Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.555
Filter
2.
J Transl Med ; 22(1): 430, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715084

ABSTRACT

Passive immunotherapy with specific antibodies targeting Amyloid ß (Aß) peptide or tubulin-associated unit (tau) protein has emerged as a promising therapeutic approach in Alzheimer's disease (AD). However, in a recent phase III clinical study, Sperling et al. (N Engl J Med 10.1056/NEJMoa2305032, 2023) reported that solanezumab, a monoclonal antibody targeting Aß peptide, failed to slow cognitive decline in AD patients. Previously, three other anti-Aß antibodies, bapineuzumab, crenezumab, and gantenerumab, have also failed to show similar beneficial effects. In addition, three humanized antibodies targeting tau protein failed in their phase II trials. However, other anti-Aß antibodies, such as lecanemab (a humanized mAb binds to soluble Aß protofibrils), donanemab (a humanized mAb binds to insoluble, N-terminal truncated form of Aß peptides) and aducanumab (a human mAb binds to the aggregated form of Aß), have been shown to slow the decline of cognitive functions in early stage AD patients. The specific targets used in passive immunotherapy in these clinical trials may explain the divergent clinical outcomes. There are several challenges and limitations of passive immunotherapy using anti-Aß antibodies and long term longitudinal studies are needed to assess their efficacy, side effects and cost effectiveness in a wider spectrum of subjects, from pre-dementia to more advanced dementia. A combination therapeutic approach using both anti-Aß antibodies and other pharmaceutical agents should also be explored.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/therapy , Alzheimer Disease/immunology , Immunization, Passive , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Antibodies, Monoclonal/therapeutic use , Animals
3.
Front Immunol ; 15: 1343900, 2024.
Article in English | MEDLINE | ID: mdl-38720902

ABSTRACT

Alzheimer's disease has an increasing prevalence in the population world-wide, yet current diagnostic methods based on recommended biomarkers are only available in specialized clinics. Due to these circumstances, Alzheimer's disease is usually diagnosed late, which contrasts with the currently available treatment options that are only effective for patients at an early stage. Blood-based biomarkers could fill in the gap of easily accessible and low-cost methods for early diagnosis of the disease. In particular, immune-based blood-biomarkers might be a promising option, given the recently discovered cross-talk of immune cells of the central nervous system with those in the peripheral immune system. Here, we give a background on recent advances in research on brain-immune system cross-talk in Alzheimer's disease and review machine learning approaches, which can combine multiple biomarkers with further information (e.g. age, sex, APOE genotype) into predictive models supporting an earlier diagnosis. In addition, mechanistic modeling approaches, such as agent-based modeling open the possibility to model and analyze cell dynamics over time. This review aims to provide an overview of the current state of immune-system related blood-based biomarkers and their potential for the early diagnosis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Biomarkers , Early Diagnosis , Alzheimer Disease/diagnosis , Alzheimer Disease/immunology , Alzheimer Disease/blood , Humans , Biomarkers/blood , Machine Learning , Animals
4.
Rev Med Virol ; 34(3): e2550, 2024 May.
Article in English | MEDLINE | ID: mdl-38801246

ABSTRACT

Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aß) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.


Subject(s)
Alzheimer Disease , Herpesviridae Infections , Herpesviridae , Humans , Alzheimer Disease/virology , Alzheimer Disease/immunology , Herpesviridae/pathogenicity , Herpesviridae/genetics , Herpesviridae/physiology , Herpesviridae Infections/virology , Herpesviridae Infections/immunology , Amyloid beta-Peptides/metabolism , Animals
5.
J Neuroinflammation ; 21(1): 129, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745337

ABSTRACT

Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.


Subject(s)
Adaptive Immunity , Amyloidosis , Brain , Diet, Western , Disease Models, Animal , Mice, Transgenic , Animals , Mice , Brain/metabolism , Brain/pathology , Brain/diagnostic imaging , Brain/immunology , Amyloidosis/metabolism , Amyloidosis/pathology , Amyloidosis/immunology , Diet, Western/adverse effects , Mice, Inbred C57BL , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/immunology
6.
Ann Hum Biol ; 51(1): 2342531, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38771661

ABSTRACT

BACKGROUND: Cuproptosis, a type of cell death involving copper ion accumulation and oxidative stress, has been implicated in the development of Alzheimer's disease (AD). AIM: This study aimed to explore the potential mechanisms and roles of cuproptosis-related genes (CRGs), long non-coding RNAs (lncRNAs), and immune cells in the development of cuproptosis in AD. SUBJECTS AND METHODS: Gene expression profiles of AD were acquired from the Gene Expression Omnibus (GEO) database, and differential analysis was conducted to identify CRGs. Random Forest (RF) modelling was employed to select the most crucial CRGs, which were subsequently validated in the test set. A nomogram model was created to predict AD risk and categorise AD subtypes based on the identified CRGs. A lncRNA-related ceRNA network was built, and immune cell infiltration analysis was conducted. RESULTS: Twelve differentially expressed CRGs were identified in the AD dataset. The RF model pinpointed the five most critical CRGs, which were validated in the test set with an AUC of 0.90. A lncRNA-related ceRNA network was developed, and immune cell infiltration analysis revealed high levels of M1 macrophages and mast cells, along with low levels of memory B cells in AD samples. Correlation analysis unveiled associations between CRGs, lncRNAs, and differentially infiltrating immune cells. CONCLUSION: This research offers insights into the potential mechanisms and roles of CRGs, lncRNAs, and immune cells in the development of cuproptosis in AD. The identified CRGs and lncRNAs may serve as potential therapeutic targets for AD, and the nomogram model may assist in early AD diagnosis and subtyping.


Subject(s)
Alzheimer Disease , RNA, Long Noncoding , Alzheimer Disease/genetics , Alzheimer Disease/immunology , RNA, Long Noncoding/genetics , Humans , Copper
7.
Acta Neuropathol ; 147(1): 87, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761203

ABSTRACT

Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.


Subject(s)
Antibodies , Blotting, Western , Brain , Immunohistochemistry , tau Proteins , tau Proteins/metabolism , tau Proteins/immunology , Humans , Immunohistochemistry/methods , Antibodies/immunology , Brain/metabolism , Brain/pathology , Phosphorylation , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Reproducibility of Results
8.
Nat Commun ; 15(1): 4285, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806455

ABSTRACT

Alternative splicing events are a major causal mechanism for complex traits, but they have been understudied due to the limitation of short-read sequencing. Here, we generate a full-length isoform annotation of human immune cells from an individual by long-read sequencing for 29 cell subsets. This contains a number of unannotated transcripts and isoforms such as a read-through transcript of TOMM40-APOE in the Alzheimer's disease locus. We profile characteristics of isoforms and show that repetitive elements significantly explain the diversity of unannotated isoforms, providing insight into the human genome evolution. In addition, some of the isoforms are expressed in a cell-type specific manner, whose alternative 3'-UTRs usage contributes to their specificity. Further, we identify disease-associated isoforms by isoform switch analysis and by integration of several quantitative trait loci analyses with genome-wide association study data. Our findings will promote the elucidation of the mechanism of complex diseases via alternative splicing.


Subject(s)
Alternative Splicing , Genome-Wide Association Study , Protein Isoforms , Quantitative Trait Loci , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , 3' Untranslated Regions/genetics , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Genome, Human , Mitochondrial Precursor Protein Import Complex Proteins
9.
Sci Adv ; 10(22): eadl1123, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809977

ABSTRACT

Immunosenescence contributes to systematic aging and plays a role in the pathogenesis of Alzheimer's disease (AD). Therefore, the objective of this study was to investigate the potential of immune rejuvenation as a therapeutic strategy for AD. To achieve this, the immune systems of aged APP/PS1 mice were rejuvenated through young bone marrow transplantation (BMT). Single-cell RNA sequencing revealed that young BMT restored the expression of aging- and AD-related genes in multiple cell types within blood immune cells. The level of circulating senescence-associated secretory phenotype proteins was decreased following young BMT. Notably, young BMT resulted in a significant reduction in cerebral Aß plaque burden, neuronal degeneration, neuroinflammation, and improvement of behavioral deficits in aged APP/PS1 mice. The ameliorated cerebral amyloidosis was associated with an enhanced Aß clearance of peripheral monocytes. In conclusion, our study provides evidence that immune system rejuvenation represents a promising therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Rejuvenation , Animals , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Mice , Mice, Transgenic , Bone Marrow Transplantation , Behavior, Animal , Amyloid beta-Peptides/metabolism , Monocytes/immunology , Monocytes/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Aging/immunology , Humans
10.
Sci Rep ; 14(1): 10868, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740836

ABSTRACT

Therapeutic antibodies have been developed to target amyloid-beta (Aß), and some of these slow the progression of Alzheimer's disease (AD). However, they can also cause adverse events known as amyloid-related imaging abnormalities with edema (ARIA-E). We investigated therapeutic Aß antibody binding to cerebral amyloid angiopathy (CAA) fibrils isolated from human leptomeningeal tissue to study whether this related to the ARIA-E frequencies previously reported by clinical trials. The binding of Aß antibodies to CAA Aß fibrils was evaluated in vitro using immunoprecipitation, surface plasmon resonance, and direct binding assay. Marked differences in Aß antibody binding to CAA fibrils were observed. Solanezumab and crenezumab showed negligible CAA fibril binding and these antibodies have no reported ARIA-E cases. Lecanemab showed a low binding to CAA fibrils, consistent with its relatively low ARIA-E frequency of 12.6%, while aducanumab, bapineuzumab, and gantenerumab all showed higher binding to CAA fibrils and substantially higher ARIA-E frequencies (25-35%). An ARIA-E frequency of 24% was reported for donanemab, and its binding to CAA fibrils correlated with the amount of pyroglutamate-modified Aß present. The findings of this study support the proposal that Aß antibody-CAA interactions may relate to the ARIA-E frequency observed in patients treated with Aß-based immunotherapies.


Subject(s)
Amyloid beta-Peptides , Cerebral Amyloid Angiopathy , Humans , Cerebral Amyloid Angiopathy/immunology , Cerebral Amyloid Angiopathy/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Protein Binding , Amyloid/metabolism , Amyloid/immunology , Surface Plasmon Resonance
11.
Int Immunopharmacol ; 135: 112328, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38796962

ABSTRACT

Alzheimer's disease (AD), as a neurodegenerative disorder, distresses the elderly in large numbers and is characterized by ß-amyloid (Aß) accumulation, elevated tau protein levels, and chronic inflammation. The brain's immune system is aided by microglia and astrocytes, which produce chemokines and cytokines. Nevertheless, dysregulated expression can cause hyperinflammation and lead to neurodegeneration. CCL2/CCR2 chemokines are implicated in neurodegenerative diseases exacerbating. Inflicting damage on nerves and central nervous system (CNS) cells is the function of this axis, which recruits and migrates immune cells, including monocytes and macrophages. It has been shown that targeting the CCL2/CCR2 axis may be a therapeutic option for inflammatory diseases. Using the current knowledge about the involvement of the CCL2/CCR2 axis in the immunopathogenesis of AD, this comprehensive review synthesizes existing information. It also explores potential therapeutic options, including modulation of the CCL2/CCR2 axis as a possible strategy in AD.


Subject(s)
Alzheimer Disease , Chemokine CCL2 , Receptors, CCR2 , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/immunology , Humans , Receptors, CCR2/metabolism , Chemokine CCL2/metabolism , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Brain/metabolism , Brain/immunology
12.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1571-1583, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783817

ABSTRACT

The antibodies to the microtubule-associated protein tau play a role in basic and clinical studies of Alzheimer's disease (AD) and other tauopathies. With the recombinant human tau441 as the immunogen, the hybridoma cell strains secreting the anti-human tau N-terminal domain (NTD-tau) monoclonal antibodies were generated by cell fusion and screened by limiting dilution. The purified monoclonal antibodies were obtained by inducing the mouse ascites and affinity chromatography. The sensitivity and specificity of the monoclonal antibodies were examined by indirect ELISA and Western blotting, respectively. A double antibody sandwich ELISA method for detecting human tau protein was established and optimized. The results showed that the positive cloning rate of hybridoma cells was 83.6%. A stable cell line producing ZD8F7 antibodies was established, and the antibody titer in the supernatant of the cell line was 1:16 000. The antibody titer in the ascitic fluid was higher than 1:256 000; and the titer of purified ZD8F7 monoclonal antibodies was higher than 1:128 000. The epitope analysis showed that the ZD8F7 antibody recognized tau21-37 amino acid in the N-terminal domain. The Western blotting results showed that the ZD8F7 antibody recognized the recombinant human tau protein of 50-70 kDa and the human tau protein of 50 kDa in the brain tissue of transgenic AD model mice (APP/PS1/tau). With ZD8F7 as a capture antibody, a quantitative detection method for human tau protein was established, which showed a linear range of 7.8-500.0 pg/mL and could identify human tau protein in the brain tissue of AD transgenic mice and human plasma but not recognize the mouse tau protein. In conclusion, the human NTD-tau-specific monoclonal antibody and the double antibody sandwich ELISA method established in this study are highly sensitive and can serve as a powerful tool for the detection of tau protein in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal , tau Proteins , tau Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Humans , Mice , Alzheimer Disease/immunology , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Enzyme-Linked Immunosorbent Assay , Recombinant Proteins/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Hybridomas/immunology , Mice, Inbred BALB C , Antibody Specificity , Protein Domains , Epitopes/immunology
14.
Mol Neurodegener ; 19(1): 38, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658964

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS: We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS: We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS: Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.


Subject(s)
Adaptive Immunity , Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Humans , Alzheimer Disease/immunology , Alzheimer Disease/cerebrospinal fluid , Aged , Male , Cognitive Dysfunction/immunology , Female , Adaptive Immunity/immunology , Biomarkers/cerebrospinal fluid , Aged, 80 and over , Middle Aged
15.
J Neuroimmunol ; 390: 578342, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38640827

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aß) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aß plaque formation, as well as their impact on morphological and functional diversity of Aß plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.


Subject(s)
Alzheimer Disease , Microglia , Plaque, Amyloid , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Humans , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Microglia/metabolism , Microglia/pathology , Animals , Amyloid beta-Peptides/metabolism
16.
Neurochem Int ; 176: 105737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599243

ABSTRACT

BACKGROUND: Evidence from previous studies indicates that neuroinflammation contributes to the onset of Alzheimer's Disease (AD). Moreover, cellular dysfunction is induced by impaired signaling of neurotransmitters. This study aimed to explore the correlation between cellular immune dysfunction and neurotransmitter changes through cranial Magnetic Resonance Spectroscopy (MRS) in AD patients. METHODS: Here, 32 AD, 40 Vascular Dementia (VD), and 35 Non-Dementia Elderly Control (NDE) cases were enrolled. Flow cytometry was performed to characterize lymphocyte subsets in plasma samples. The IL-1ß and Caspase-1 levels were detected by ELISA. The NLRP3 expression level was measured by Western Blot (WB). The equivalence of N-acetylaspartate (NAA), Creatine (Cr), Choline (Cho), and Inositol (MI) in bilateral hippocampi of patients was examined by MRS. The association of NAA/Cr or MI/Cr ratios with the proportion of T lymphocyte subsets or NK cell subsets was determined through single-factor correlation analysis. RESULTS: The proportion of T lymphocyte subsets was significantly lower in the AD group than in the NDE group (P < 0.01). On the other hand, the Caspase-1, NLRP3, and IL-1ß protein expression levels were significantly higher in the AD group than in the other groups. Further analysis showed that the NAA/Cr ratio was lower in the AD group than in the NDE group. Additionally, a significant positive correlation was found between the NAA/Cr ratio and the MMSE score (r = 0.81, P < 0.01). Moreover, a significant positive correlation was observed between the NAA/Cr and T lymphocyte ratios. The NAA/Cr ratio was significantly negatively correlated with the proportion of NK cells in the blood (r = ï¼0.83, P < 0.01). A significant negative correlation was also recorded between the MI/Cr and T cell ratios in blood samples. CONCLUSIONS: Impaired cellular immune dysfunction in AD patients was significantly correlated with abnormal MRS. Neuroimmune dysfunction may contribute to the pathogenesis of AD and alter the metabolism of neurotransmitters such as aspartic acid and MI in the brains of AD patients. TRIAL REGISTRATION: Not applicable.


Subject(s)
Alzheimer Disease , Magnetic Resonance Spectroscopy , Humans , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Male , Female , Aged , Magnetic Resonance Spectroscopy/methods , Immunity, Cellular , Aged, 80 and over , Middle Aged , Choline/metabolism
17.
Neurobiol Dis ; 196: 106511, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670277

ABSTRACT

Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.


Subject(s)
Alzheimer Disease , Diet, High-Fat , Disease Models, Animal , Mice, Transgenic , Tumor Necrosis Factor-alpha , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Mice , Male , Female , Tumor Necrosis Factor-alpha/metabolism , Diet, High-Fat/adverse effects , Signal Transduction/physiology , Sex Characteristics , Inflammation/metabolism
18.
Neuropharmacology ; 252: 109941, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38565393

ABSTRACT

Every year, 10 million people develop dementia, the most common of which is Alzheimer's disease (AD). To date, there is no way to prevent cognitive decline and therapies are limited. This review provides a neuroimmunological perspective on the progression of AD, and discusses the immune-targeted therapies that are in preclinical and clinical trials that may impact the development of this disease. Specifically, we look to the role of the NLRP3 inflammasome, its triggers in the brain and how its activation can contribute to the progression of dementia. We summarise the range of inhibitors targeting the NLRP3 inflammasome and its downstream pathways that are under investigation, and discuss future therapeutic perspectives for this devastating condition.


Subject(s)
Alzheimer Disease , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/drug therapy , Brain/metabolism , Brain/immunology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Signal Transduction/physiology , Signal Transduction/drug effects
19.
Trends Immunol ; 45(5): 346-357, 2024 May.
Article in English | MEDLINE | ID: mdl-38632001

ABSTRACT

Mammalian brain border-associated macrophages (BAMs) are strategically positioned to support vital properties and processes: for example, the composition of the brain's perivascular extracellular matrix and cerebrospinal fluid flow via the glymphatic pathway. BAMs also effectively restrict the spread of infectious microbes into the brain. However, while fighting infections, BAMs sustain long-term transcriptomic changes and can be replaced by inflammatory monocytes, potentially leading to a gradual loss of their beneficial homeostatic functions. We hypothesize that by expediting the deterioration of BAMs, multiple infection episodes might be associated with accelerated brain aging and the putative development of neurodegenerative diseases. Our viewpoint is supported by recent studies suggesting that rejuvenating aged BAMs, and counterbalancing their detrimental inflammatory signatures during infections, might hold promise in treating aging-related neurological disorders, including Alzheimer's disease (AD).


Subject(s)
Aging , Alzheimer Disease , Brain , Macrophages , Alzheimer Disease/immunology , Humans , Aging/immunology , Animals , Macrophages/immunology , Brain/immunology , Brain/pathology , Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...