Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (68)2012 Oct 17.
Article in English | MEDLINE | ID: mdl-23117695

ABSTRACT

Classical methods for studying neuronal circuits are fairly low throughput. Transsynaptic viruses, particularly the pseudorabies (PRV) and rabies virus (RABV), and more recently vesicular stomatitis virus (VSV), for studying circuitry, is becoming increasingly popular. These higher throughput methods use viruses that transmit between neurons in either the anterograde or retrograde direction. Recently, a modified RABV for monosynaptic retrograde tracing was developed. (Figure 1A). In this method, the glycoprotein (G) gene is deleted from the viral genome, and resupplied only in targeted neurons. Infection specificity is achieved by substituting a chimeric G, composed of the extracellular domain of the ASLV-A glycoprotein and the cytoplasmic domain of the RABV-G (A/RG), for the normal RABV-G(1). This chimeric G specifically infects cells expressing the TVA receptor(1). The gene encoding TVA can been delivered by various methods(2-8). Following RABV-G infection of a TVA-expressing neuron, the RABV can transmit to other, synaptically connected neurons in a retrograde direction by nature of its own G which was co-delivered with the TVA receptor. This technique labels a relatively large number of inputs (5-10%)(2) onto a defined cell type, providing a sampling of all of the inputs onto a defined starter cell type. We recently modified this technique to use VSV as a transsynaptic tracer(9). VSV has several advantages, including the rapidity of gene expression. Here we detail a new viral tracing system using VSV useful for probing microcircuitry with increased resolution. While the original published strategies by Wickersham et al.(4) and Beier et al.(9) permit labeling of any neurons that project onto initially-infected TVA-expressing-cells, here VSV was engineered to transmit only to TVA-expressing cells (Figure 1B). The virus is first pseudotyped with RABV-G to permit infection of neurons downstream of TVA-expressing neurons. After infecting this first population of cells, the virus released can only infect TVA-expressing cells. Because the transsynaptic viral spread is limited to TVA-expressing cells, presence of absence of connectivity from defined cell types can be explored with high resolution. An experimental flow chart of these experiments is shown in Figure 2. Here we show a model circuit, that of direction-selectivity in the mouse retina. We examine the connectivity of starburst amacrine cells (SACs) to retinal ganglion cells (RGCs).


Subject(s)
Neural Pathways/physiology , Neural Pathways/virology , Vesiculovirus/physiology , Amacrine Cells/physiology , Amacrine Cells/virology , Animals , Mice , Neurons/physiology , Neurons/virology , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/virology , Synapses/physiology , Synapses/virology , Vesiculovirus/genetics
2.
Curr Biol ; 17(11): 981-8, 2007 Jun 05.
Article in English | MEDLINE | ID: mdl-17524644

ABSTRACT

Intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) control important physiological processes, including the circadian rhythm, the pupillary reflex, and the suppression of locomotor behavior (reviewed in [1]). ipRGCs are also activated by classical photoreceptors, the rods and cones, through local retinal circuits [2, 3]. ipRGCs can be transsynaptically labeled through the pupillary-reflex circuit with the derivatives of the Bartha strain of the alphaherpesvirus pseudorabies virus(PRV) [4, 5] that express GFP [6-12]. Bartha-strain derivatives spread only in the retrograde direction [13]. There is evidence that infected cells function normally for a while during GFP expression [7]. Here we combine transsynaptic PRV labeling, two-photon laser microscopy, and electrophysiological techniques to trace the local circuit of different ipRGC subtypes in the mouse retina and record light-evoked activity from the transsynaptically labeled ganglion cells. First, we show that ipRGCs are connected by monostratified amacrine cells that provide strong inhibition from classical-photoreceptor-driven circuits. Second, we show evidence that dopaminergic interplexiform cells are synaptically connected to ipRGCs. The latter finding provides a circuitry link between light-dark adaptation and ipRGC function.


Subject(s)
Retinal Ganglion Cells/physiology , Rod Opsins/metabolism , Visual Pathways/physiology , Amacrine Cells/physiology , Amacrine Cells/virology , Animals , Green Fluorescent Proteins/analysis , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/metabolism , Mice , Retinal Ganglion Cells/radiation effects , Retinal Ganglion Cells/virology , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...