Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
PLoS One ; 19(5): e0302689, 2024.
Article in English | MEDLINE | ID: mdl-38722854

ABSTRACT

The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020-2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species was A. americanum (24098, 97%) followed by Dermacentor variabilis (370, 2%), D. albipictus (271, 1%), Ixodes scapularis (91, <1%) and A. maculatum (38, <1%). Amblyomma americanum, A. maculatum and D. variabilis were active in Spring and Summer, while D. albipictus and I. scapularis were active in Fall and Winter. Factors associated with numbers of individuals of A. americanum included day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.


Subject(s)
Seasons , Animals , Oklahoma , Kansas , Ticks/growth & development , Ticks/physiology , Ixodes/physiology , Ixodes/growth & development , Female , Dermacentor/physiology , Dermacentor/growth & development , Ixodidae/physiology , Ixodidae/growth & development , Male , Ecosystem , Amblyomma/growth & development , Amblyomma/physiology
2.
Parasit Vectors ; 17(1): 202, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711138

ABSTRACT

BACKGROUND: The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS: The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS: Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 µg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 µg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 µg/cm2 but was not significantly different at 10 µg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS: The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.


Subject(s)
Amblyomma , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Amblyomma/drug effects , Insect Repellents/pharmacology , Humans , Plant Oils/pharmacology , Plant Oils/chemistry , Nymph/drug effects , Biological Assay , DEET/pharmacology
3.
PLoS One ; 19(5): e0301685, 2024.
Article in English | MEDLINE | ID: mdl-38748697

ABSTRACT

Amblyomma ticks are vectors of both Rickettsia rickettsii and R. parkeri in the Americas, where capybaras (Hydrochoerus hydrochaeris) are the main hosts in urban areas, thus contributing to the transmission of spotted fever. Herein, we studied: (i) the seasonal dynamics and abundance of ticks in areas where capybaras live, (ii) the effect of environmental variables on tick abundance, and (iii) the presence of Rickettsia-infected ticks. Between September 2021 and September 2022, we sampled ticks using cloth-dragging at 194 sites on the shore of Lake Paranoá in Brasília, Brazil. We measured environmental data (season, vegetation type, canopy density, temperature, humidity, and presence or vestige of capybara) at each site. Nymphs and adults were morphologically identified to the species level, and a selected tick sample including larvae was subjected to genotypic identification. We investigated Rickettsia-infected ticks by PCR (gltA, htrA, ompB, and ompA genes) and associations between tick abundance and environmental variables using Generalized Linear Models. A total of 30,334 ticks (96% larvae) were captured. Ticks were identified as Amblyomma, with A. sculptum comprising 97% of the adult/nymphs. Genotype identification of a larval sample confirmed that 95% belonged to A. dubitatum. Seasonal variables showed significant effects on tick abundance. Most larvae and nymphs were captured during the early dry season, while the adults were more abundant during the wet season. Vegetation variables and the presence of capybaras showed no association with tick abundance. Rickettsia parkeri group and R. bellii were identified in A. dubitatum, while A. sculptum presented R. bellii. We conclude that: (i) Amblyomma ticks are widely distributed in Lake Paranoá throughout the year, especially larvae at the dry season, (ii) the abundance of Amblyomma ticks is explained more by climatic factors than by vegetation or presence of capybaras, and (iii) A. dubitatum ticks are potential vectors of R. parkeri in Brasília.


Subject(s)
Amblyomma , Rickettsia , Seasons , Animals , Rickettsia/genetics , Rickettsia/isolation & purification , Brazil , Amblyomma/microbiology , Nymph/microbiology , Larva/microbiology , Rickettsia Infections/transmission , Rickettsia Infections/microbiology , Arachnid Vectors/microbiology , Rodentia/microbiology , Rodentia/parasitology , Environment
4.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791458

ABSTRACT

Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), ß-esterase (ß-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations.


Subject(s)
Acaricides , Acetylcholinesterase , Larva , Oils, Volatile , Piper , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Acetylcholinesterase/metabolism , Piper/chemistry , Larva/drug effects , Acaricides/pharmacology , Glutathione Transferase/metabolism , Amblyomma , Inactivation, Metabolic , Cholinesterase Inhibitors/pharmacology , Benzodioxoles/pharmacology , Esterases/metabolism , Allyl Compounds , Dioxoles
5.
J Parasitol ; 110(2): 155-158, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38621699

ABSTRACT

Eight ticks were found in Comacchio (FE), Italy parasitizing a young black iguana (Ctenosaura similis) that had been accidentally transported in a commercial plant container from Costa Rica. Specimens were identified morphologically as Amblyomma scutatum and then confirmed by the barcoding of the mitochondrial cytochrome c oxidase subunit 1 gene. Amblyomma scutatum is a common tick known to infest reptiles in Central America, Mexico, and Venezuela, but not in Europe. In Italy, the possibility for this tick to become endemic is unlikely because of the absence of its principal hosts. Nevertheless, this finding confirms the high risk of introducing exotic species that is linked with global commerce and therefore the need for veterinary control of shipments.


Subject(s)
Ixodidae , Lizards , Tick Infestations , Ticks , Animals , Ixodidae/genetics , Amblyomma , Tick Infestations/epidemiology , Tick Infestations/veterinary , Italy
6.
Acta Trop ; 254: 107210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599442

ABSTRACT

Several species of hard ticks, including those of the genera Ixodes, Haemaphysalis, Amblyomma, and Rhipicephalus, are of medical and veterinary importance and have been reported in association with Neotropical wild birds. Colombia, known for its great bird diversity, has 57 confirmed tick species. However, there are few studies on the association between wild birds and ticks in Colombia. The Orinoquia region, a migratory center in Colombia, provides a unique opportunity to study wild bird-tick associations and their implications for tick-borne disease dynamics. Our study, conducted between October and December 2021, aimed to identify hard ticks infesting resident and migratory wild birds in the department of Arauca and to assess the presence of bacteria from the genera Anaplasma, Borrelia, Ehrlichia, Rickettsia, and piroplasms. A total of 383 birds were examined, of which 21 were infested. We collected 147 ticks, including Amblyomma dissimile (larvae), Amblyomma longirostre (nymphs), Amblyomma mixtum (adults), and Amblyomma nodosum (larvae and nymphs). We did not detect bacterial DNA in the tested ticks; however, piroplasm DNA was detected in ticks from three of the infested birds. Of the 21 bird-tick associations, six are new to the Americas, and interesting documentation of piroplasm DNA in A. longirostre, A. nodosum, and A. dissimile ticks from wild birds in the region. This study provides valuable insights into the ticks associated with wild birds and their role in the dispersal of ticks and pathogens in Colombia, enhancing our understanding of tick life cycles and tick-borne disease dynamics.


Subject(s)
Animals, Wild , Bird Diseases , Birds , Ixodidae , Tick Infestations , Animals , Colombia , Tick Infestations/veterinary , Tick Infestations/epidemiology , Birds/parasitology , Ixodidae/microbiology , Ixodidae/growth & development , Ixodidae/classification , Animals, Wild/parasitology , Animals, Wild/microbiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Borrelia/isolation & purification , Ehrlichia/isolation & purification , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Animal Migration , Anaplasma/isolation & purification , Anaplasma/genetics , Nymph/microbiology , Nymph/growth & development , Female , Male , Larva/microbiology , Amblyomma/microbiology
7.
Vet Parasitol Reg Stud Reports ; 50: 101016, 2024 05.
Article in English | MEDLINE | ID: mdl-38644046

ABSTRACT

Wild boars or feral pigs are classified by the Brazilian Institute for the Environment and Renewable Resources (IBAMA) in "Category I of invasive exotic species". They cause economic losses, harm the environment, serve as hosts and reservoirs for several zoonotic disease agents, and provide a blood meal for tick species that act as vectors for zoonotic diseases. The objective of this study was to identify tick species on wild boars, assess host-seeking ticks in the related environment, and identify other potential tick hosts coexisting with wild boars on a farm located in the state of Minas Gerais, southeastern Brazil. Additionally, the study aimed to determine the presence of rickettsiae in these arthropods and assess the exposure of wild boars to rickettsiae species from the Spotted Fever Group and Rickettsia bellii through serology. A total of 3585 host-seeking ticks from three species (Amblyomma sculptum - 41.58%; Amblyomma dubitatum - 0.39% and Rhipicephalus microplus - 0.05%) were collected in the environment and A. sculptum was the most abundant species. Thirty-one wild boars were evaluated, resulting in the collection of 415 ticks, all of which were A. sculptum. Rickettsia DNA was not detected in samples of A. sculptum and R. microplus from the environment or in A. sculptum ticks from wild boars. However, all A. dubitatum ticks (n = 14) had Rickettsia bellii DNA confirmed by the species-specific PCR protocol. Out of the 31 serum samples from wild boars, 24 reacted with at least one Rickettsia antigen. Among these, seven individuals exhibited a reaction to a probable homologous antigen (PHA) of three rickettsiae species: R. rickettsii (n = 3), R. amblyommatis (n = 3) and R. rhipicephali (n = 1). Despite the high prevalence of seroreactivity, titers were low, indicating limited exposure to Rickettsia spp. Camera traps generated 874 animal records, capturing a total of 1688 individuals. At least 11 species of birds and 14 species of mammals (12 wild and two domestic) shared the environment with wild boars and potentially shared ticks with them. These findings provide baseline information for understanding the sharing of ticks and tick-borne pathogens between wild boars and other animals within the Cerrado biome. Further studies are necessary to monitor the potential and actual risk of wild boars to harbor infected ticks and their role in the transmission and maintenance cycle of Rickettsia spp.


Subject(s)
Rickettsia Infections , Rickettsia , Sus scrofa , Swine Diseases , Tick Infestations , Animals , Brazil/epidemiology , Rickettsia/isolation & purification , Swine , Swine Diseases/epidemiology , Swine Diseases/parasitology , Swine Diseases/microbiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Rickettsia Infections/veterinary , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rickettsia Infections/transmission , Female , Male , Ixodidae/microbiology , Amblyomma/microbiology , Rhipicephalus/microbiology
8.
Ticks Tick Borne Dis ; 15(3): 102330, 2024 May.
Article in English | MEDLINE | ID: mdl-38460340

ABSTRACT

In several urban and peri­urban areas of Brazil, populations of Amblyomma sculptum and Amblyomma dubitatum ticks are maintained by capybaras (Hydrochoerus hydrochaeris). In some of these areas, this host and these tick species are associated with Brazilian spotted fever (BSF), a lethal human disease caused by the bacterium Rickettsia rickettsii. In this work, we evaluated the risk of human exposure to these tick species using four collection techniques to discern host-seeking behavior. The study was carried out in 10 urban sites inhabited by capybaras in Uberlândia, a BSF-free municipality in southeastern Brazil. Ticks were collected in areas of 400 m2 at each site and at three seasons. Within the same municipality, the distance and speed of A. sculptum nymphs moving towards the CO2 traps were evaluated. In a sample of ticks Rickettsia DNA was investigated. During the study period, 52,953 ticks were collected. Among these, 83.4 % were A. sculptum (1,523 adults, 10,545 nymphs and 32,104 larvae) and 16.6 % were A. dubitatum (464 adults, 2,153 nymphs and 6,164 larvae). An average annual questing tick density of 4.4/m² was observed, with the highest density recorded at one site in autumn (31.8/m²) and the lowest in summer at another site (0.03/m²). The visual search yielded the highest proportion of A. sculptum larvae, constituting 47 % of the total and 63.6 % of all A. sculptum larvae. In contrast, CO2 traps collected a greater proportion of nymphs and adults of A. sculptum ticks. In the case of A. dubitatum, the CO2 trap was the most efficient technique with 57.7 % of captures of this species, especially of nymphs (94.5 % of captures) and adults (97.8 % of captures). Ticks' ambush height on vegetation (9 to 77 cm), observed by visual search 30 times, yielded a total of 20,771 ticks. Of these, 28 (93 %) were A. sculptum ticks, with only two (7 %) identified as A. dubitatum ticks. Among A. sculptum ticks, the nymph was the most attracted stage to humans and larva in the case of A. dubitatum. Amblyomma sculptum adults and nymphs were significantly more attracted to humans than those of A. dubitatum, but A. dubitatum larvae were significantly more attracted than the same stage of A. sculptum. The maximum distance and speed of horizontal displacement for A. sculptum nymphs were five meters and 2.0 m/h, respectively. The only species of Rickettsia detected in ticks, exclusively in A. dubitatum, was R. bellii. Importantly, it was observed that the higher the proportion of A. sculptum in the community of ticks, the lower the rate of infection of A. dubitatum by R. bellii. In conclusion, host-seeking behavior differed between the two tick species, as well as between stages of the same species. A greater restriction of A. dubitatum ticks to the soil was observed, while larvae and nymphs of A. sculptum dispersed higher in the vegetation. The behavior presented by A. sculptum provides greater opportunities for contact with the hosts, while A. dubitatum depends more on an active search for a host, the hunter behavior. Taken together, these observations show that a human being crossing an area infested with A. sculptum and A. dubitatum ticks will have almost exclusive contact with A. sculptum larvae and/or nymphs. Humans in a stationary position (sitting, lying or immobile) are exposed to both tick species, but they are more attractive to adults and mainly nymphs of A. sculptum compared to the corresponding stages of the tick A. dubitatum. The negative effect of A. sculptum on A. dubitatum infection by R. bellii deserves further studies.


Subject(s)
Ixodidae , Rickettsia Infections , Rickettsia , Rocky Mountain Spotted Fever , Ticks , Animals , Humans , Ticks/microbiology , Ixodidae/microbiology , Rodentia/microbiology , Amblyomma , Carbon Dioxide , Rocky Mountain Spotted Fever/microbiology , Larva/microbiology , Brazil/epidemiology , Nymph/microbiology
9.
Exp Appl Acarol ; 92(3): 507-528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485886

ABSTRACT

The Sierra Nevada de Santa Marta (SNSM), located in northern Colombia, is considered a geographical island with high levels of biodiversity and endemism. However, little is known about tick species and their associated microorganisms at the SNSM. In this study we sampled host-seeking ticks in areas of the town of Minca within the SNSM. We collected 47 ticks identified as Amblyomma pacae, Amblyomma longirostre, Amblyomma ovale, Amblyomma mixtum, Haemaphysalis juxtakochi, Ixodes sp. cf. Ixodes affinis and Ixodes sp. Of these ticks, we tested for Rickettsia spp. by amplifying the gltA, SCA1, and 16S rRNA genes via PCR. Rickettsia amblyommatis was detected in one pool of 3 larvae and in a female of A. pacae. Additonally, we isolated Rickettsia sp. belonging to the group of spotted fevers in larvae of A. longirostre. This study reports new findings of six species of ticks and two species of Rickettsia within the SNSM.


Subject(s)
Ixodidae , Larva , Rickettsia , Animals , Rickettsia/isolation & purification , Colombia , Female , Larva/microbiology , Larva/growth & development , Ixodidae/microbiology , Male , RNA, Ribosomal, 16S/analysis , Nymph/microbiology , Nymph/growth & development , Amblyomma/microbiology , Amblyomma/growth & development , Amblyomma/physiology
10.
Exp Appl Acarol ; 92(3): 555-565, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468022

ABSTRACT

The main way to avoid contact with ticks and consequently tick-borne disease is the use of synthetic repellents. The search of new repellent compounds to increase the possibilities of use in strategies controls are necessary. The present study evaluated the repellent activity of two natural terpenes carvacrol and thymol in each one two different formulation (encapsulated and nonencapsulated with yeast cell wall) against the ticks Amblyomma sculptum and Rhipicephalus sanguineus sensu lato nymphs. Nymphs of A. sculptum and R. sanguineus s.l. of a single generation were used. The vertical filter paper repellency assay were performed with different concentration of both terpenes encapsulated and nonencapsulated in yeast cell wall. The repellent concentration 50% (RC50) were calculated to each compound formulation. Both carvacrol and thymol (encapsulated and nonencapsulated), had a repellent activity against A. sculptum and R. sanguineus s.l nymphs. Amblyomma sculptum was more sensitive to nonencapsulated carvacrol (RC50 values: 0.0032 to 0.0082 mg/cm2 after 1 and 15 min) (P < 0.05), while R. sanguineus s.l. was more sensitive to encapsulated carvacrol (RC50 values: 0.00008 to 0.0035 mg/cm2 after 1 and 15 min) (P < 0.05). Among tick species, R. sanguineus s.l. was more sensitive for most compounds than A. sculptum (P < 0.05). Although with distinct repellent activities, carvacrol and thymol encapsulated can be a promising alternative to synthetic repellents against A. sculptum and R. sanguineus s.l.


Subject(s)
Amblyomma , Cymenes , Nymph , Rhipicephalus sanguineus , Thymol , Cymenes/pharmacology , Animals , Thymol/pharmacology , Nymph/drug effects , Nymph/growth & development , Rhipicephalus sanguineus/drug effects , Cell Wall/drug effects , Acaricides/pharmacology , Monoterpenes/pharmacology , Insect Repellents/pharmacology , Saccharomyces cerevisiae/drug effects
11.
Rev Bras Parasitol Vet ; 33(1): e018123, 2024.
Article in English | MEDLINE | ID: mdl-38511817

ABSTRACT

The domestic cat is not considered a primary host for any specific tick species; however, it can be affected by some Ixodidae species, such as Rhipicephalus sanguineus sensu lato and Amblyomma spp. The study reports parasitism by Amblyomma auricularium and the detection of anti-Rickettsia spp. antibodies in domestic cats from a rural property in the Afrânio municipality, Pernambuco, Brazil. Amblyomma auricularium (24 nymphs, six females, and four males) and Amblyomma sp. (42 larvae) parasitized three cats, and 73 free-living ticks were captured in armadillo burrows: A. auricularium (36 nymphs, six females, five males) and Amblyomma sp. (26 larvae). Blood samples from cats were collected and the obtained plasma were subjected to indirect immunofluorescence assay (IFA) to detect antibodies against Rickettsia antigens. Thus, anti-Rickettsia spp. antibodies were determined (titers ranging from 128 to 512) and showed a predominant antibody response to Rickettsia amblyommatis or a very closely related genotype. This study reports the first infestation of nymphs and adults of A. auricularium on cats in a new area of occurrence in the semi-arid region of Northeastern Brazil and reports for the first time the presence of anti-Ricketsia antibodies in cats in the region, with R. amblyommatis as the probable infectious agent.


Subject(s)
Ixodidae , Rhipicephalus sanguineus , Rickettsia , Male , Female , Animals , Cats , Amblyomma , Rickettsia/genetics , Ixodidae/microbiology , Brazil/epidemiology , Nymph/microbiology , Nymph/physiology , Larva/microbiology
12.
Parasit Vectors ; 17(1): 139, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500136

ABSTRACT

BACKGROUND: Amblyomma is the third most diversified genus of Ixodidae that is distributed across the Indomalayan, Afrotropical, Australasian (IAA), Nearctic and Neotropical biogeographic ecoregions, reaching in the Neotropic its highest diversity. There have been hints in previously published phylogenetic trees from mitochondrial genome, nuclear rRNA, from combinations of both and morphology that the Australasian Amblyomma or the Australasian Amblyomma plus the Amblyomma species from the southern cone of South America, might be sister-group to the Amblyomma of the rest of the world. However, a stable phylogenetic framework of Amblyomma for a better understanding of the biogeographic patterns underpinning its diversification is lacking. METHODS: We used genomic techniques to sequence complete and nearly complete mitochondrial genomes -ca. 15 kbp- as well as the nuclear ribosomal cluster -ca. 8 kbp- for 17 Amblyomma ticks in order to study the phylogeny and biogeographic pattern of the genus Amblyomma, with particular emphasis on the Neotropical region. The new genomic information generated here together with genomic information available on 43 ticks (22 other Amblyomma species and 21 other hard ticks-as outgroup-) were used to perform probabilistic methods of phylogenetic and biogeographic inferences and time-tree estimation using biogeographic dates. RESULTS: In the present paper, we present the strongest evidence yet that Australasian Amblyomma may indeed be the sister-group to the Amblyomma of the rest of the world (species that occur mainly in the Neotropical and Afrotropical zoogeographic regions). Our results showed that all Amblyomma subgenera (Cernyomma, Anastosiella, Xiphiastor, Adenopleura, Aponomma and Dermiomma) are not monophyletic, except for Walkeriana and Amblyomma. Likewise, our best biogeographic scenario supports the origin of Amblyomma and its posterior diversification in the southern hemisphere at 47.8 and 36.8 Mya, respectively. This diversification could be associated with the end of the connection of Australasia and Neotropical ecoregions by the Antarctic land bridge. Also, the biogeographic analyses let us see the colonization patterns of some neotropical Amblyomma species to the Nearctic. CONCLUSIONS: We found strong evidence that the main theater of diversification of Amblyomma was the southern hemisphere, potentially driven by the Antarctic Bridge's intermittent connection in the late Eocene. In addition, the subgeneric classification of Amblyomma lacks evolutionary support. Future studies using denser taxonomic sampling may lead to new findings on the phylogenetic relationships and biogeographic history of Amblyomma genus.


Subject(s)
Genome, Mitochondrial , Ixodidae , Ticks , Animals , Ixodidae/genetics , Phylogeny , Amblyomma
13.
Arch Virol ; 169(3): 62, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446223

ABSTRACT

Sampled ticks were screened for Crimean-Congo haemorrhagic fever virus (CCHFV) using an assay that targets the nucleoprotein gene region of the S segment, a conserved region of the CCHFV genome. Minimum infection rates of 0.34% and 0.10% were obtained when testing pools of Hyalomma rufipes and Amblyomma variegatum, respectively. Next-generation sequencing and phylogenetic analysis showed that the S and L segments of the CCHFV isolate clustered with those of similar isolates of genotype III. However, analysis of the M segment showed that reassortment had occurred, causing this segment to cluster with those of isolates of genotype I, providing the first evidence of such an occurrence in Ghana.


Subject(s)
Amblyomma , Hemorrhagic Fever Virus, Crimean-Congo , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Ghana , Phylogeny , Biological Assay
14.
Parasitol Int ; 101: 102877, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38438076

ABSTRACT

Amblyomma integrum is a large gooseberry sized longirostrate tick (when fully repleted) found in India and Sri Lanka. In Kerala (India), this tick is commonly found in the forest and its fringe areas frequently infesting deer and hence it is locally known as "maan chellu / maanunny" (deer tick). In the present study, molecular characterisation and phylogenetic analysis of A. integrum collected from the area grazed by the sambar deer (Rusa unicolor) of Kerala, south India was performed using three molecular markers viz., the mitochondrial cytochrome c oxidase subunit 1 (COI), mitochondrial 16S ribosomal RNA, and nuclear 18S ribosomal RNA genes. Cytochrome c oxidase subunit 1 (COI) gene showed better resolving ability for elucidating the evolutionary relationship of A. integrum and identified two distinct clades, viz., A and B. The Tamil Nadu isolates of south India and Marayoor isolate 1 (from Idukki district of Kerala bordering with Tamil Nadu) belonged to clade A. Majority of Wayanad isolates from Kerala, occupied clade B. The intraspecific genetic distance among the A. integrum species ranged from 0.00 to 13.34%. Between clades A and B, the genetic distance observed was 11.49%. The clade B isolates were genetically close to A. geoemydae (GD: 1.22%). Morphological variations between the clades included darker exoskeletal coloration in clade A and distinct differences in the shape of basis capitulum. Further analysis using Assemble Species by Automatic Partitioning (ASAP) and Generalized Mixed Yule Coalescent (GMYC) provided additional insights. Assemble Species by Automatic Partitioning (ASAP) identified 26 Molecular Operational Taxonomic Units (MOTUs) at a threshold distance of 5.38%, supporting the species partition of A. integrum clade B. Generalized Mixed Yule Coalescent (GMYC) analysis retained the same species complex (A. integrum-geoemydae Complex) inferred from the ASAP analyses. It could be inferred from the present study that the A. integrum clades A and B could be two different putative pseudocryptic species.


Subject(s)
Amblyomma , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 18S , Animals , India , RNA, Ribosomal, 18S/analysis , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Electron Transport Complex IV/analysis , Electron Transport Complex IV/genetics , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Deer/parasitology
15.
Zootaxa ; 5410(1): 91-111, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38480255

ABSTRACT

We describe a new genus Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914, a tick of North Queensland, Australia, and Papua New Guinea.


Subject(s)
Ticks , Animals , Queensland , Amblyomma , Papua New Guinea , Australia
16.
Ticks Tick Borne Dis ; 15(3): 102323, 2024 May.
Article in English | MEDLINE | ID: mdl-38387163

ABSTRACT

The Amblyomma marmoreum complex includes afrotropical species, such as Amblyomma sparsum, a three-host tick that parasitizes reptiles, birds, and mammals, and is a recognized vector of Ehrlichia ruminantium. However, the lack of morphological, genetic and ecological data on A. sparsum has caused considerable confusion in its identification. In this study, we used microscopy and metagenomic approaches to analyze A. sparsum ticks collected from a puff adder snake (Bitis arietans) in southwest Senegal (an endemic rickettsioses area) in order to supplement previous morphological descriptions, provide novel genomic data for the A. marmoreum complex, and describe the genome of a novel spotted fever group Rickettsia strain. Based on stereoscope and scanning electron microscopy (SEM) morphological evaluations, we provide high-quality images and new insights about punctation and enameling in the adult male of A. sparsum to facilitate identification for future studies. The metagenomic approach allowed us assembly the complete mitochondrial genome of A. sparsum, as well as the nearly entire chromosome and complete plasmid sequences of a novel Rickettsia africae strain. Phylogenomic analyses demonstrated a close relationship between A. sparsum and Amblyomma nuttalli for the first time and confirmed the position of A. sparsum within the A. marmoreum complex. Our results provide new insights into the systematics of A. sparsum and A. marmoreum complex, as well as the genetic diversity of R. africae in the Afrotropical region. Future studies should consider the possibility that A. sparsum may be a vector for R. africae.


Subject(s)
Ixodidae , Rickettsia , Ticks , Male , Animals , Ixodidae/microbiology , Amblyomma , Rickettsia/genetics , Ticks/microbiology , Mammals
17.
Exp Appl Acarol ; 92(3): 439-462, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38388882

ABSTRACT

In Ecuador, the main tick species affecting cattle are Rhipicephalus microplus and Amblyomma cajennense sensu lato. Understanding their spatial distribution is crucial. To assess their distribution, data from 2895 farms visited between 2012 and 2017 were utilized. Ticks were collected during animal inspections, with each farm's location georeferenced. Bioclimatic variables and vapor pressure deficit data were obtained from Climatologies at High resolution for the Earth´s Land Surface Areas (CHELSA) dataset. They were overlaid to develop predictive maps for each species using Random Forest (RF) models. The cross-validation results for RF prediction models showed high accuracy for both R. microplus and A. cajennense s.l. presence with values of accuracy = 0.97 and 0.98, sensitivity = 0.96 and 0.99, and specificity = 0.96 and 0.93, respectively. A carefully selected subset of bioclimatic variables was used to describe the presence of each tick species. Higher levels of precipitation had positive effect on the presence of R. microplus but a negative effect on A. cajennense s.l. In contrast, isothermality (BIO3) was more important for the presence of A. cajennense s.l. compared to R. microplus. As a result, R. microplus had a broader distribution across the country, while A. cajennense s.l. was mainly found in coastal areas with evident seasonality. The coexistence of both species in some regions could be attributed to transitional zones, whereas high altitudes limited tick presence. This information can aid in developing appropriate tick management plans, particularly considering A. cajennense s.l.'s broad host range species and R. microplus's specificity for cattle. Moreover, the predictive models can identify areas at risk of associated challenging hemoparasite, requiring special attention and mitigation measures.


Subject(s)
Amblyomma , Animal Distribution , Cattle Diseases , Climate , Rhipicephalus , Tick Infestations , Animals , Ecuador , Cattle , Rhipicephalus/physiology , Amblyomma/physiology , Amblyomma/growth & development , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Cattle Diseases/parasitology , Cattle Diseases/epidemiology
18.
Exp Appl Acarol ; 92(3): 463-477, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361037

ABSTRACT

Ticks are hematophagous arthropods and, during feeding, may transmit pathogens to vertebrate hosts, including humans. This study aimed to investigate the presence of Rickettsia spp. in ticks collected between 2010 and 2013 from free-ranging capybaras (Hydrochoerus hydrochaeris) and opossums (Didelphis albiventris) that inhabit Sabiá Park in Uberlândia, Brazil. Overall, 1,860 ticks were collected: 1,272 (68.4%) from capybaras (487 of the species Amblyomma sculptum, 475 adults and 12 nymphs; 778 Amblyomma dubitatum, 727 adults and 51 nymphs; and seven larva clusters of the genus Amblyomma); and 588 (31.6%) from opossums (21 A. sculptum, one adult and 20 nymphs; 79 A. dubitatum, all nymphs; 15 Ixodes loricatus, 12 adults and three nymphs; 457 Amblyomma sp. larva clusters; 15 Ixodes sp. larva clusters; and one Argasidae larva cluster). Out of 201 DNA samples tested for the presence of Rickettsia spp. DNA using polymerase chain reaction (PCR) 12 showed amplification of a gtlA gene segment that was specific to Rickettsia bellii, a bacterium non-pathogenic to humans. As there has been a report showing serological evidence of infections caused by Rickettsia species of the spotted fever group (SFG) in capybaras and opossums in the park, including Rickettsia rickettsii, the etiological agent of Brazilian spotted fever, and considering the presence of A. sculptum ticks, which are aggressive to humans, as well as these vertebrate hosts, which are amplifiers of R. rickettsii, it is important to monitor the presence of SFG rickettsiae in the Sabiá Park, which is visited daily by thousands of people.


Subject(s)
Didelphis , Ixodidae , Larva , Nymph , Rickettsia , Animals , Brazil , Rickettsia/isolation & purification , Nymph/growth & development , Nymph/microbiology , Nymph/physiology , Larva/microbiology , Larva/growth & development , Larva/physiology , Ixodidae/microbiology , Ixodidae/growth & development , Ixodidae/physiology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Female , Parks, Recreational , Amblyomma/microbiology , Amblyomma/growth & development , Male , Rodentia/parasitology , Opossums/parasitology
19.
Exp Appl Acarol ; 92(3): 423-437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411794

ABSTRACT

Amblyomma ticks pose a significant public health threat due to their potential to transmit pathogens associated with rickettsial diseases. (E)-2-octenal, a compound found in donkeys (Equus asinus), exhibits strong repellent properties against Amblyomma sculptum nymphs under laboratory conditions. This study assessed the effectiveness of the (E)-2-octenal in wearable slow-release devices for personal human protection against Amblyomma ticks under natural conditions. Slow-release devices treated with (E)-2-octenal and untreated controls were prepared and tested on two volunteers walking through a tick-infested area in Goiania, Brazil. The experiment was conducted twice daily for three series of 10 days, with each volunteer wearing two devices attached to each leg, one on the ankle and one just above the thigh. Volunteers with control and treated devices exchanged them between rounds. Also, the daily release rate of (E)-2-octenal from the slow-release devices was determined in the laboratory, increasing significantly from 0.77 ± 0.14 µg/day on the first day to 9.93 ± 1.92 µg/day on the 4th day and remaining constant until the 16th day. A total of 5409 ticks were collected from both volunteers. Treated devices resulted in recovering fewer ticks (n = 1,666; 31%) compared to untreated devices (control: n = 3,743; 69%). (E)-2-octenal effectively repelled Amblyomma spp. larvae, A. sculptum adults, and exhibited pronounced repellency against A. dubitatum nymphs and adults. These findings suggest the potential of (E)-2-octenal delivered by wearable slow-release devices as a green-based repellent. Further improvements, however, are necessary to provide better protection for humans against A. sculptum and A. dubitatum in field conditions.


Subject(s)
Amblyomma , Nymph , Animals , Amblyomma/physiology , Nymph/growth & development , Nymph/physiology , Brazil , Humans , Tick Control/methods , Female , Insect Repellents , Male , Pheromones/pharmacology , Adult
20.
Acta Trop ; 253: 107158, 2024 May.
Article in English | MEDLINE | ID: mdl-38402921

ABSTRACT

Tick-borne viruses (TBV) have gained public health relevance in recent years due to the recognition of human-associated fatal cases and the increase in tick-borne disease and transmission. However, many tick species have not been studied for their potential to transmit pathogenic viruses, especially those found in Latin America. To gain better understanding of the tick virome, we conducted targeted amplification using broadly-reactive consensus-degenerate pan-viral targeting viruses from the genera Flavivirus, Bandavirus, Uukuvirus, and Orthonairovirus genus. Additionally, we conducted unbiased metagenomic analyses to investigate the presence of viral RNA sequences in Amblyomma cajennense, A. patinoi and Rhipicephalus microplus ticks collected from a horse slaughter plant in Medellín, Colombia. While no viral products were detected by PCR, results of the metagenomic analyses revealed the presence of viral genomes belonging to the genera Phlebovirus, Bandavirus, and Uukuvirus, including Lihan Tick Virus (LTV), which was previously reported in Rhipicephalus microplus from Colombia. Overall, the results emphasized the enormous utility of the next-generation sequencing in identifying virus genetic diversity presents in ticks and other species of vectors and reservoirs.


Subject(s)
RNA Viruses , Rhipicephalus , Animals , Humans , Horses , Rhipicephalus/genetics , Amblyomma , Colombia , Virome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...