Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.786
Filter
1.
Biochim Biophys Acta Proteins Proteom ; 1872(6): 141043, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39128657

ABSTRACT

Canavan disease is caused by mutations in the ASPA gene, leading to diminished catalytic activity of aspartoacylase in the brain. Clinical missense mutations are found throughout the enzyme structure, with many of these mutated enzymes having not only decreased activity but also compromised stability. High-throughput screening of a small molecule library has identified several compounds that significantly increase the thermal stability of the E285A mutant enzyme, the most predominant clinical mutation in Canavan disease, while having a negligible effect on the native enzyme. Based on the initial successes, some structural analogs of these initial hits were selected for further examination. Glutathione, NAAG and patulin were each confirmed to be competitive inhibitors, indicating the binding of these compounds at the dimer interface or near the active site of the E285A enzyme. The experimental results were theoretically examined with the help of the docking analysis method. The structure activity-guided optimization of these compounds can potentially lead to potential pharmacological chaperones that could alleviate the detrimental effect of ASPA mutations in Canavan patients.


Subject(s)
Amidohydrolases , Canavan Disease , Canavan Disease/drug therapy , Canavan Disease/genetics , Canavan Disease/enzymology , Amidohydrolases/genetics , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Humans , Molecular Docking Simulation , Enzyme Stability/drug effects , Mutation, Missense , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Catalytic Domain , Mutation , High-Throughput Screening Assays
2.
Int J Biol Macromol ; 278(Pt 2): 134763, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151849

ABSTRACT

Ethyl carbamate (EC) is classified as a Class 2A carcinogen, and is present in various fermented foods, posing a threat to human health. Urethanase (EC 3.5.1.75) can catalyze EC to produce ethanol, CO2 and NH3. The urethanase (cpUH) from Candida parapsilosis can hydrolyze EC, but its low affinity and poor stability hinder its application. Here, the structure of cpUH from Candida parapsilosis was determined with a resolution of 2.66 Å. Through sequence alignment and site-directed mutagenesis, it was confirmed that cpUH contained the catalytic triad Ser-cisSer-Lys of the amidase family. Then, the structure-oriented engineering mutant N194V of urethanase was obtained. Its urethanase activity increased by 6.12 %, the catalytic efficiency (kcat/Km) increased by 21.04 %, and the enzyme stability was also enhanced. Modeling and molecular docking analysis showed that the variant N194V changed the number of hydrogen bonds between the substrate and the catalytic residue, resulting in enhanced catalytic ability. MD simulation also demonstrated that the introduction of hydrophobic amino acid Val reduced the RMSD value and increased protein stability. The findings of this study suggest that the N194V variant exhibits significant potential for industrial applications due to its enhanced affinity for substrate binding, improved catalytic efficiency, and increased enzyme stability.


Subject(s)
Candida parapsilosis , Enzyme Stability , Molecular Docking Simulation , Candida parapsilosis/enzymology , Candida parapsilosis/genetics , Substrate Specificity , Mutagenesis, Site-Directed , Molecular Dynamics Simulation , Crystallography, X-Ray , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amidohydrolases/genetics , Catalytic Domain , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Amino Acid Sequence , Protein Conformation , Computer Simulation , Models, Molecular , Kinetics , Protein Binding , Mutagenesis
3.
Oncotarget ; 15: 550-561, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102218

ABSTRACT

Overexpression of the secretory protein renalase-1 negatively impacts the survival of melanoma and pancreatic cancer patients, while inhibition of renalase-1 signaling drives tumor rejection by promoting T-cell activation. Thus, we investigated the chemical complementarity between melanoma-resident, T-cell receptor (TCR) complementarity-determining region 3 (CDR3) amino acid sequences (AAs) and the renalase-1 protein. Increasing complementarity of TCR CDR3s to renalase-1 AAs, as assessed by a chemical complementarity scoring algorithm, was associated with improved overall survival (OS) in melanoma patients. The expression levels of several immune signature genes were significantly, positively correlated with increasing TCR CDR3-renalase-1 complementarity scores. Additionally, the survival association observed with high complementarity of TCR CDR3s to renalase-1 AAs was more robust in cases with low renalase-1 gene expression levels. Mapping of TCR CDR3-renalase-1 in silico interaction sites identified major epitope candidates including RP220, the signaling module of the renalase-1 protein, consistent with the fact that a monoclonal antibody to RP220 is a potent inhibitor of melanoma growth. These findings indicate that renalase-1 is a potential antigen for TCR recognition in melanoma and could be considered as a target for immunotherapy.


Subject(s)
Complementarity Determining Regions , Melanoma , Receptors, Antigen, T-Cell , Humans , Melanoma/immunology , Melanoma/genetics , Melanoma/mortality , Melanoma/pathology , Melanoma/metabolism , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Amidohydrolases/metabolism , Amidohydrolases/genetics , Prognosis , Female , Monoamine Oxidase
4.
Gut Microbes ; 16(1): 2379566, 2024.
Article in English | MEDLINE | ID: mdl-39013030

ABSTRACT

Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants with no specific treatments available. We aimed to identify the molecular mechanisms underlying NEC and investigate the therapeutic effects of Bacteroides fragilis on NEC. Clinical samples of infant feces, bile acid-targeted metabolomics, pathological staining, bioinformatics analysis, NEC rat model, and co-immunoprecipitation were used to explore the pathogenesis of NEC. Taxonomic characterization of the bile salt hydrolase (bsh) gene, enzyme activity assays, 16S rRNA sequencing, and organoids were used to explore the therapeutic effects of B. fragilis on NEC-related intestinal damage. Clinical samples, NEC rat models, and in vitro experiments revealed that total bile acid increased in the blood but decreased in feces. Moreover, the levels of FXR and other bile acid metabolism-related genes were abnormal, resulting in disordered bile acid metabolism in NEC. Taurochenodeoxycholic acid accelerated NEC pathogenesis and taurodeoxycholate alleviated NEC. B. fragilis displayed bsh genes and enzyme activity and alleviated intestinal damage by restoring gut microbiota dysbiosis and bile acid metabolism abnormalities by inhibiting the FXR-NLRP3 signaling pathway. Our results provide valuable insights into the therapeutic role of B. fragilis in NEC. Administering B. fragilis may substantially alleviate intestinal damage in NEC.


Subject(s)
Amidohydrolases , Bacteroides fragilis , Bile Acids and Salts , Enterocolitis, Necrotizing , Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Enterocolitis, Necrotizing/metabolism , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/drug therapy , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Bacteroides fragilis/metabolism , Bacteroides fragilis/genetics , Signal Transduction/drug effects , Bile Acids and Salts/metabolism , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Gastrointestinal Microbiome/drug effects , Amidohydrolases/metabolism , Amidohydrolases/genetics , Humans , Rats, Sprague-Dawley , Infant, Newborn , Disease Models, Animal , Male , Female , Probiotics/administration & dosage , Probiotics/pharmacology , Infant, Premature , Dysbiosis/microbiology
5.
J Agric Food Chem ; 72(32): 18067-18077, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39082634

ABSTRACT

Propanil residues can contaminate habitats where microbial degradation is predominant. In this study, an efficient propanil-degrading strain C-1 was isolated from paddy and identified as Rhodococcus sp. It can completely degrade 10 µg/L-150 mg/L propanil within 0.33-10 h via the hydrolysis of the amide bond, forming 3,4-dichloroaniline. A novel bifunctional amidase, PamC, was identified in strain C-1. PamC can catalyze the hydrolysis of the amide bond of propanil to produce 3,4-dichloroaniline as well as the hydrolysis of the ester bonds of aryloxyphenoxypropionate herbicides (APPHs, clodinafop-propargyl, cyhalofop-butyl, fenoxaprop-p-ethyl, fluazifop-p-butyl, haloxyfop-p-methyl, and quizalofop-p-ethyl) to form aryloxyphenoxypropionic acids. Molecular docking and site-directed mutagenesis confirmed that the catalytic triad Lys82-Ser157-Ser181 was the active center for PamC to hydrolyze propanil and cyhalofop-butyl. This study presents a novel bifunctional amidase with capabilities for both amide and ester bond hydrolysis and enhances our understanding of the molecular mechanisms underlying the degradation of propanil and APPHs.


Subject(s)
Amidohydrolases , Bacterial Proteins , Biodegradation, Environmental , Herbicides , Propanil , Rhodococcus , Rhodococcus/enzymology , Rhodococcus/genetics , Rhodococcus/metabolism , Herbicides/metabolism , Herbicides/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Propanil/metabolism , Propanil/chemistry , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Amidohydrolases/genetics , Molecular Docking Simulation , Hydrolysis , Biocatalysis
6.
Gene ; 928: 148770, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39032703

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) are a family of multifunctional proteins playing vital roles in PGN metabolism and antibacterial defense, and their functions have been well-characterized in mammals, bony fishes, and insects. However, the information about the functions of amphibian long-type PGRP is rather limited. Here, we identified and cloned a long-type PGRP gene (named Xl-PGRP-L) from African clawed frog, Xenopus laevis. Xl-PGRP-L gene was detected in all orangs/tissues examined, and was rapidly induced in intestine, liver, and lung following the stimulation of PGN. Sequence analysis showed that Xl-PGRP-L possesses four Zn2+-binding residues (His358, Tyr395, His470, and Cys478) required for amidase activity of catalytic PGRPs, and assays for amidase activity revealed that recombinant Xl-PGRP-L cloud degrade PGN in a Zn2+-dependent manner, indicating that Xl-PGRP-L is belonging to catalytic PGRPs. In addition, Xl-PGRP-L have antibacterial activity against Gram-negative bacteria Edwardsiella tarda and Gram-positive bacteria Streptococcus agalactiae. The present investigation represents the first characterization regarding the biological activities of amphibian long-type PGRPs, thus contributes to a better understanding of the functions of tetrapod PGRPs and the molecular mechanisms of amphibian antibacterial defense.


Subject(s)
Carrier Proteins , Xenopus Proteins , Xenopus laevis , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Cloning, Molecular , Amino Acid Sequence , Peptidoglycan/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Zinc/metabolism , Phylogeny , Streptococcus agalactiae/genetics
7.
J Agric Food Chem ; 72(29): 16403-16411, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39004912

ABSTRACT

As a highly toxic mycotoxin, ochratoxin A (OTA) is widely contaminating agricultural products and has various toxicological effects. Bioenzymes for OTA degradation have shown promising potential for detoxification. Other than the efficient amidohydrolase ADH3 previously, two novel amidohydrolases ADH1 and AMD3 were obtained in this study. During Escherichia coli expression, the expressed protein solubility was very low and will limit future industrial application. Here, high copy number integrations were screened, and the amidohydrolases were efficiently secretory expressed by Pichia pastoris GS115. The protein yields from 1.0 L of fermentation supernatant were 53.5 mg for ADH1, 89.15 mg for ADH3, and 79.5 mg for AMD3. The catalytic efficiency (Kcat/Km) of secretory proteins was 124.95 s-1 mM-1 for ADH3, 123.21 s-1 mM-1 for ADH1, and 371.99 s-1 mM-1 for AMD3. In comparison to E. coli expression, the active protein yields substantially increased 15.78-51.53 times. Meanwhile, two novel amidohydrolases (ADH1 and AMD3) showed much higher activity than ADH3 that produced by secretory expression.


Subject(s)
Amidohydrolases , Gene Expression , Ochratoxins , Ochratoxins/metabolism , Ochratoxins/chemistry , Hydrolysis , Amidohydrolases/genetics , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Kinetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fermentation , Pichia/genetics , Pichia/metabolism
8.
Indian J Tuberc ; 71 Suppl 1: S81-S85, 2024.
Article in English | MEDLINE | ID: mdl-39067961

ABSTRACT

INTRODUCTION: Mycobacterium tuberculosis has been extensively studied for mutations leading to drug resistance. Pyrazinamide is a drug acting on the semi-dormant bacteria that is responsible for relapse of tuberculosis. This drug helped reduce the treatment duration of tuberculosis from nine to six months. However, this drug is not being screened for resistance along with Rifampicin and Isoniazid. AIMS AND OBJECTIVES: This study aimed to estimate the proportion of pncA gene mutation among tuberculosis patients and its association between treatment outcomes, clinical characteristics, and phenotypic drug resistance. METHOD: ology: A total of 154 samples included 73 drug-resistant and 81 drug-susceptible isolates. The isolates were subjected to DNA extraction and amplification using conventional PCR. The PCR product was sequenced by the Sanger sequencing method, and phenotypic drug susceptibility testing was done using the broth dilution method. The association of this gene with the treatment outcome was done by following up with the patients till the end of the regimen. RESULTS: None of the drug susceptible tuberculosis patients showed significant non-synonymous mutations. Among the drug-resistant TB patients, seven unique significant mutations out of 73 isolates (9.6%) were distributed among Isoniazid-resistant tuberculosis and Multi-Drug Resistant Tuberculosis isolates. No association was found between the mutations and the clinical characteristics of the subjects harboring these isolates. CONCLUSION: This study estimated seven unique mutations in drug-resistant tuberculosis and none in drug-sensitive tuberculosis. Isolates harboring was not significantly associated with the participant's treatment outcome and other clinical characteristics. The pyrazinamide resistance testing by the phenotypic and genotypic methods was found to be in concordance.


Subject(s)
Antitubercular Agents , Mutation , Mycobacterium tuberculosis , Pyrazinamide , Tuberculosis, Multidrug-Resistant , Humans , Pyrazinamide/therapeutic use , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , India , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Male , Female , Tuberculosis, Multidrug-Resistant/drug therapy , Adult , Longitudinal Studies , Treatment Outcome , Microbial Sensitivity Tests , Amidohydrolases/genetics , Middle Aged , Isoniazid/therapeutic use , Tuberculosis, Pulmonary/drug therapy
9.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999960

ABSTRACT

The initial adoption of penicillin as an antibiotic marked the start of exploring other compounds essential for pharmaceuticals, yet resistance to penicillins and their side effects has compromised their efficacy. The N-terminal nucleophile (Ntn) amide-hydrolases S45 family plays a key role in catalyzing amide bond hydrolysis in various compounds, including antibiotics like penicillin and cephalosporin. This study comprehensively analyzes the structural and functional traits of the bacterial N-terminal nucleophile (Ntn) amide-hydrolases S45 family, covering penicillin G acylases, cephalosporin acylases, and D-succinylase. Utilizing structural bioinformatics tools and sequence analysis, the investigation delineates structurally conserved regions (SCRs) and substrate binding site variations among these enzymes. Notably, sixteen SCRs crucial for substrate interaction are identified solely through sequence analysis, emphasizing the significance of sequence data in characterizing functionally relevant regions. These findings introduce a novel approach for identifying targets to enhance the biocatalytic properties of N-terminal nucleophile (Ntn) amide-hydrolases, while facilitating the development of more accurate three-dimensional models, particularly for enzymes lacking structural data. Overall, this research advances our understanding of structure-function relationships in bacterial N-terminal nucleophile (Ntn) amide-hydrolases, providing insights into strategies for optimizing their enzymatic capabilities.


Subject(s)
Amidohydrolases , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amidohydrolases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Binding Sites , Structure-Activity Relationship , Conserved Sequence , Bacteria/enzymology , Amino Acid Sequence , Models, Molecular , Substrate Specificity
10.
Microb Pathog ; 194: 106809, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39038499

ABSTRACT

Bifidobacterium animalis subsp. lactis BLa80 is a new probiotic strain with extensive applications in food products both domestically and internationally. Given the rising consumption of this probiotic, its safety assessment is increasingly crucial in the food industry. This study evaluates the safety of strain BLa80 using a combination of in vitro and in vivo assays along with genomic analysis. Methods included exposing the strain to artificial gastric and intestinal fluids, as well as a medium containing bile salts, to stimulate human digestive conditions. The strain showed high tolerance to gastric fluid at pH of 2.5 and to 0.3 % bile salts. It maintained a 99.92 % survival rate in intestinal fluid. Additional tests assessed hemolytic activity, antibiotic susceptibility (revealing sensitivity to 7 antibiotics), and biogenic amine production using HPLC-ELSD, confirming the absence of histamine, and other harmful amines. Bile salt hydrolase activity was demonstrated qualitatively, and metabolic byproducts were quantitatively analyzed using a D-/l-lactic acid assay kit, showing that BLa80 produces 1.48 mg/mL of l-lactic acid and no harmful d-lactic acid. Genomic analysis confirmed the absence of virulence or pathogenicity genes, and a 90-day oral toxicity study in rats confirmed no toxic effects at various doses. Overall, these findings support the safety classification of the strain BLa80.


Subject(s)
Anti-Bacterial Agents , Bifidobacterium animalis , Bile Acids and Salts , Probiotics , Animals , Rats , Bile Acids and Salts/metabolism , Anti-Bacterial Agents/pharmacology , Bifidobacterium animalis/genetics , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Lactic Acid/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Biogenic Amines/metabolism , Humans , Male , Hemolysis , Gastric Juice , Female
11.
Biosci Biotechnol Biochem ; 88(9): 1047-1054, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38886122

ABSTRACT

Hydrazidase from Microbacterium hydrocarbonoxydans was revealed to catalyze synthetic hydrazide compounds, enabling the bacteria to grow with them as a sole carbon source, but natural substrates have remained unknown. In this study, kinetic analyses of hydrazidase with parabens showed that the compounds can be substrates. Then, methylparaben induced gene expressions of the operon containing hydrazidase and ABC transporter, and the compound as a sole carbon source was able to grow the bacteria. Furthermore, homology search was carried out revealing that several actinomycetes possess hydrazidase homologs in the operon. Among those bacteria, an amidase from Pseudonocardia acaciae was subjected to a kinetic analysis and a structure determination revealing similar but not identical to those of hydrazidase. Since parabens are reported to exist in plants and soil, and several actinomycetes code the homologous operon, the enzymes with those operons may play a physiologically important role for bacterial survival with use of parabens.


Subject(s)
Actinobacteria , Amidohydrolases , Operon , Parabens , Actinobacteria/genetics , Actinobacteria/enzymology , Actinobacteria/metabolism , Parabens/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Kinetics , Substrate Specificity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Amino Acid Sequence
12.
FEBS Lett ; 598(15): 1839-1854, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38831473

ABSTRACT

Fatty acid amide hydrolase (FAAH) is a conserved hydrolase in eukaryotes with promiscuous activity toward a range of acylamide substrates. The native substrate repertoire for FAAH has just begun to be explored in plant systems outside the model Arabidopsis thaliana. Here, we used ex vivo lipidomics to identify potential endogenous substrates for Medicago truncatula FAAH1 (MtFAAH1). We incubated recombinant MtFAAH1 with lipid mixtures extracted from M. truncatula and resolved their profiles via gas chromatography-mass spectrometry (GC-MS). Data revealed that besides N-acylethanolamines (NAEs), sn-1 or sn-2 isomers of monoacylglycerols (MAGs) were substrates for MtFAAH1. Combined with in vitro and computational approaches, our data support both amidase and esterase activities for MtFAAH1. MAG-mediated hydrolysis via MtFAAH1 may be linked to biological roles that are yet to be discovered.


Subject(s)
Amidohydrolases , Lipidomics , Medicago truncatula , Monoglycerides , Medicago truncatula/enzymology , Medicago truncatula/metabolism , Medicago truncatula/genetics , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Amidohydrolases/genetics , Substrate Specificity , Lipidomics/methods , Monoglycerides/metabolism , Monoglycerides/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Ethanolamines/metabolism , Ethanolamines/chemistry , Gas Chromatography-Mass Spectrometry , Hydrolysis
13.
Cell Death Dis ; 15(6): 399, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849335

ABSTRACT

The loss of dopaminergic neurons in the substantia nigra is a hallmark of pathology in Parkinson's disease (PD). Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) is the critical enzyme responsible for the degradation of asymmetric dimethylarginine (ADMA) which inhibits nitric oxide (NO) synthase and has been implicated in neurodegeneration. Mitochondrial dysfunction, particularly in the mitochondria-associated endoplasmic reticulum membrane (MAM), plays a critical role in this process, although the specific molecular target has not yet been determined. This study aims to examine the involvement of DDAH-1 in the nigrostriatal dopaminergic pathway and PD pathogenesis. The distribution of DDAH-1 in the brain and its colocalization with dopaminergic neurons were observed. The loss of dopaminergic neurons and aggravated locomotor disability after rotenone (ROT) injection were showed in the DDAH-1 knockout rat. L-arginine (ARG) and NO donors were employed to elucidate the role of NO respectively. In vitro, we investigated the effects of DDAH-1 knockdown or overexpression on cell viability and mitochondrial functions, as well as modulation of ADMA/NO levels using ADMA or ARG. MAM formation was assessed by the Mitofusin2 oligomerization and the mitochondrial ubiquitin ligase (MITOL) phosphorylation. We found that DDAH-1 downregulation resulted in enhanced cell death and mitochondrial dysfunctions, accompanied by elevated ADMA and reduced NO levels. However, the recovered NO level after the ARG supplement failed to exhibit a protective effect on mitochondrial functions and partially restored cell viability. DDAH-1 overexpression prevented ROT toxicity, while ADMA treatment attenuated these protective effects. The declines of MAM formation in ROT-treated cells were exacerbated by DDAH-1 downregulation via reduced MITOL phosphorylation, which was reversed by DDAH-1 overexpression. Together, the abundant expression of DDAH-1 in nigral dopaminergic neurons may exert neuroprotective effects by maintaining MAM formation and mitochondrial function probably via ADMA, indicating the therapeutic potential of targeting DDAH-1 for PD.


Subject(s)
Amidohydrolases , Arginine , Dopaminergic Neurons , Endoplasmic Reticulum , Mitochondria , Nitric Oxide , Parkinson Disease , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Animals , Amidohydrolases/metabolism , Amidohydrolases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Arginine/metabolism , Arginine/analogs & derivatives , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Rats , Nitric Oxide/metabolism , Male , Rats, Sprague-Dawley , Humans , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Rotenone/pharmacology , Mitochondrial Proteins/metabolism , Mitochondria Associated Membranes
14.
Article in English | MEDLINE | ID: mdl-38879068

ABSTRACT

BACKGROUND: Interactions between the serotonin (5-HT) and endocannabinoid (eCB) systems have been reported in the psychopathology of stress-related symptoms, while their interplay in regulating the relationship between childhood trauma and burnout remains unclear. In this study, we investigated the interaction of childhood trauma with genetic polymorphisms in these two systems in predicting burnout. METHODS: Burnout, childhood trauma, and job stress were assessed using rating scales in 992 general occupational individuals. Genetic polymorphisms including HTR2A rs6313, 5-HTT rs6354 and FAAH rs324420, were genotyped. Linear hierarchical regression analysis and PROCESS macro in SPSS were used to examine two- and three-way interactions. RESULTS: There were significant interactions of job stress × HTR2A rs6313 and childhood abuse × FAAH rs324420 on reduced personal accomplishment. Moreover, we found significant three-way interactions of childhood abuse × FAAH rs324420 × HTR2A rs6313 on cynicism and reduced personal accomplishment, childhood abuse × FAAH rs324420 × 5-HTT rs6354 on emotional exhaustion, and childhood neglect × FAAH rs324420 × 5-HTT rs6354 on reduced personal accomplishment. These results suggest that the FAAH rs324420 A allele carriers, when with some specific genetic polymorphisms of 5-HT system, would show more positive associations between childhood trauma and burnout. CONCLUSIONS: Genetic polymorphisms in the 5-HT and eCB systems may jointly moderate the impact of childhood trauma on burnout.


Subject(s)
Amidohydrolases , Endocannabinoids , Receptor, Serotonin, 5-HT2A , Serotonin Plasma Membrane Transport Proteins , Humans , Male , Female , Endocannabinoids/genetics , Endocannabinoids/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Adult , Amidohydrolases/genetics , Receptor, Serotonin, 5-HT2A/genetics , Polymorphism, Single Nucleotide , Middle Aged , Burnout, Professional/genetics , Burnout, Professional/psychology , Serotonin/metabolism , Serotonin/genetics , Adverse Childhood Experiences/psychology , Child Abuse/psychology
15.
Appl Microbiol Biotechnol ; 108(1): 392, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910173

ABSTRACT

In the last decades, biocatalysis has offered new perspectives for the synthesis of (chiral) amines, which are essential building blocks for pharmaceuticals, fine and bulk chemicals. In this regard, amidases have been employed due to their broad substrate scope and their independence from expensive cofactors. To expand the repertoire of amidases, tools for their rapid identification and characterization are greatly demanded. In this work an ultra-high throughput growth selection assay based on the production of the folate precursor p-aminobenzoic acid (PABA) is introduced to identify amidase activity. PABA-derived amides structurally mimic the broad class of commonly used chromogenic substrates derived from p-nitroaniline. This suggests that the assay should be broadly applicable for the identification of amidases. Unlike conventional growth selection assays that rely on substrates as nitrogen or carbon source, our approach requires PABA in sub-nanomolar concentrations, making it exceptionally sensitive and ideal for engineering campaigns that aim at enhancing amidase activities from minimally active starting points, for example. The presented assay offers flexibility in the adjustment of sensitivity to suit project-specific needs using different expression systems and fine-tuning with the antimetabolite sulfathiazole. Application of this PABA-based assay facilitates the screening of millions of enzyme variants on a single agar plate within two days, without the need for laborious sample preparation or expensive instruments, with transformation efficiency being the only limiting factor. KEY POINTS: • Ultra-high throughput assay (tens of millions on one agar plate) for amidase screening • High sensitivity by coupling selection to folate instead of carbon or nitrogen source • Highly adjustable in terms of sensitivity and expression of the engineering target.


Subject(s)
4-Aminobenzoic Acid , Amidohydrolases , High-Throughput Screening Assays , Amidohydrolases/metabolism , Amidohydrolases/genetics , High-Throughput Screening Assays/methods , 4-Aminobenzoic Acid/metabolism , 4-Aminobenzoic Acid/chemistry , Substrate Specificity , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/metabolism
16.
Protein Sci ; 33(7): e5067, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864716

ABSTRACT

The N-degron pathway determines the half-life of proteins by selectively destabilizing the proteins bearing N-degrons. N-terminal glutamine amidohydrolase 1 (NTAQ1) plays an essential role in the arginine N-degron (Arg/N-degron) pathway as an initializing enzyme via the deamidation of the N-terminal (Nt) glutamine (Gln). However, the Nt-serine-bound conformation of hNTAQ1 according to the previously identified crystal structure suggests the possibility of other factors influencing the recognition of Nt residues by hNTAQ1. Hence, in the current study, we aimed to further elucidate the substrate recognition of hNTAQ1; specifically, we explored 12 different substrate-binding conformations of hNTAQ1 depending on the subsequent residue of Nt-Gln. Results revealed that hNTAQ1 primarily interacts with the protein Nt backbone, instead of the side chain, for substrate recognition. Here, we report that the Nt backbone of proteins appears to be a key component of hNTAQ1 function and is the main determinant of substrate recognition. Moreover, not all second residues from Nt-Gln, but rather distinctive and charged residues, appeared to aid in detecting substrate recognition. These new findings define the substrate-recognition process of hNTAQ1 and emphasize the importance of the subsequent Gln residue in the Nt-Gln degradation system. Our extensive structural and biochemical analyses provide insights into the substrate specificity of the N-degron pathway and shed light on the mechanism underlying hNTAQ1 substrate recognition. An improved understanding of the protein degradation machinery could aid in developing therapies to promote overall health through enhanced protein regulation, such as targeted protein therapies.


Subject(s)
Arginine , Humans , Substrate Specificity , Arginine/chemistry , Arginine/metabolism , Models, Molecular , Glutamine/metabolism , Glutamine/chemistry , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amidohydrolases/genetics , Protein Conformation , Proteolysis , Degrons
17.
Int J Hyperthermia ; 41(1): 2353309, 2024.
Article in English | MEDLINE | ID: mdl-38749506

ABSTRACT

OBJECTIVE: Incomplete thermal ablation (ITA) fosters the malignancy of residual cells in Hepatocellular carcinoma (HCC) with unclear mechanisms now. This study aims to investigate the expression changes of NDST2 following ITA of HCC and its impact on residual cancer cells. METHODS: An in vitro model of heat stress-induced liver cancer was constructed to measure the expression of NDST2 using Quantitative Real-Time PCR and Western blotting experiments. The sequencing data from nude mice were used for validation. The clinical significance of NDST2 in HCC was evaluated by integrating datasets. Gene ontology and pathway analysis were conducted to explore the potential signaling pathways regulated by NDST2. Additionally, NDST2 was knocked down in heat stress-induced HCC cells, and the effects of NDST2 on these cells were verified using Cell Counting Kit-8 assays, scratch assays, and Transwell assays. RESULTS: NDST2 expression levels are elevated in HCC, leading to a decrease in overall survival rates of HCC patients. Upregulation of immune checkpoint levels in high NDST2-expressing HCC may contribute to immune evasion by liver cancer cells. Additionally, the low mutation rate of NDST2 in HCC suggests a relatively stable expression of NDST2 in this disease. Importantly, animal and cell models treated with ITA demonstrate upregulated expression of NDST2. Knockdown of NDST2 in heat stress-induced liver cancer cells results in growth inhibition associated with gene downregulation. CONCLUSION: The upregulation of NDST2 can accelerate the progression of residual HCC after ITA, suggesting a potential role for NDST2 in the therapeutic efficacy and prognosis of residual HCC.


Subject(s)
Amidohydrolases , Carcinoma, Hepatocellular , Hyperthermia, Induced , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Mice, Nude , Amidohydrolases/genetics , Amidohydrolases/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism
18.
J Hazard Mater ; 473: 134716, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797074

ABSTRACT

Ochratoxin A (OTA) is a toxic secondary metabolite that widely contaminates agro-products and poses a significant dietary risk to human health. Previously, a carboxypeptidase CP4 was characterized for OTA degradation in Lysobacter sp. CW239, but the degradation activity was much lower than its host strain CW239. In this study, an amidohydrolase ADH2 was screened for OTA hydrolysis in this strain. The result showed that 50 µg/L OTA was completely degraded by 1.0 µg/mL rADH2 within 5 min, indicating ultra-efficient activity. Meanwhile, the two hydrolases (i.e., CP4 and ADH2) in the strain CW239 showed the same degradation manner, which transformed the OTA to ochratoxin α (OTα) and l-ß-phenylalanine. Gene mutants (Δcp4, Δadh2 and Δcp4-adh2) testing result showed that OTA was co-degraded by carboxypeptidase CP4 and amidohydrolase ADH2, and the two hydrolases are sole agents in strain CW239 for OTA degradation. Hereinto, the ADH2 was the overwhelming efficient hydrolase, and the two types of hydrolases co-degraded OTA in CW239 by synergistic effect. The results of this study are highly significant to ochratoxin A contamination control during agro-products production and postharvest.


Subject(s)
Lysobacter , Ochratoxins , Ochratoxins/metabolism , Ochratoxins/toxicity , Lysobacter/metabolism , Lysobacter/genetics , Amidohydrolases/metabolism , Amidohydrolases/genetics , Carboxypeptidases/metabolism , Carboxypeptidases/genetics , Hydrolases/metabolism , Hydrolases/genetics
19.
Sci Rep ; 14(1): 11587, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773239

ABSTRACT

Peptide deformylase can catalyse the removal of formyl groups from the N-terminal formyl methionine of the primary polypeptide chain. The peptide deformylase genes of a few herbaceous plants have been studied to some extent, but the peptide deformylase genes of woody plants have not been studied. In this study, we isolated EuPDF1B from Eucommia ulmoides Oliv. The full-length sequence of EuPDF1B is 1176 bp long with a poly-A tail and contains an open reading frame of 831 bp that encodes a protein of 276 amino acids. EuPDF1B was localized to the chloroplast. qRT‒PCR analysis revealed that this gene was expressed in almost all tissues tested but mainly in mature leaves. Moreover, the expression of EuPDF1B was enhanced by ABA, MeJA and GA and inhibited by shading treatment. The expression pattern of EuPDF1B was further confirmed in EuPDF1Bp: GUS transgenic tobacco plants. Among all the transgenic tobacco plants, EuPDF1Bp-3 showed the highest GUS histochemical staining and activity in different tissues. This difference may be related to the presence of enhancer elements in the region from - 891 bp to - 236 bp of the EuPDF1B promoter. In addition, the expression of the chloroplast gene psbA and the net photosynthetic rate, fresh weight and height of tobacco plants overexpressing EuPDF1B were greater than those of the wild-type tobacco plants, suggesting that EuPDF1B may promote the growth of transgenic tobacco plants. This is the first time that PDF and its promoter have been cloned from woody plants, laying a foundation for further analysis of the function of PDF and the regulation of its expression.


Subject(s)
Amidohydrolases , Cloning, Molecular , Eucommiaceae , Gene Expression Regulation, Plant , Nicotiana , Plants, Genetically Modified , Eucommiaceae/genetics , Eucommiaceae/metabolism , Plants, Genetically Modified/genetics , Amidohydrolases/genetics , Amidohydrolases/metabolism , Nicotiana/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Phylogeny , Amino Acid Sequence , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism
20.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38724455

ABSTRACT

AIMS: We aimed to investigate the function of an unidentified gene annotated as a PIG-L domain deacetylase (cspld) in Chitiniphilus shinanonensis SAY3. cspld was identified using transposon mutagenesis, followed by negatively selecting a mutant incapable of growing on chitin, a polysaccharide consisting of N-acetyl-d-glucosamine (GlcNAc). We focused on the physiological role of CsPLD protein in chitin utilization. METHODS AND RESULTS: Recombinant CsPLD expressed in Escherichia coli exhibited GlcNAc-6-phosphate deacetylase (GPD) activity, which is involved in the metabolism of amino sugars. However, SAY3 possesses two genes (csnagA1 and csnagA2) in its genome that code for proteins whose primary sequences are homologous to those of typical GPDs. Recombinant CsNagA1 and CsNagA2 also exhibited GPD activity with 23 and 1.6% of catalytic efficiency (kcat/Km), respectively, compared to CsPLD. The gene-disrupted mutant, Δcspld was unable to grow on chitin or GlcNAc, whereas the three mutants, ΔcsnagA1, ΔcsnagA2, and ΔcsnagA1ΔcsnagA2 grew similarly to SAY3. The determination of GPD activity in the crude extracts of each mutant revealed that CsPLD is a major enzyme that accounts for almost all cellular activities. CONCLUSIONS: Deacetylation of GlcNAc-6P catalyzed by CsPLD (but not by typical GPDs) is essential for the assimilation of chitin and its constituent monosaccharide, GlcNAc, as a carbon and energy source in C. shinanonensis.


Subject(s)
Chitin , Chitin/metabolism , Amidohydrolases/metabolism , Amidohydrolases/genetics , Acetylglucosamine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gammaproteobacteria/genetics , Gammaproteobacteria/enzymology , Gammaproteobacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL