Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(23): 33960-33974, 2024 May.
Article in English | MEDLINE | ID: mdl-38693457

ABSTRACT

The quantity of DNA in angiosperms exhibits variation attributed to many external influences, such as environmental factors, geographical features, or stress factors, which exert constant selection pressure on organisms. Since invasive species possess adaptive capabilities to acclimate to novel environmental conditions, ragweed (Ambrosia artemisiifolia L.) was chosen as a subject for investigating their influence on genome size variation. Slovakia has diverse climatic conditions, suitable for testing the hypothesis that air temperature and precipitation, the main limiting factors of ragweed occurrence, would also have an impact on its genome size. Our results using flow cytometry confirmed this hypothesis and also found a significant association with geographical features such as latitude, altitude, and longitude. We can conclude that plants growing in colder environments farther from oceanic influences exhibit smaller DNA amounts, while optimal growth conditions result in a greater variability in genome size, reflecting the diminished effect of selection pressure.


Subject(s)
Ambrosia , Genome Size , Ambrosia/genetics , Slovakia , Genome, Plant
2.
Plant Genome ; 17(2): e20442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38481294

ABSTRACT

Ambrosia artemisiifolia and Ambrosia trifida (Asteraceae) are important pest species and the two greatest sources of aeroallergens globally. Here, we took advantage of a hybrid to simplify genome assembly and present chromosome-level assemblies for both species. These assemblies show high levels of completeness with Benchmarking Universal Single-Copy Ortholog (BUSCO) scores of 94.5% for A. artemisiifolia and 96.1% for A. trifida and long terminal repeat (LTR) Assembly Index values of 26.6 and 23.6, respectively. The genomes were annotated using RNA data identifying 41,642 genes in A. artemisiifolia and 50,203 in A. trifida. More than half of the genome is composed of repetitive elements, with 62% in A. artemisiifolia and 69% in A. trifida. Single copies of herbicide resistance-associated genes PPX2L, HPPD, and ALS were found, while two copies of the EPSPS gene were identified; this latter observation may reveal a possible mechanism of resistance to the herbicide glyphosate. Ten of the 12 main allergenicity genes were also localized, some forming clusters with several copies, especially in A. artemisiifolia. The evolution of genome structure has differed among these two species. The genome of A. trifida has undergone greater rearrangement, possibly the result of chromoplexy. In contrast, the genome of A. artemisiifolia retains a structure that makes the allotetraploidization of the most recent common ancestor of the Heliantheae Alliance the clearest feature of its genome. When compared to other Heliantheae Alliance species, this allowed us to reconstruct the common ancestor's karyotype-a key step for furthering of our understanding of the evolution and diversification of this economically and allergenically important group.


Subject(s)
Allergens , Ambrosia , Genome, Plant , Herbicide Resistance , Ambrosia/genetics , Allergens/genetics , Herbicide Resistance/genetics , Humans , Karyotype , Herbicides/pharmacology , Chromosomes, Plant
3.
Int J Biol Macromol ; 259(Pt 2): 129232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191104

ABSTRACT

Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.


Subject(s)
Ambrosia , Hypersensitivity , Ambrosia/genetics , Antigens, Plant/genetics , Ecosystem , Allergens/genetics , Allergens/chemistry , Pollen/genetics , Chromosomes
4.
Ecol Appl ; 34(1): e2903, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37347236

ABSTRACT

Rapid adaptive evolution and phenotypic plasticity are two mechanisms that often underlie invasiveness of alien plant species, but whether they can co-occur within invasive plant populations under altered environmental conditions such as nitrogen (N) enrichment has seldom been explored. Latitudinal clines in plant trait responses to variation in environmental factors may provide evidence of local adaptation. Here, we inferred the relative contributions of phenotypic plasticity and local adaptation to the performance of the invasive plant Ambrosia artemisiifolia under different soil N levels, using a common garden approach. We grew A. artemisiifolia individuals raised from seeds that were sampled from six invasive populations along a wide latitudinal cline in China (23°42' N to 45°43' N) under three N (0, 5, and 10 g N m-2 ) levels in a common garden. Results show significant interpopulation genetic differentiation in plant height, number of branches, total biomass, and transpiration rate of the invader A. artemisiifolia across the N treatments. The populations also expressed genetic differentiation in basal diameter, growth rate, leaf area, seed width, root biomass, aboveground biomass, stomatal conductance, and intercellular CO2 concentration regardless of N treatments. Moreover, plants from different populations of the invader displayed plastic responses in time to first flower, hundred-grain weight, net photosynthetic rate, and relative biomass allocation to roots and shoots and seed length under different N treatments. Additionally, individuals of A. artemisiifolia from higher latitudes grew shorter and allocated less biomass to the roots regardless of N treatment, while latitudinal cline (or lack thereof) in other traits depended on the level of N in which the plants were grown. Overall, these results suggest that rapid adaptive evolution and phenotypic plasticity in the various traits that we quantified may jointly contribute to invasiveness of A. artemisiifolia under different levels of N availability. More broadly, the results support the idea that phenotypic plasticity and rapid adaptive evolution can jointly enable invasive plants to colonize a wide range of environmental conditions.


Subject(s)
Ambrosia , Nitrogen , Humans , Ambrosia/genetics , Adaptation, Physiological/genetics , Phenotype , Plants , Genetics, Population , Introduced Species
5.
BMC Plant Biol ; 23(1): 510, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875807

ABSTRACT

BACKGROUND: Non-target site resistance (NTSR) to herbicides is a polygenic trait that threatens the chemical control of agricultural weeds. NTSR involves differential regulation of plant secondary metabolism pathways, but its precise genetic determinisms remain fairly unclear. Full-transcriptome sequencing had previously been implemented to identify NTSR genes. However, this approach had generally been applied to a single weed population, limiting our insight into the diversity of NTSR mechanisms. Here, we sought to explore the diversity of NTSR mechanisms in common ragweed (Ambrosia artemisiifolia L.) by investigating six field populations from different French regions where NTSR to acetolactate-synthase-inhibiting herbicides had evolved. RESULTS: A de novo transcriptome assembly (51,242 contigs, 80.2% completeness) was generated as a reference to seek genes differentially expressed between sensitive and resistant plants from the six populations. Overall, 4,609 constitutively differentially expressed genes were identified, of which none were common to all populations, and only 197 were shared by several populations. Similarly, population-specific transcriptomic response was observed when investigating early herbicide response. Gene ontology enrichment analysis highlighted the involvement of stress response and regulatory pathways, before and after treatment. The expression of 121 candidate constitutive NTSR genes including CYP71, CYP72, CYP94, oxidoreductase, ABC transporters, gluco and glycosyltransferases was measured in 220 phenotyped plants. Differential expression was validated in at least one ragweed population for 28 candidate genes. We investigated whether expression patterns at some combinations of candidate genes could predict phenotype. Within populations, prediction accuracy decreased when applied to an additional, independent plant sampling. Overall, a wide variety of genes linked to NTSR was identified within and among ragweed populations, of which only a subset was captured in our experiments. CONCLUSION: Our results highlight the complexity and the diversity of NTSR mechanisms that can evolve in a weed species in response to herbicide selective pressure. They strongly point to a non-redundant, population-specific evolution of NTSR to ALS inhibitors in ragweed. It also alerts on the potential of common ragweed for rapid adaptation to drastic environmental or human-driven selective pressures.


Subject(s)
Acetolactate Synthase , Herbicides , Humans , Ambrosia/genetics , Herbicides/pharmacology , Transcriptome , Herbicide Resistance/genetics
6.
Commun Biol ; 6(1): 1072, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865654

ABSTRACT

Common ragweed is an invasive alien species causing severe allergies in urban residents. Understanding its urban invasion pathways is crucial for effective control. However, knowledge is limited, with most studies focusing on agricultural and natural areas, and occurrence record-based studies exhibiting uncertainties. We address this gap through a study in East China cities, combining population genetics and occurrence records. Leaf samples from 37 urban common ragweed populations across 15 cities are collected. Genomic and chloroplast DNA extraction facilitate analysis of spatial genetic patterns and gene flows. Additionally, international grain trade data is examined to trace invasion sources. Results indicate spatial genetic patterns impacted by multiple introductions over time. We infer the modern grain trade between the United States and China as the primary invasion pathway. Also, cities act as transportation hubs and ports of grain importation might disperse common ragweed to urban areas. Invasive species control should account for cities as potential landing and spread hubs of common ragweed.


Subject(s)
Ambrosia , Genetics, Population , United States , Cities , Ambrosia/genetics , Introduced Species , Agriculture
7.
Mol Ecol ; 32(15): 4381-4400, 2023 08.
Article in English | MEDLINE | ID: mdl-37211644

ABSTRACT

Xylosandrus crassiusculus, a fungus-farming wood borer native to Southeastern Asia, is the most rapidly spreading invasive ambrosia species worldwide. Previous studies focusing on its genetic structure suggested the existence of cryptic genetic variation in this species. Yet, these studies used different genetic markers, focused on different geographical areas and did not include Europe. Our first goal was to determine the worldwide genetic structure of this species based on both mitochondrial and genomic markers. Our second goal was to study X. crassiusculus' invasion history on a global level and identify the origins of the invasion in Europe. We used a COI and RAD sequencing design to characterize 188 and 206 specimens worldwide, building the most comprehensive genetic data set for any ambrosia beetle to date. The results were largely consistent between markers. Two differentiated genetic clusters were invasive, albeit in different regions of the world. The markers were inconsistent only for a few specimens found exclusively in Japan. Mainland USA could have acted as a source for further expansion to Canada and Argentina through stepping stone expansion and bridgehead events. We showed that Europe was only colonized by Cluster II through a complex invasion history including several arrivals from multiple origins in the native area, and possibly including bridgehead from the United States. Our results also suggested that Spain was colonized directly from Italy through intracontinental dispersion. It is unclear whether the mutually exclusive allopatric distribution of the two clusters is due to neutral effects or due to different ecological requirements.


Subject(s)
Coleoptera , Weevils , Animals , Coleoptera/genetics , Ambrosia/genetics , Metagenomics , Europe , Introduced Species
8.
Sci Rep ; 13(1): 3736, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36878947

ABSTRACT

The perennial western ragweed (Ambrosia psilostachya DC.) arrived from North America to Europe in the late nineteenth century and behaves invasive in its non-native range. Due to its efficient vegetative propagation via root suckers, A. psilostachya got naturalized in major parts of Europe forming extensive populations in Mediterranean coastal areas. The invasion history, the spreading process, the relationships among the populations as well as population structuring is not yet explored. This paper aims to give first insights into the population genetics of A. psilostachya in its non-native European range based on 60 sampled populations and 15 Simple Sequence Repeats (SSR). By AMOVA analysis we detected 10.4% of genetic variation occurring among (pre-defined) regions. These regions represent important harbors for trading goods from America to Europe that might have served as source for founder populations. Bayesian Clustering revealed that spatial distribution of genetic variation of populations is best explained by six groups, mainly corresponding to regions around important harbors. As northern populations show high degrees of clonality and lowest levels of within-population genetic diversity (mean Ho = 0.40 ± 0.09), they could preserve the initial genetic variation levels by long-lived clonal genets. In Mediterranean populations A. psilostachya expanded to millions of shoots. Some of those were obviously spread by sea current along the coast to new sites, where they initiated populations characterized by a lower genetic diversity. For the future, the invasion history in Europe might get clearer after consideration of North American source populations of western ragweed.


Subject(s)
Ambrosia , Asteraceae , Ambrosia/genetics , Bayes Theorem , Europe , Cluster Analysis
9.
Nat Commun ; 14(1): 1717, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973251

ABSTRACT

Adaptation is the central feature and leading explanation for the evolutionary diversification of life. Adaptation is also notoriously difficult to study in nature, owing to its complexity and logistically prohibitive timescale. Here, we leverage extensive contemporary and historical collections of Ambrosia artemisiifolia-an aggressively invasive weed and primary cause of pollen-induced hayfever-to track the phenotypic and genetic causes of recent local adaptation across its native and invasive ranges in North America and Europe, respectively. Large haploblocks-indicative of chromosomal inversions-contain a disproportionate share (26%) of genomic regions conferring parallel adaptation to local climates between ranges, are associated with rapidly adapting traits, and exhibit dramatic frequency shifts over space and time. These results highlight the importance of large-effect standing variants in rapid adaptation, which have been critical to A. artemisiifolia's global spread across vast climatic gradients.


Subject(s)
Ambrosia , Plant Weeds , Ambrosia/genetics , Plant Weeds/genetics , Acclimatization , Adaptation, Physiological/genetics , Biological Evolution
10.
Sci Adv ; 8(34): eabo5115, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36001672

ABSTRACT

Invasive species are a key driver of the global biodiversity crisis, but the drivers of invasiveness, including the role of pathogens, remain debated. We investigated the genomic basis of invasiveness in Ambrosia artemisiifolia (common ragweed), introduced to Europe in the late 19th century, by resequencing 655 ragweed genomes, including 308 herbarium specimens collected up to 190 years ago. In invasive European populations, we found selection signatures in defense genes and lower prevalence of disease-inducing plant pathogens. Together with temporal changes in population structure associated with introgression from closely related Ambrosia species, escape from specific microbial enemies likely favored the plant's remarkable success as an invasive species.


Subject(s)
Ambrosia , Introduced Species , Ambrosia/genetics , Europe , Genomics , Sequence Analysis, DNA
11.
Mol Immunol ; 147: 170-179, 2022 07.
Article in English | MEDLINE | ID: mdl-35598503

ABSTRACT

Giant ragweed (Ambrosia trifida) pollen is closely associated with respiratory allergy in late summer and autumn, and the prevalence of giant ragweed pollen allergy progressively increases. Compared with short ragweed (Ambrosia artemisiifolia), allergenic components from giant ragweed pollen are poorly investigated. To promote component-resolved diagnosis and treatment for giant ragweed pollen allergy, it becomes necessary to identify and characterize unknown allergens from giant ragweed pollen. In the present study, we identified and characterized a new cysteine-protease (CP) allergen from giant ragweed pollen, named as Amb t CP. The cloned Amb t CP gene encoded 387 amino acids. Recombinant Amb t CP (rAmb t CP) and natural Amb t CP (nAmb t CP) were purified by high-affinity Ni2+ resin and immunoaffinity chromatography respectively. During refolding, purified rAmb t CP could autocatalytically converted to its mature forms displaying a higher enzymatic activity. Moreover, the autocatalytic conversion of proforms to mature forms of nAmb t CP could cause their amount to change in giant ragweed pollen extracts. Then, the allergenicity of Amb t CP was characterized: 23 (33.8%) of 68 Chinese patients with ragweed pollen allergy showed positive IgE binding to nAmb t CP by enzyme-linked immunosorbent assay (ELISA); the result of subsequent ELISA showed that IgE-binding activity of proforms and mature forms of rAmb t CP was different, with positive rate of 39.1% (9/23) and 47.8% (11/23) respectively; Amb t CP showed IgE cross-reactivity with the CP components from short ragweed, Artemisia annua and Artemisia sieversiana pollen. Our findings will help to promote component-resolved diagnosis and treatment for giant ragweed pollen allergy, standardize allergen products and individualize allergen-specific immunotherapy.


Subject(s)
Cysteine Proteases , Hypersensitivity , Rhinitis, Allergic, Seasonal , Allergens/chemistry , Allergens/genetics , Ambrosia/genetics , Ambrosia/metabolism , Antigens, Plant/genetics , Cysteine Proteases/genetics , Humans , Immunoglobulin E/metabolism , Plant Extracts , Plant Proteins/chemistry , Plant Proteins/genetics , Pollen
12.
Plant Sci ; 317: 111202, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35193749

ABSTRACT

Assessing weed capacity to evolve herbicide resistance before resistance occurs in the field is of major interest for chemical weed control. We used herbicide selection followed by controlled crosses to provoke accelerated evolution of resistance to imazamox (imidazolinones) and tribenuron (sulfonyurea), two acetolactate-synthase (ALS) inhibitors targeting Ambrosia artemisiifolia. In natural populations with no herbicide application records, some plants were initially resistant to metsulfuron (sulfonylurea), a cereal herbicide. Non-target-site-based resistance (NTSR) to metsulfuron was substantially increased from these plants within two generations. NTSR to imazamox and/or tribenuron emerged in metsulfuron-selected G1 progenies and was strongly reinforced in G2 progenies selected by imazamox or tribenuron. NTSR to the herbicides assayed was endowed by partly overlapping and partly specific pathways. Herbicide sensitivity bioassays conducted over 62 ALS-inhibitor-sprayed fields identified emerging resistance to imazamox and/or tribenuron in 14 A. artemisiifolia populations. Only NTSR was detected in 13 of these populations. In the last population, NTSR was present together with a mutant, herbicide-resistant ALS allele bearing an Ala-205-Thr substitution. NTSR was thus by far the predominant type of resistance to ALS inhibitors in France. This confirmed accelerated selection results and demonstrated the relevance of this approach to anticipate resistance evolution in a dicotyledonous weed.


Subject(s)
Acetolactate Synthase , Ambrosia/genetics , Evolution, Molecular , Herbicide Resistance , Herbicides , Acetolactate Synthase/antagonists & inhibitors , Allergens , Herbicide Resistance/genetics , Herbicides/pharmacology , Plant Weeds/genetics
13.
Sci Rep ; 11(1): 19904, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620913

ABSTRACT

Ambrosia artemisiifolia L. (common ragweed) is a globally invasive, allergenic, troublesome arable weed. ALS-inhibiting herbicides are broadly used in Europe to control ragweed in agricultural fields. Recently, ineffective treatments were reported in France. Target site resistance (TSR), the only resistance mechanism described so far for ragweed, was sought using high-throughput genotyping-by-sequencing in 213 field populations randomly sampled based on ragweed presence. Additionally, non-target site resistance (NTSR) was sought and its prevalence compared with that of TSR in 43 additional field populations where ALS inhibitor failure was reported, using herbicide sensitivity bioassay coupled with ALS gene Sanger sequencing. Resistance was identified in 46 populations and multiple, independent resistance evolution demonstrated across France. We revealed an unsuspected diversity of ALS alleles underlying resistance (9 amino-acid substitutions involved in TSR detected across 24 populations). Remarkably, NTSR was ragweed major type of resistance to ALS inhibitors. NTSR was present in 70.5% of the resistant plants and 74.1% of the fields harbouring resistance. A variety of NTSR mechanisms endowing different resistance patterns evolved across populations. Our study provides novel data on ragweed resistance to herbicides, and emphasises that local resistance management is as important as mitigating gene flow from populations where resistance has arisen.


Subject(s)
Acetolactate Synthase/genetics , Ambrosia/drug effects , Ambrosia/genetics , Herbicide Resistance , Herbicides/pharmacology , Acetolactate Synthase/metabolism , Alleles , Ambrosia/classification , Ambrosia/enzymology , Amino Acid Substitution , France , Genotype , Geography , Mutation , Phylogeny , Plant Weeds
14.
Mol Phylogenet Evol ; 130: 104-114, 2019 01.
Article in English | MEDLINE | ID: mdl-30292693

ABSTRACT

Ambrosiinae are one of the most distinct subtribes in the Heliantheae alliance (Asteraceae), mainly due to specialization toward wind pollination. Taxa of the subtribe are principally native to the Americas, although some species have attained a cosmopolitan distribution. Members of subtribe Engelmanniinae are considered close to Ambrosiinae, due to shared morphological traits. However, the placement of Ambrosiinae within the Heliantheae alliance has not yet been corroborated by phylogenetic analyses. In the present study, we test the circumscription of subtribe Ambrosiinae and examine relationships among its genera. We used sequence information from three plastid (psbA-trnH, trnQ-rps16 and trnL-F) and two nuclear (ITS and D35) marker regions. Phylogenetic inference analyses were conducted, applying Bayesian Inference (BI) and Maximum Likelihood (ML). Subtribe Ambrosiinae is found monophyletic or nearly so in all analyses. The genera Dugesia and Rojasianthe (previously considered part of subtribe Engelmanniinae) in some cases cluster together with Ambrosiinae; these genera are clearly not part of Engelmanniinae. Within Ambrosiinae, the genera Parthenium and Parthenice occupy basal positions, whereas members of the genus Ambrosia are the most derived representatives of the subtribe. Previous subdivision of Ambrosiinae into "Iveae" (members having androgynous capitula and free achenes) and "Ambrosieae" (genera with unisexual heads and achenes enclosed in burs) is not corroborated. Results also allow consideration of relationships among species and subgeneric groups within Parthenium, Iva, and Ambrosia.


Subject(s)
Asteraceae/classification , Asteraceae/genetics , Phylogeny , Ambrosia/classification , Ambrosia/genetics , Bayes Theorem , DNA, Plant/genetics , Likelihood Functions , Phenotype , Plastids/genetics , Sequence Analysis, DNA
15.
J Exp Bot ; 69(10): 2647-2658, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29547904

ABSTRACT

During the last two centuries, the North American common ragweed (Ambrosia artemisiifolia L.) invaded a large part of the globe. Local adaptation of this species was revealed by a common garden experiment, demonstrating that the distribution of the species in Europe could extend considerably to the North. Our study compares two populations of common ragweed (one from the native range and one from the invaded range) that differ in flowering time in the wild: the invasive population flowers earlier than the native population under non-inductive long-day photoperiods. Experiments conducted in controlled environments established that the two populations differ in their flowering time even under inductive short-day photoperiods, suggesting a change in autonomous flowering control. Genetic analysis revealed that early flowering is dominantly inherited and accompanied by the increased expression of the floral activator AaFTL1 and decreased expression of the floral repressor AaFTL2. Early flowering is also accompanied by reduced reproductive output, which is evolutionarily disadvantageous under long vegetation periods. In contrast, under short vegetation periods, only early-flowering plants can produce any viable seeds, making the higher seed set of late-flowering plants irrelevant. Thus, earlier flowering appears to be a specific adaptation to the higher latitudes of northern Europe.


Subject(s)
Ambrosia/physiology , Flowers/growth & development , Photoperiod , Ambrosia/genetics , Europe , Flowers/genetics , Gene Expression , Genetic Fitness , Introduced Species , Reproduction , Seasons
16.
Mol Phylogenet Evol ; 120: 335-341, 2018 03.
Article in English | MEDLINE | ID: mdl-29274739

ABSTRACT

Ambrosia (Asteraceae) is a taxonomically difficult genus of weedy, wind-pollinated plants with an apparent center of diversity in the Sonoran Desert of North America. Determining Ambrosia's evolutionary relationships has been the subject of much interest, with numerous studies using morphological characters, cytology, comparative phytochemistry, and chloroplast restriction site variation to produce conflicting accounts the relationships between Ambrosia species, as well as the classification of their close relatives in Franseria and Hymenoclea. To resolve undetermined intra-generic relationships within Ambrosia, we used DNA extracted from tissues obtained from seed banks and herbarium collections to generate multi-locus genetic data representing nearly all putative species, including four from South America. We performed Bayesian and Maximum-Likelihood phylogenetic analyses of six chloroplast-genome and two nuclear-genome markers, enabling us to infer monophyly for the genus, resolve major infra-generic species clusters, as well as to resolve open questions about the evolutionary relationships of several Ambrosia species and former members of Franseria. We also provide molecular data supporting the hypothesis that A. sandersonii formed through the hybridization of A. eriocentra and A. salsola. The topology of our chloroplast DNA phylogeny is almost entirely congruent with the most recent molecular work based on chloroplast restriction site variation of a much more limited sampling of 14 North American species of Ambrosia, although our improved sampling of global Ambrosia diversity enables us to draw additional conclusions. As our study is the first direct DNA sequence-based phylogenetic analyses of Ambrosia, we analyze the data in relation to previous taxonomic studies and discuss several instances of chloroplast/nuclear incongruence that leave the precise geographic center of origin of Ambrosia in question.


Subject(s)
Ambrosia/classification , Phylogeny , Ambrosia/genetics , Bayes Theorem , DNA, Chloroplast/classification , DNA, Chloroplast/genetics , DNA, Plant/chemistry , DNA, Plant/isolation & purification , DNA, Plant/metabolism , Evolution, Molecular , Genetic Variation , Hybridization, Genetic , Sequence Analysis, DNA
17.
Pest Manag Sci ; 74(5): 1071-1078, 2018 May.
Article in English | MEDLINE | ID: mdl-28266132

ABSTRACT

BACKGROUND: Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. RESULTS: Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. CONCLUSION: These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry.


Subject(s)
Ambrosia/drug effects , Cell Death/drug effects , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/pharmacology , Plant Weeds/drug effects , Ambrosia/genetics , Ambrosia/physiology , Glycine/pharmacology , Midwestern United States , Ontario , Plant Weeds/physiology , Tennessee , Glyphosate
18.
Sci Rep ; 7(1): 17067, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213093

ABSTRACT

A field experiment was conducted to quantify pollen mediated gene flow (PMGF) from glyphosate-resistant (GR) to glyphosate-susceptible (GS) giant ragweed under simulated field conditions using glyphosate resistance as a selective marker. Field experiments were conducted in a concentric design with the GR giant ragweed pollen source planted in the center and GS giant ragweed pollen receptors surrounding the center in eight directional blocks at specified distances (between 0.1 and 35 m in cardinal and ordinal directions; and additional 50 m for ordinal directions). Seeds of GS giant ragweed were harvested from the pollen receptor blocks and a total of 100,938 giant ragweed plants were screened with glyphosate applied at 2,520 g ae ha-1 and 16,813 plants confirmed resistant. The frequency of PMGF was fit to a double exponential decay model selected by information-theoretic criteria. The highest frequency of gene flow (0.43 to 0.60) was observed at ≤0.5 m from the pollen source and reduced rapidly with increasing distances; however, gene flow (0.03 to 0.04) was detected up to 50 m. The correlation between PMGF and wind parameters was inconsistent in magnitude, direction, and years.


Subject(s)
Ambrosia/genetics , Gene Flow , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Ambrosia/drug effects , Glycine/pharmacology , Models, Theoretical , Pollen/drug effects , Pollen/genetics , Temperature , Glyphosate
19.
Mol Ecol ; 26(20): 5421-5434, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28802079

ABSTRACT

Admixture between differentiated populations is considered to be a powerful mechanism stimulating the invasive success of some introduced species. It is generally facilitated through multiple introductions; however, the importance of admixture prior to introduction has rarely been considered. We assess the likelihood that the invasive Ambrosia artemisiifolia populations of Europe and Australia developed through multiple introductions or were sourced from a historical admixture zone within native North America. To do this, we combine large genomic and sampling data sets analysed with approximate Bayesian computation and random forest scenario evaluation to compare single and multiple invasion scenarios with pre- and postintroduction admixture simultaneously. We show the historical admixture zone within native North America originated before global invasion of this weed and could act as a potential source of introduced populations. We provide evidence supporting the hypothesis that the invasive populations established through multiple introductions from the native range into Europe and subsequent bridgehead invasion into Australia. We discuss the evolutionary mechanisms that could promote invasiveness and evolutionary potential of alien species from bridgehead invasions and admixed source populations.


Subject(s)
Ambrosia/genetics , Genetics, Population , Introduced Species , Australia , Bayes Theorem , Biological Evolution , DNA, Plant/genetics , Europe , Genotype , Models, Genetic , Polymorphism, Single Nucleotide
20.
PLoS One ; 12(5): e0176197, 2017.
Article in English | MEDLINE | ID: mdl-28489870

ABSTRACT

Ambrosia artemisiifolia L., (common ragweed), is an annual invasive and highly troublesome plant species originating from North America that has become widespread across Europe. New sets of genomic and expressed sequence tag (EST) based simple sequence repeats (SSRs) markers were developed in this species using three approaches. After validation, 13 genomic SSRs and 13 EST-SSRs were retained and used to characterize the genetic diversity and population genetic structure of Ambrosia artemisiifolia populations from the native (North America) and invasive (Europe) ranges of the species. Analysing the mating system based on maternal families did not reveal any departure from complete allogamy and excess homozygosity was mostly due the presence of null alleles. High genetic diversity and patterns of genetic structure in Europe suggest two main introduction events followed by secondary colonization events. Cross-species transferability of the newly developed markers to other invasive species of the Ambrosia genus was assessed. Sixty-five percent and 75% of markers, respectively, were transferable from A. artemisiifolia to Ambrosia psilostachya and Ambrosia tenuifolia. 40% were transferable to Ambrosia trifida, this latter species being seemingly more phylogenetically distantly related to A. artemisiifolia than the former two.


Subject(s)
Ambrosia/genetics , Expressed Sequence Tags , Genetic Markers , Genetic Variation , Introduced Species , Europe , North America
SELECTION OF CITATIONS
SEARCH DETAIL
...