of 400 nm, bilirubin attenuated oxidative stress-induced responses and possibly mediated cellular antioxidant defense by influencing Nrf2/Hif1α- and NFκB-mediated signaling pathways. In conclusion, the study demonstrates that rat AEC II cells are protected from oxidative stress-induced impairment by low-dose bilirubin.


Subject(s)
Alveolar Epithelial Cells , Bilirubin , Oxidative Stress , Oxidative Stress/drug effects , Animals , Bilirubin/pharmacology , Bilirubin/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Rats , Cell Survival/drug effects , Apoptosis/drug effects , Antioxidants/pharmacology , Signal Transduction/drug effects , NF-E2-Related Factor 2/metabolism , Cells, Cultured , NF-kappa B/metabolism
20.
Ecotoxicol Environ Saf ; 278: 116412, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38691879

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is an industrial chemical that is commonly found in daily consumer products. BPA is reportedly associated with lung diseases. However, the impact of BPA on pulmonary fibrosis (PF) and its possible mechanisms of action both remain unclear. METHODS: A PF mouse model was induced by bleomycin (BLM). Mouse lung fibroblasts (MLG 2908) and mouse alveolar epithelial cells (MLE-12) were treated with BPA to establish a PF cell model. Tissue staining, CCK-8 assays, western blot experiments and relevant indicator kits were used to detect and evaluate the effect of BPA on PF. RESULTS: BPA dose-dependently promoted oxidative stress and induced ferroptosis, leading to PF. The ferroptosis inhibitor Fer-1 partly attenuated the effect of BPA. In addition, among the two main cell types associated with the progression of PF, MLE-12 cells are more sensitive to BPA than are MLG 2908 cells, and BPA induces ferroptosis in MLE-12 cells. Furthermore, BPA promoted autophagy-mediated ferroptosis by activating the AMPK/mTOR signaling pathway, thereby exacerbating the progression of PF. The autophagy inhibitor CQ1 partly attenuated the effect of BPA. CONCLUSION: BPA promotes the progression of PF by promoting autophagy-dependent ferroptosis in alveolar epithelial cells, which provides a new theoretical basis for understanding BPA-induced PF.


Subject(s)
Alveolar Epithelial Cells , Autophagy , Benzhydryl Compounds , Ferroptosis , Phenols , Pulmonary Fibrosis , Animals , Ferroptosis/drug effects , Phenols/toxicity , Benzhydryl Compounds/toxicity , Mice , Autophagy/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Bleomycin/toxicity , Cell Line , Mice, Inbred C57BL , Oxidative Stress/drug effects , Male , Disease Models, Animal , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...