Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791475

ABSTRACT

Amaranth species are C4 plants that are rich in betalains, and they are tolerant to salinity stress. A small family of plant-specific TCP transcription factors are involved in the response to salt stress. However, it has not been investigated whether amaranth TCP1 is involved in salt stress. We elucidated that the growth and physiology of amaranth were affected by salt concentrations of 50-200 mmol·L-1 NaCl. The data showed that shoot and root growth was inhibited at 200 mmol·L-1, while it was promoted at 50 mmol·L-1. Meanwhile, the plants also showed physiological responses, which indicated salt-induced injuries and adaptation to the salt stress. Moreover, AtrTCP1 promoted Arabidopsis seed germination. The germination rate of wild-type (WT) and 35S::AtrTCP1-GUS Arabidopsis seeds reached around 92% by the seventh day and 94.5% by the second day under normal conditions, respectively. With 150 mmol·L-1 NaCl treatment, the germination rate of the WT and 35S::AtrTCP1-GUS plant seeds was 27.0% by the seventh day and 93.0% by the fourth day, respectively. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when they grew 21.8 leaves after 16.2 days of treatment, which was earlier than the WT plants. The transformed Arabidopsis plants flowered early to resist salt stress. These results reveal amaranth's growth and physiological responses to salt stress, and provide valuable information on the AtrTCP1 gene.


Subject(s)
Amaranthus , Arabidopsis , Gene Expression Regulation, Plant , Germination , Plant Proteins , Salt Stress , Gene Expression Regulation, Plant/drug effects , Amaranthus/drug effects , Amaranthus/genetics , Amaranthus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Germination/drug effects , Germination/genetics , Arabidopsis/genetics , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Seeds/drug effects , Seeds/growth & development , Seeds/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology
2.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644487

ABSTRACT

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Subject(s)
Amaranthus , Charcoal , Medicago sativa , Soil , Zea mays , Amaranthus/drug effects , Amaranthus/growth & development , Amaranthus/physiology , Zea mays/growth & development , Zea mays/drug effects , Zea mays/physiology , Medicago sativa/drug effects , Medicago sativa/growth & development , Medicago sativa/physiology , Soil/chemistry , Salinity , Plant Roots/growth & development , Plant Roots/drug effects , Photosynthesis/drug effects
3.
J Agric Food Chem ; 72(18): 10218-10226, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38666644

ABSTRACT

In this work, a series of pyrrolidinone-containing 2-phenylpyridine derivatives were synthesized and evaluated as novel protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) inhibitors for herbicide development. At 150 g ai/ha, compounds 4d, 4f, and 4l can inhibit the grassy weeds of Echinochloa crus-galli (EC), Digitaria sanguinalis (DS), and Lolium perenne (LP) with a range of 60 to 90%. Remarkably, at 9.375 g ai/ha, these compounds showed 100% inhibition effects against broadleaf weeds of Amaranthus retroflexus (AR) and Abutilon theophrasti (AT), which were comparable to the performance of the commercial herbicides flumioxazin (FLU) and saflufenacil (SAF) and better than that of acifluorfen (ACI). Molecular docking analyses revealed significant hydrogen bonding and π-π stacking interactions between compounds 4d and 4l with Arg98, Asn67, and Phe392, respectively. Additionally, representative compounds were chosen for in vivo assessment of PPO inhibitory activity, with compounds 4d, 4f, and 4l demonstrating excellent inhibitory effects. Notably, compounds 4d and 4l induced the accumulation of reactive oxygen species (ROS) and a reduction in the chlorophyll (Chl) content. Consequently, compounds 4d, 4f, and 4l are promising lead candidates for the development of novel PPO herbicides.


Subject(s)
Drug Design , Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Plant Weeds , Protoporphyrinogen Oxidase , Pyrrolidinones , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/chemical synthesis , Plant Weeds/drug effects , Plant Weeds/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Pyrrolidinones/chemical synthesis , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Amaranthus/drug effects , Amaranthus/chemistry , Echinochloa/drug effects , Echinochloa/enzymology , Digitaria/drug effects , Digitaria/enzymology , Digitaria/chemistry , Lolium/drug effects , Lolium/enzymology , Molecular Structure
4.
Pestic Biochem Physiol ; 201: 105908, 2024 May.
Article in English | MEDLINE | ID: mdl-38685229

ABSTRACT

The inclination toward natural products has led to the onset of the discovery of new bioactive metabolites that could be targeted for specific therapeutic or agronomic applications. Despite increasing knowledge coming to light of plant-derived materials as leads for new herbicides, relatively little is known about the mode of action on herbicide-resistant weeds. Cyanamide (CA) is a naturally occurring herbicide synthesized by hairy vetch (Vicia villosa Roth.). However, it has not been experimentally verified whether CA suppresses target plants via sustained discharge at low concentrations, as is often the case with most plant-derived materials. This study aimed to detect the toxicity and the mode of action of CA to alfalfa (Medicago sativa L.) and redroot pigweed (Amaranthus retroflexus L.). The toxicity of CA toward the alfalfa and redroot pigweed by three different exposure patterns was compared: low-concentration repeated exposure with 0.3 g/L CA (LRE), high-concentration single exposure with 1.2 g/L CA (HSE), and distilled water spray as control. The results showed that CA had a stronger inhibitory effect on redroot pigweed growth compared to alfalfa under both LRE and HSE exposure modes, with leaves gradually turning yellow and finally wilting. Beyond that, field trials were conducted to corroborate the toxicity of CA to alfalfa and redroot pigweed. The results have also shown that CA could inhibit the growth of redroot pigweed without significant adverse effects on alfalfa. The outcomes concerning electrolyte permeability, root activity, and malondialdehyde (MDA) content indicated that CA suppressed the growth of redroot pigweed by interfering with the structure of the cell membrane and impacting cellular osmotic potential. CA could destroy the cell membrane structure to inhibit the growth of the redroot pigweed by both LRE and HSE exposure modes, which provides a theoretical basis for preventing and controlling redroot pigweed in alfalfa fields.


Subject(s)
Amaranthus , Cyanamide , Herbicides , Medicago sativa , Medicago sativa/drug effects , Herbicides/toxicity , Herbicides/pharmacology , Amaranthus/drug effects , Cyanamide/pharmacology , Malondialdehyde/metabolism , Plant Weeds/drug effects
5.
Plant Physiol ; 195(1): 713-727, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38330186

ABSTRACT

Plant tetrapyrrole biosynthesis (TPB) takes place in plastids and provides the chlorophyll and heme required for photosynthesis and many redox processes throughout plant development. TPB is strictly regulated, since accumulation of several intermediates causes photodynamic damage and cell death. Protoporphyrinogen oxidase (PPO) catalyzes the last common step before TPB diverges into chlorophyll and heme branches. Land plants possess two PPO isoforms. PPO1 is encoded as a precursor protein with a transit peptide, but in most dicotyledonous plants PPO2 does not possess a cleavable N-terminal extension. Arabidopsis (Arabidopsis thaliana) PPO1 and PPO2 localize in chloroplast thylakoids and envelope membranes, respectively. Interestingly, PPO2 proteins in Amaranthaceae contain an N-terminal extension that mediates their import into chloroplasts. Here, we present multiple lines of evidence for dual targeting of PPO2 to thylakoid and envelope membranes in this clade and demonstrate that PPO2 is not found in mitochondria. Transcript analyses revealed that dual targeting in chloroplasts involves the use of two transcription start sites and initiation of translation at different AUG codons. Among eudicots, the parallel accumulation of PPO1 and PPO2 in thylakoid membranes is specific for the Amaranthaceae and underlies PPO2-based herbicide resistance in Amaranthus species.


Subject(s)
Herbicides , Plant Proteins , Protoporphyrinogen Oxidase , Protoporphyrinogen Oxidase/genetics , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Plastids/genetics , Plastids/metabolism , Gene Expression Regulation, Plant , Amaranthus/genetics , Amaranthus/drug effects , Chloroplasts/metabolism , Chloroplasts/genetics , Herbicide Resistance/genetics , Arabidopsis/genetics , Thylakoids/metabolism
6.
Chem Biodivers ; 18(12): e2100679, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34651409

ABSTRACT

Pomelo seeds (PS) are important by-product of pomelo fruits (Citrus grandis Osbeck). The value-added utilization of PS remains highly challenged. This study aimed to investigate the utilization potential of PS as natural antioxidant, antibacterial, herbicidal agents, and their functional components. The ethanolic extract (EE) of PS and its four fractions as PEE (petroleum ether extract), AcOEtE (ethyl acetate extract), BTE (butanol extract), and WE (water extract), were prepared and biologically evaluated. BTE exhibited the best antioxidant activity among all these extracts, in both ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) and FRAP (ferric reducing antioxidant power) assays. AcOEtE was superior to other extracts in herbicidal assay against both Festuca elata Keng (IC50 of 0.48 mg mL-1 ) and Amaranthus retroflexus L. (IC50 of 0.94 mg mL-1 ). Meanwhile, both AcOEtE and BTE demonstrated inhibitory effects against Bacillus subtilis, Escherichia coli, and Xanthomonas citri subsp. citri, with MIC ranging 2.5-5.0 mg mL-1 . Furthermore, the primary chemical components involving naringin, deacetylnomilin, limonin, nomilin, and obacunone, were quantified in all these extracts. PCA (principal component analysis) suggested that naringin might highly contribute to the antioxidant activity of PS, and the herbicidal activity should be ascribed to limonoids. This study successfully identified AcOEtE and BTE as naturally occurring antioxidant, antibacterial, and herbicidal agents, showing application potential in food and cosmetics industries, and organic farming agriculture.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Citrus/chemistry , Herbicides/pharmacology , Plant Extracts/pharmacology , Seeds/chemistry , Amaranthus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Bacillus subtilis/drug effects , Benzothiazoles/antagonists & inhibitors , Escherichia coli/drug effects , Festuca/drug effects , Herbicides/chemistry , Herbicides/isolation & purification , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Sulfonic Acids/antagonists & inhibitors , Xanthomonas/drug effects
7.
Toxins (Basel) ; 13(10)2021 10 06.
Article in English | MEDLINE | ID: mdl-34678999

ABSTRACT

Sophora alopecuroides is known to produce relatively large amounts of alkaloids; however, their ecological consequences remain unclear. In this study, we evaluated the allelopathic potential of the main alkaloids, including aloperine, matrine, oxymatrine, oxysophocarpine, sophocarpine, sophoridine, as well as their mixture both in distilled H2O and in the soil matrix. Our results revealed that all the alkaloids possessed inhibitory activity on four receiver species, i.e., Amaranthus retroflexus, Medicago sativa, Lolium perenne and Setaria viridis. The strength of the phytotoxicity of the alkaloids was in the following order: sophocarpine > aloperine > mixture > sophoridine > matrine > oxysophocarpine > oxymatrine (in Petri dish assays), and matrine > mixture > sophocarpine > oxymatrine > oxysophocarpine > sophoridine > aloperine (in pot experiments). In addition, the mixture of the alkaloids was found to significantly increase the IAA content, MDA content and POD activity of M. sativa seedlings, whereas CTK content, ABA content, SOD activity and CAT activity of M. sativa seedlings decreased markedly. Our results suggest S. alopecuroides might produce allelopathic alkaloids to improve its competitiveness and thus facilitate the establishment of its dominance; the potential value of these alkaloids as environmentally friendly herbicides is also discussed.


Subject(s)
Alkaloids/pharmacology , Allelopathy , Amaranthus/drug effects , Lolium/drug effects , Medicago sativa/drug effects , Setaria Plant/drug effects , Sophora/chemistry , Alkaloids/chemistry
8.
Chem Biodivers ; 18(12): e2100701, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622554

ABSTRACT

The chemical profile and allelopathic action of the volatiles produced by Artemisia selengensis were studied. Artemisia selengensis was found to release volatile chemicals to the environment to influence other plants' growth, which suppressed the root length of Amaranthus retroflexus and Poa annua by 50.46 % and 87.83 % under 80 g/1.5 L treatment, respectively. GC/MS analysis led to the identification of 41 compounds (by hydrodistillation, HD) and 48 compounds (by headspace solid-phase microextraction, HS-SPME), with eucalyptol (15.45 % by HD and 28.09 % by HS-SPME) being detected as the most abundant constituent. The essential oil (EO) of A. selengensis completely inhibited the seed germination of A. retroflexus and P. annua at 1 mg/mL and 0.5 mg/mL, respectively. However, eucalyptol displayed much weaker activity compared with the EO, indicating that other less abundant constituents might contribute significantly to the EO's activity. Our study is the first report on the phytotoxicity of A. selengensis EO, suggesting that A. selengensis might release allelopathic volatile agents into the environment that negatively affect other plants' development so as to facilitate its own dominance; the potential value of utilizing A. selengensis EO as an environmentally friendly herbicide is also discussed.


Subject(s)
Amaranthus/drug effects , Artemisia/chemistry , Plant Development/drug effects , Plant Roots/drug effects , Poa/drug effects , Volatile Organic Compounds/pharmacology , Amaranthus/growth & development , Poa/growth & development , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification
9.
Plant Cell Physiol ; 62(11): 1770-1785, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34453831

ABSTRACT

Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid-inhibiting herbicide, S-metolachlor, in multiple herbicide-resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine the specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (∼2-fold) in CHR and SIR compared to WUS but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (>20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate that S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.


Subject(s)
Acetamides/pharmacology , Amaranthus/metabolism , Herbicide Resistance , Herbicides/pharmacology , Zea mays/metabolism , Amaranthus/drug effects , Metabolic Networks and Pathways , Plant Weeds/drug effects , Plant Weeds/metabolism , Zea mays/drug effects
10.
Genes (Basel) ; 12(8)2021 08 10.
Article in English | MEDLINE | ID: mdl-34440399

ABSTRACT

Amaranthus palmeri S. Watson (Palmer amaranth) is considered a problematic and troublesome weed species in many crops in the USA, partly because of its ability to evolve resistance to herbicides. In this study, we explored the mechanism of resistance in a trifluralin-resistant A. palmeri accession collected from Arkansas, USA. Dose-response assays using agar plates demonstrated an EC50 (effective concentration that reduces root length by 50%) of 1.02 µM trifluralin compared to 0.39 µM obtained in the susceptible accession. Thus, under these conditions, the resistant accession required 2.6 times more trifluralin to inhibit root length by 50%. Seeds in the presence or absence of the cytochrome P450-inhibitior malathion displayed a differential response with no significant influence on root length, suggesting that resistance is not P450-mediated. In addition, application of 4-chloro-7-nitrobenzofurazan (NBD-Cl), a glutathione S-transferase (GST) inhibitor, showed significant differences in root length, indicating that GSTs are most likely involved in the resistance mechanism. Sequencing of α- and ß-tubulin genes revealed no single nucleotide polymorphisms (SNPs) previously described between accessions. In addition, relative gene copy number of α- and ß-tubulin genes were estimated; however, both resistant and susceptible accessions displayed similar gene copy numbers. Overall, our results revealed that GST-mediated metabolism contributes to trifluralin resistance in this A. palmeri accession from Arkansas.


Subject(s)
Amaranthus/drug effects , Herbicide Resistance/genetics , Herbicides/pharmacology , Trifluralin/pharmacology , Amaranthus/genetics , Amino Acid Sequence , Arkansas , Dose-Response Relationship, Drug , Gene Dosage , Sequence Alignment , Tubulin/chemistry , Tubulin/genetics
11.
Molecules ; 26(7)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916510

ABSTRACT

Amino acids have a wide range of biological activities, which usually rely on the stereoisomer presented. In this study, glycine and 21 common α-amino acids were investigated for their herbicidal property against Chinese amaranth (Amaranthus tricolor L.) and barnyard grass (Echinochloa crus-galli (L.) Beauv.). Both d- and l-isomers, as well as a racemic mixture, were tested and found that most compounds barely inhibited germination but moderately suppressed seedling growth. Various ratios of d:l-mixture were studied and synergy between enantiomers was found. For Chinese amaranth, the most toxic d:l-mixtures were at 3:7 (for glutamine), 8:2 (for methionine), and 5:5 (for tryptophan). For barnyard grass, rac-glutamine was more toxic than the pure forms; however, d-tryptophan exhibited greater activity than racemate and l-isomer, indicating the sign of enantioselective toxicity. The mode of action was unclear, but d-tryptophan caused bleaching of leaves, indicating pigment synthesis of the grass was inhibited. The results highlighted the enantioselective and synergistic toxicity of some amino acids, which relied upon plant species, chemical structures, and concentrations. Overall, our finding clarifies the effect of stereoisomers, and provides a chemical clue of amino acid herbicides, which may be useful in the development of herbicides from natural substances.


Subject(s)
Amaranthus/drug effects , Amino Acids/pharmacology , Echinochloa/drug effects , Herbicides/pharmacology , Seedlings/drug effects , Amaranthus/growth & development , Amaranthus/metabolism , Amino Acids/chemistry , Dose-Response Relationship, Drug , Echinochloa/growth & development , Echinochloa/metabolism , Germination/drug effects , Germination/physiology , Green Chemistry Technology , Herbicides/chemistry , Humans , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Weeds/drug effects , Plant Weeds/growth & development , Plant Weeds/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Stereoisomerism , Structure-Activity Relationship
12.
ACS Appl Mater Interfaces ; 13(7): 7997-8005, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33577306

ABSTRACT

Application of natural products as new green agrochemicals with low average lifetime, low concentration doses, and safety is both complex and expensive due to chemical modification required to obtain desirable physicochemical properties. Transport, aqueous solubility, and bioavailability are some of the properties that have been improved using functionalized metal-organic frameworks based on zinc for the encapsulation of bioherbicides (ortho-disulfides). An in situ method has been applied to achieve encapsulation, which, in turn, led to an improvement in water solubility by more than 8 times after 2-hydroxypropyl-ß-cyclodextrin HP-ß-CD surface functionalization. High-resolution high-angle annular dark-field scanning transmission electron microscopy (HR HAADF-STEM) and integrated differential phase contrast (iDPC) imaging techniques were employed to verify the success of the encapsulation procedure and crystallinity of the sample. Inhibition studies on principal weeds that infect rice, corn, and potato crops gave results that exceed those obtained with the commercial herbicide Logran. This finding, along with a short synthesis period, i.e., 2 h at 25 °C, make the product an example of a new generation of natural-product-based herbicides with direct applications in agriculture.


Subject(s)
Agrochemicals/pharmacology , Amaranthus/drug effects , Echinochloa/drug effects , Herbicides/pharmacology , Lolium/drug effects , Metal-Organic Frameworks/pharmacology , Agrochemicals/chemical synthesis , Agrochemicals/chemistry , Capsules/chemistry , Capsules/pharmacology , Disulfides/chemistry , Disulfides/pharmacology , Herbicides/chemical synthesis , Herbicides/chemistry , Metal-Organic Frameworks/chemical synthesis , Metal-Organic Frameworks/chemistry , Molecular Structure , Particle Size , Solubility , Surface Properties , Zinc/chemistry , Zinc/pharmacology
13.
Ecotoxicol Environ Saf ; 211: 111879, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33465625

ABSTRACT

Essential oils have been evaluated as appropriate phytotoxins with mechanisms of action that are different from those of synthetic herbicides applied in weed management activities, but little is known about the effect of Ambrosia artemisiifolia essential oil (EO) on weeds. Here, the chemical composition of A. artemisiifolia EO was analyzed using a Gas Chromatography-Mass Spectrometry system. and the phytotoxic activities of the EO against monocot (Poa annua, Setaria viridis) and dicot (Amaranthus retroflexus, Medicago sativa) species are evaluated under laboratory and green-house conditions for the first time. The EO was rich in sesquiterpenes (62.51%), with germacrene D (32.92%), ß-pinene (15.14%), limonene (9.90%), and caryophyllene (4.49%) being the major compounds based on Gas Chromatography-Mass Spectrometry analysis results. A. artemisiifolia EO inhibited seed germination and seedling development significantly in the tested species even at low concentrations (0.25 mg mL-1). In addition, bioassay results for the activities of superoxide dismutase (SOD) and peroxidase (POD) increased and then decreased with an increase in EO concentration. Unlike the enzymatic activity, root cell viability declined significantly in the tested weeds in all EO treatments. Besides, a foliar spray experiment resulted in visible injury in leaves and a decrease in chlorophyll content and eventually led to wilting of all tested weeds. The EO (0.25-5.00 mg mL-1) altered Allium cepa root tip cells with a decline in mitotic index and an increase in chromosomal aberrations after 24 h treatment. The cytotoxic evaluation confirmed the mitotic inhibitory effect of EO, although the intensity varied under different concentrations. According to the results, A. artemisiifolia EO has the potential applications as a natural herbicide owing to its phytotoxic activity; which also helps to explain their potential involvement in allelopathic interaction of volatile compounds present in the EO that facilitate the invasion success of the exotic species.


Subject(s)
Ambrosia/chemistry , Herbicides/toxicity , Oils, Volatile/toxicity , Plant Weeds/chemistry , Allelopathy/drug effects , Amaranthus/drug effects , Bicyclic Monoterpenes , Gas Chromatography-Mass Spectrometry , Herbicides/chemistry , Limonene , Sesquiterpenes, Germacrane
14.
Chem Biodivers ; 18(2): e2000897, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33410569

ABSTRACT

The chemical profile and phytotoxic action of Hibiscus trionum essential oil (EO) was studied. In total 17 compounds were identified via GC/MS, representing 94.18 % of the entire oil, with phytol (40.37 %) being the dominant constituent. Bioassay revealed that the EO inhibited root elongation of Medicago sativa and Amaranthus retroflexus by 32.66 % and 61.86 % at 5 mg/mL, respectively; meanwhile, the major component phytol also exhibited significant phytotoxic activity, suppressing radical elongation of Pennisetum alopecuroides, M. sativa and A. retroflexus by 26.08 %, 27.55 % and 43.96 % at 1 mg/mL, respectively. The fact that the EO showed weaker activity than phytol implied that some constituents might trigger antagonistic action to decrease the oil's activity. Our study is the first on the chemical profile and phytotoxic effect of H. trionum EO.


Subject(s)
Hibiscus/chemistry , Oils, Volatile/chemistry , Phytol/chemistry , Amaranthus/drug effects , Amaranthus/growth & development , Gas Chromatography-Mass Spectrometry , Hibiscus/toxicity , Medicago sativa/drug effects , Medicago sativa/growth & development , Oils, Volatile/toxicity , Phytol/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Toxicity Tests
15.
Cytogenet Genome Res ; 161(12): 578-584, 2021.
Article in English | MEDLINE | ID: mdl-35021177

ABSTRACT

In agriculture, various chemicals are used to control the weeds. Out of which, glyphosate is an important herbicide invariably used in the cultivation of glyphosate-resistant crops to control weeds. Overuse of glyphosate results in the evolution of glyphosate-resistant weeds. Evolution of glyphosate resistance (GR) in Amaranthus palmeri (AP) is a serious concern in the USA. Investigation of the mechanism of GR in AP identified different resistance mechanisms of which 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification is predominant. Molecular analysis of GR AP identified the presence of a 5- to >160-fold increase in copies of the EPSPS gene than in a glyphosate-susceptible (GS) population. This increased copy number of the EPSPS gene increased the genome size ranging from 3.5 to 11.8%, depending on the copy number compared to the genome size of GS AP. FISH analysis using a 399-kb EPSPS cassette derived from bacterial artificial chromosomes (BACs) as probes identified that amplified EPSPS copies in GR AP exist in extrachromosomal circular DNA (eccDNA) in addition to the native copy in the chromosome. The EPSPS gene-containing eccDNA having a size of ∼400 kb is termed EPSPS-eccDNA and showed somatic mosacism in size and copy number. EPSPS-eccDNA has a genetic mechanism to tether randomly to mitotic or meiotic chromosomes during cell division or gamete formation and is inherited to daughter cells or progeny generating copy number variation. These eccDNAs are stable genetic elements that can replicate and exist independently. The genomic characterization of the EPSPS locus, along with the flanking regions, identified the presence of a complex array of repeats and mobile genetic elements. The cytogenomics approach in understanding the biology of EPSPS-eccDNA sheds light on various characteristics of EPSPS-eccDNA that favor GR in AP.


Subject(s)
Amaranthus/drug effects , Amaranthus/genetics , Cytogenetics , Genome, Plant/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Amaranthus/cytology , DNA Copy Number Variations/genetics , Glycine/pharmacology , Plant Weeds/drug effects , Plant Weeds/genetics , Glyphosate
16.
PLoS One ; 15(9): e0238861, 2020.
Article in English | MEDLINE | ID: mdl-32970699

ABSTRACT

There is increasing interest in documenting adaptation of weedy plant species to agricultural ecosystems, beyond the evolution of herbicide resistance. Waterhemp (Amaranthus tuberculatus) is a native plant of the Midwestern U.S. that began infesting agricultural fields in the 20th century within the central portion of its range. We hypothesized that the vegetative growth and reproductive traits of waterhemp from this heavily infested central region provide differential fitness benefits in agricultural environments. We collected seeds from across the species' native range, representing regions with varying degrees of waterhemp infestation, and planted them together in common garden soybean plots. A 2010 common garden experiment was conducted within the range of agriculturally weedy waterhemp (in Missouri), and a 2011 common garden experiment was conducted outside of this range (in Ohio). Days to flowering and flowering plant height, mature plant size data (height, number of branches, and length of the longest branch), and above-ground biomass were measured to estimate relative fitness. In both common garden locations, plants from regions where waterhemp occurs as an agricultural weed - including those from the heavily infested Mississippi Valley region (Iowa, Illinois, and Missouri) and the less severely infested Plains region (Nebraska, Kansas, and Oklahoma) - had higher relative performance in almost all fitness-related measures than plants from the Northeast region (Ohio, Michigan, and Ontario), which had little to no agriculturally weedy waterhemp at the time of our study. Further analysis revealed that fewer days to flowering in the Northeast populations can be largely accounted for by latitude of origin, suggesting a strong genetic influence on this reproductive trait. These findings suggest intraspecific variation in agricultural adaptation in a native U.S. weed, and support the use of agricultural weeds to study adaptation.


Subject(s)
Adaptation, Physiological , Agriculture/methods , Amaranthus/growth & development , Herbicide Resistance , Herbicides/pharmacology , Plant Weeds/growth & development , Weed Control/methods , Amaranthus/drug effects , Ecosystem , Phenotype , Plant Weeds/drug effects , United States
17.
J Agric Food Chem ; 68(40): 11207-11214, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32915561

ABSTRACT

Fungi have been proved as promising and prolific sources of functional secondary metabolites with potent agricultural applications. In this study, 14 xanthone derivatives (1-14), including six new ones, versicones I-N (1-4, 7, 11), and a biogenetically related derivative (15), were isolated from the alga-derived fungus Aspergillus versicolor D5. Their structures were elucidated by comprehensive spectroscopic methods. Versicone L (4) exhibited a broad antifungal spectrum and prominent inhibitory effects on Botrytis cinerea at a minimum inhibitory concentration (MIC) of 152 µM, 7-fold stronger than that of the positive control, carbendazim (MIC = 1.05 × 103 µM). Dihydrosterigmatocystin (13) showed strong antifungal activity toward B. cinerea at MIC = 38.3 µM, almost 30-fold stronger than that of carbendazim. Meanwhile, 13 exhibited potent herbicidal activity toward Amaranthus retroflexus L. with an MIC of 24.5 µM, approximately 4-fold stronger than that of the positive control, glyphosate (MIC = 94.7 µM). Additionally, 13 also displayed remarkable activity against other weeds belonging to Amaranth sp. Analysis of the structure-herbicidal activity relationship indicated that the bifuranic ring played an important role in xanthone phytotoxicity and the presence of a double bond in the furan ring could decrease phytotoxicity. This study indicated that xanthones can be served as promising candidates for lead compounds of agrochemicals.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Aspergillus/chemistry , Herbicides/chemistry , Herbicides/pharmacology , Xanthones/chemistry , Xanthones/pharmacology , Amaranthus/drug effects , Amaranthus/growth & development , Aspergillus/isolation & purification , Botrytis/drug effects , Botrytis/growth & development , China , Chlorophyta/microbiology , Microbial Sensitivity Tests , Molecular Structure
18.
J Environ Sci Health B ; 55(11): 1009-1019, 2020.
Article in English | MEDLINE | ID: mdl-32816605

ABSTRACT

The present study addresses the herbicidal activity and biological effects of the metribuzin (MET) and tribenuron-methyl (TBM) herbicides used to control various weed species (Amaranthus retroflexus, Sinapis arvensis, and Leucanthemum maximum). The effects of the free herbicides and the herbicides embedded in granules of degradable polymer poly-3-hydroxybutyrate [P(3HB)] blended with birch wood flour were compared. Metribuzin, regardless of the form, caused 100% mortality of the three weeds by day 21. The herbicidal activity of tribenuron-methyl was lower than that of metribuzin, but the embedded TBM was superior to the free herbicide in the length and strength of its action on the weeds. Both metribuzin forms dramatically decreased the main parameters of fluorescence: maximum quantum yield of photosystem-II [Y(II)max], maximum quantum yield of non-photochemical quenching [Y(NPQ)max], and maximum rate of non-cyclic electron transport [ETRmax] and concentrations of chlorophyll a and b. The effect of the embedded TBM on the photosynthetic activity of the weeds was lower in the first two weeks of the growth of herbicide-treated plants but lasted longer than the effect of the free TBM and increased over time. Embedding of metribuzin in the matrix of degradable blend did not decrease its herbicidal activity.


Subject(s)
Arylsulfonates/pharmacology , Herbicides/pharmacology , Plant Weeds/drug effects , Triazines/pharmacology , Amaranthus/drug effects , Arylsulfonates/chemistry , Betula/chemistry , Chlorophyll A/metabolism , Delayed-Action Preparations , Herbicides/chemistry , Hydroxybutyrates/chemistry , Leucanthemum/drug effects , Photosynthesis/drug effects , Plant Weeds/metabolism , Plant Weeds/physiology , Polyesters/chemistry , Sinapis/drug effects , Triazines/chemistry , Wood/chemistry
19.
PLoS One ; 15(8): e0238144, 2020.
Article in English | MEDLINE | ID: mdl-32857790

ABSTRACT

The efficacy of auxinic herbicides, a valuable weed control tool for growers worldwide, has been shown to vary with the time of day in which applications are made. However, little is known about the mechanisms causing this phenomenon. Investigating the differential in planta behavior of these herbicides across different times of application may grant an ability to advise which properties of auxinic herbicides are desirable when applications must be made around the clock. Radiolabeled herbicide experiments demonstrated a likely increase in ATP-binding cassette subfamily B (ABCB)-mediated 2,4-D and dicamba transport in Palmer amaranth (Amaranthus palmeri S. Watson) at simulated dawn compared to mid-day, as dose response models indicated that many orders of magnitude higher concentrations of N-1-naphthylphthalamic acid (NPA) and verapamil, respectively, are required to inhibit translocation by 50% at simulated sunrise compared to mid-day. Gas chromatographic analysis displayed that ethylene evolution in A. palmeri was higher when dicamba was applied during mid-day compared to sunrise. Furthermore, it was found that inhibition of translocation via 2,3,5-triiodobenzoic acid (TIBA) resulted in an increased amount of 2,4-D-induced ethylene evolution at sunrise, and the inhibition of dicamba translocation via NPA reversed the difference in ethylene evolution across time of application. Dawn applications of these herbicides were associated with increased expression of a putative 9-cis-epoxycarotenoid dioxygenase biosynthesis gene NCED1, while there was a notable lack of trends observed across times of day and across herbicides with ACS1, encoding 1-aminocyclopropane-1-carboxylic acid synthase. Overall, this research indicates that translocation is differentially regulated via specific protein-level mechanisms across times of application, and that ethylene release, a chief phytotoxic process involved in the response to auxinic herbicides, is related to translocation. Furthermore, transcriptional regulation of abscisic acid involvement in phytotoxicity and/or translocation are suggested.


Subject(s)
Amaranthus/drug effects , Amaranthus/physiology , Herbicide Resistance/physiology , Herbicides/pharmacology , Photoperiod , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Dicamba/pharmacology , Dose-Response Relationship, Drug , Ethylenes/metabolism , Phthalimides/metabolism , Plant Proteins/metabolism , Triiodobenzoic Acids/metabolism , Verapamil/metabolism
20.
Ecotoxicol Environ Saf ; 205: 111160, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32853864

ABSTRACT

The functional similarity between indigenous plant species (IPS) and invasive alien species (IAS) governs the invasion process of successful IAS because IPS and coexisting IAS suffer alike or even same ecological selection pressures. The aggravated condition created by heavy metal pollution (HMP) and drought stress may generate a noticeable impact on the invasive competitiveness and invasion process of IAS possibly via the variations in the functional similarity between IPS and IAS. Consequently, it is necessary to illumine the functional similarity between IPS and IAS under HMP and drought stress to clarify the mechanisms underlying the successful invasion of IAS. This study aims to estimate the functional similarity between IPS Amaranthus tricolor L. and IAS A. retroflexus L. under the condition with the alone and combined effects of HMP with different kinds (e.g., Cu and Pb) and drought stress [simulated by polyethylene glycol-6000 (PEG) solution]. HMP notably declines A. tricolor growth but has no remarkable effect on A. retroflexus growth. A. retroflexus displays a strong competitive intensity than A. tricolor under HMP. Further, HMP makes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Therefore, HMP can accelerate A. retroflexus invasion. A. retroflexus displays a poor competitive intensity under drought stress. Thus, drought stress can hinder A. retroflexus invasion. However, drought stress causes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the continued drought stress may converse the adverse effects of drought stress on A. retroflexus invasion potentially. The two Amaranthus species tend to diverge functionally under the combined HMP and drought stress. Further, A. retroflexus shows a strong competitive intensity than A. tricolor under the combined HMP and drought stress. Moreover, the combined HMP and drought stress induces a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the combined HMP and drought stress can facilitate A. retroflexus invasion. Meanwhile, the competitiveness for sunlight acquisition and leaf photosynthetic capacity may play a key role in the successful invasion of A. retroflexus under the combined HMP and drought stress.


Subject(s)
Amaranthus/drug effects , Droughts , Introduced Species , Metals, Heavy/toxicity , Soil Pollutants/toxicity , Amaranthus/growth & development , Models, Theoretical , Plant Leaves/drug effects , Plant Leaves/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...