Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.084
Filter
1.
Science ; 383(6689): eadg4320, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38513038

ABSTRACT

Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.


Subject(s)
Bacterial Proteins , Evolution, Molecular , Peptide Synthases , Protein Engineering , Peptide Synthases/chemistry , Peptide Synthases/classification , Peptide Synthases/genetics , Phylogeny , Amino Acid Sequence/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Sequence Analysis, Protein
2.
J Mol Biol ; 435(18): 168209, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37479080

ABSTRACT

Characterizing the effects of mutations on stability is critical for understanding the function and evolution of proteins and improving their biophysical properties. High throughput folding and abundance assays have been successfully used to characterize missense mutations associated with reduced stability. However, screening for increased thermodynamic stability is more challenging since such mutations are rarer and their impact on assay readout is more subtle. Here, a multiplex assay for high throughput screening of protein folding was developed by combining deep mutational scanning, fluorescence-activated cell sorting, and deep sequencing. By analyzing a library of 2000 variants of Adenylate kinase we demonstrate that the readout of the method correlates with stability and that mutants with up to 13 °C increase in thermal melting temperature could be identified with low false positive rate. The discovery of many stabilizing mutations also enabled the analysis of general substitution patterns associated with increased stability in Adenylate kinase. This high throughput method to identify stabilizing mutations can be combined with functional screens to identify mutations that improve both stability and activity.


Subject(s)
Amino Acid Sequence , Mutation, Missense , Protein Folding , Protein Stability , Sequence Analysis, Protein , Adenylate Kinase/chemistry , Adenylate Kinase/genetics , Amino Acid Sequence/genetics , High-Throughput Screening Assays/methods , Sequence Analysis, Protein/methods , Temperature
3.
J Virol ; 97(3): e0181922, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36815785

ABSTRACT

Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.


Subject(s)
Capsid Proteins , Human papillomavirus 16 , Female , Humans , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/pathogenicity , Papillomavirus Infections/virology , Amino Acid Sequence/genetics , Mutation , Cell Line , Protein Structure, Tertiary/genetics , Models, Molecular
4.
Science ; 376(6595): 823-830, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35587978

ABSTRACT

Epistatic interactions can make the outcomes of evolution unpredictable, but no comprehensive data are available on the extent and temporal dynamics of changes in the effects of mutations as protein sequences evolve. Here, we use phylogenetic deep mutational scanning to measure the functional effect of every possible amino acid mutation in a series of ancestral and extant steroid receptor DNA binding domains. Across 700 million years of evolution, epistatic interactions caused the effects of most mutations to become decorrelated from their initial effects and their windows of evolutionary accessibility to open and close transiently. Most effects changed gradually and without bias at rates that were largely constant across time, indicating a neutral process caused by many weak epistatic interactions. Our findings show that protein sequences drift inexorably into contingency and unpredictability, but that the process is statistically predictable, given sufficient phylogenetic and experimental data.


Subject(s)
DNA-Binding Proteins , Epistasis, Genetic , Evolution, Molecular , Receptors, Steroid , Amino Acid Sequence/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Mutation , Phylogeny , Protein Binding , Protein Domains , Receptors, Steroid/chemistry , Receptors, Steroid/genetics
5.
Biochimie ; 198: 48-59, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35307483

ABSTRACT

Bacillus sp. HR21-6 is capable of the chemo- and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols, which are powerful antioxidants important in the formulation of functional foods. In this work, an acetyl esterase was identified in the secretome of this strain by non-targeted proteomics, and classified in the GDSL family (superfamily SGNH). The recombinant protein was expressed and purified from Escherichia coli in the soluble form, and biochemically characterized. Site-directed mutagenesis was performed to understand the role of different amino acids that are conserved among GDSL superfamily of esterases. Mutation of Ser-10, Gly-45 or His-185 abolished the enzyme activity, while mutation of Asn-77 or Thr-184 altered the substrate specificity of the enzyme. This new enzyme is able to perform chemoselective conversions of olive phenolic compounds with great interest in the food industry, such as hydroxytyrosol, 3,4-dihydroxyphenylglycol, and oleuropein.


Subject(s)
Acetylesterase , Bacillus , Bacterial Proteins , Acetylesterase/chemistry , Acetylesterase/genetics , Amino Acid Sequence/genetics , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli , Esterases/metabolism , Mutagenesis, Site-Directed , Substrate Specificity/genetics
6.
Nat Commun ; 13(1): 746, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136054

ABSTRACT

The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here, we investigate the capability of a deep neural network model to automate design of sequences onto protein backbones, having learned directly from crystal structure data and without any human-specified priors. The model generalizes to native topologies not seen during training, producing experimentally stable designs. We evaluate the generalizability of our method to a de novo TIM-barrel scaffold. The model produces novel sequences, and high-resolution crystal structures of two designs show excellent agreement with in silico models. Our findings demonstrate the tractability of an entirely learned method for protein sequence design.


Subject(s)
Deep Learning , Protein Engineering/methods , Amino Acid Sequence/genetics , Computer Simulation , Crystallography, X-Ray , Models, Molecular , Protein Domains/genetics , Protein Folding
7.
J Immunol ; 208(5): 1128-1138, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35173035

ABSTRACT

Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.


Subject(s)
Chickens/genetics , Chickens/immunology , Forkhead Transcription Factors/genetics , T-Lymphocytes, Regulatory/immunology , Amino Acid Sequence/genetics , Animals , Base Sequence , Cell Differentiation/immunology , Gene Expression Profiling , Genome/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphocyte Activation/immunology , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163274

ABSTRACT

Eukarya pyruvate kinases possess glutamate at position 117 (numbering of rabbit muscle enzyme), whereas bacteria have either glutamate or lysine. Those with E117 are K+-dependent, whereas those with K117 are K+-independent. In a phylogenetic tree, 80% of the sequences with E117 are occupied by T113/K114/T120 and 77% of those with K117 possess L113/Q114/(L,I,V)120. This work aims to understand these residues' contribution to the K+-independent pyruvate kinases using the K+-dependent rabbit muscle enzyme. Residues 117 and 120 are crucial in the differences between the K+-dependent and -independent mutants. K+-independent activity increased with L113 and Q114 to K117, but L120 induced structural differences that inactivated the enzyme. T120 appears to be key in folding the protein and closure of the lid of the active site to acquire its active conformation in the K+-dependent enzymes. E117K mutant was K+-independent and the enzyme acquired the active conformation by a different mechanism. In the K+-independent apoenzyme of Mycobacterium tuberculosis, K72 (K117) flips out of the active site; in the holoenzyme, K72 faces toward the active site bridging the substrates through water molecules. The results provide evidence that two different mechanisms have evolved for the catalysis of this reaction.


Subject(s)
Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Pyruvate Kinase/ultrastructure , Amino Acid Sequence/genetics , Animals , Apoenzymes/metabolism , Binding Sites , Catalysis , Catalytic Domain , Glutamic Acid/metabolism , Lysine/metabolism , Models, Molecular , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Phylogeny , Potassium/metabolism , Protein Conformation , Rabbits
9.
Mol Biol Rep ; 49(2): 1643-1647, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35028856

ABSTRACT

BACKGROUND: Fatty acid elongases (FAEs), which catalyse elongation reactions of a carbon chain of very-long-chain fatty acids, play an important role in shoot development in rice. The elongation reactions consist of four sequential reactions catalysed by distinct enzymes, which are assumed to form an elongation complex. However, no interacting proteins of ONION1 (ONI1) and ONI2, which are ketoacyl CoA synthase catalyzing the first step and are required for shoot development in rice, are reported. METHODS AND RESULTS: In this study ketoacyl CoA reductase (KCR) that interacts with ONI1 and ONI2 was searched. A database search identified 10 KCR genes in the rice genome. Among the genes, the expression pattern of KCR1 was similar to that of ONI2. Yeast two-hybrid analysis showed interaction of ONI2 with KCR1, which was confirmed by GST pull-down assay. No interacting partner of ONI1 was identified. CONCLUSIONS: Our results suggest that ONI2 and KCR1 form an FAE complex that may play a role in biosynthesizing VLCFAs during shoot development.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Fatty Acid Elongases/metabolism , Oryza/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/physiology , Acetyltransferases/genetics , Amino Acid Sequence/genetics , Cloning, Molecular/methods , Coenzyme A/genetics , Coenzyme A/metabolism , Fatty Acid Elongases/genetics , Fatty Acids/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Oryza/genetics , Oxidoreductases/genetics , Plant Proteins/genetics
10.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35091471

ABSTRACT

We report two structures of the human voltage-gated potassium channel (Kv) Kv1.3 in immune cells alone (apo-Kv1.3) and bound to an immunomodulatory drug called dalazatide (dalazatide-Kv1.3). Both the apo-Kv1.3 and dalazatide-Kv1.3 structures are in an activated state based on their depolarized voltage sensor and open inner gate. In apo-Kv1.3, the aromatic residue in the signature sequence (Y447) adopts a position that diverges 11 Å from other K+ channels. The outer pore is significantly rearranged, causing widening of the selectivity filter and perturbation of ion binding within the filter. This conformation is stabilized by a network of intrasubunit hydrogen bonds. In dalazatide-Kv1.3, binding of dalazatide to the channel's outer vestibule narrows the selectivity filter, Y447 occupies a position seen in other K+ channels, and this conformation is stabilized by a network of intersubunit hydrogen bonds. These remarkable rearrangements in the selectivity filter underlie Kv1.3's transition into the drug-blocked state.


Subject(s)
Kv1.3 Potassium Channel/metabolism , Kv1.3 Potassium Channel/ultrastructure , Amino Acid Sequence/genetics , Binding Sites/physiology , Humans , Ion Channel Gating/physiology , Kv1.3 Potassium Channel/drug effects , Membrane Potentials , Microscopy, Electron/methods , Models, Molecular , Molecular Conformation , Potassium/metabolism , Potassium Channels/metabolism , Potassium Channels/ultrastructure , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/ultrastructure , Sequence Alignment/methods
11.
Anticancer Res ; 42(1): 355-362, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34969745

ABSTRACT

BACKGROUND/AIM: Renal cell carcinoma (RCC) is among the most common renal malignancies and requires reliable biomarkers for optimum diagnosis and prognosis. Copines are a family of calcium-dependent phospholipid-binding proteins that were reported to be associated with various cancers. We aimed to investigate the prognostic value of Copines 1 and 3 in RCC patients. MATERIALS AND METHODS: Copines 1 and 3 bioinformatics analysis and immunohistochemical (IHC) staining were performed on patients with RCC. RESULTS: The findings revealed significant association between Copine 1 expression and the patients' age, nuclear grade, and tumor stage. Bioinformatics analysis showed a similar trend for the mRNA expression of CPNE1, the gene that encodes Copine 1. Interestingly, results revealed a positive association between Copine 1 and both EphA and Ki-67 expression levels. Noteworthy, there was no significant association between Copine 3 expression and any parameters. CONCLUSION: Copine 1 may be used as an independent biomarker or in combination with both EphA2 and Ki-67 to predict disease outcome.


Subject(s)
Calcium-Binding Proteins/genetics , Carcinoma, Renal Cell/genetics , Ki-67 Antigen/genetics , Receptor, EphA2/genetics , Aged , Amino Acid Sequence/genetics , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/pathology , Carrier Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prognosis , Progression-Free Survival
12.
Proteins ; 90(1): 309-313, 2022 01.
Article in English | MEDLINE | ID: mdl-34357660

ABSTRACT

The Gag proteins of retroviruses play an essential role in virus particle assembly by forming a protein shell or capsid and thus generating the virion compartment. A variety of human proteins have now been identified with structural similarity to one or more of the major Gag domains. These human proteins are thought to have been evolved or "domesticated" from ancient integrations due to retroviral infections or retrotransposons. Here, we report that X-ray crystal structures of stably folded domains of MOAP1 (modulator of apoptosis 1) and PEG10 (paternally expressed gene 10) are highly similar to the C-terminal capsid (CA) domains of cognate Gag proteins. The structures confirm classification of MOAP1 and PEG10 as domesticated Gags, and suggest that these proteins may have preserved some of the key interactions that facilitated assembly of their ancestral Gags into capsids.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , DNA-Binding Proteins , Gene Products, gag , RNA-Binding Proteins , Retroelements/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence/genetics , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Conserved Sequence/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Gene Products, gag/chemistry , Gene Products, gag/genetics , Humans , Models, Molecular , Protein Domains/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Retroviridae/genetics , Retroviridae Infections
13.
FEBS J ; 289(2): 355-362, 2022 01.
Article in English | MEDLINE | ID: mdl-33604985

ABSTRACT

Historically, the genetic analysis of mammalian cells entailed the isolation of randomly arising mutant cell lines with altered properties, followed by laborious genetic mapping experiments to identify the mutant gene responsible for the phenotype. In recent years, somatic cell genetics has been revolutionized by functional genomics screens, in which expression of every protein-coding gene is systematically perturbed, and the phenotype of the perturbed cells is determined. We outline here a novel functional genomics screening strategy that differs fundamentally from commonly used approaches. In this strategy, we express libraries of artificial transmembrane proteins named traptamers and select rare cells with the desired phenotype because, by chance, a traptamer specifically perturbs the expression or activity of a target protein. Active traptamers are then recovered from the selected cells and can be used as tools to dissect the biological process under study. We also briefly describe how we have used this new strategy to provide insights into the complex process by which human papillomaviruses enter cells.


Subject(s)
Cell Lineage/genetics , Genomics , Membrane Proteins/genetics , Virus Internalization , Amino Acid Sequence/genetics , Cell Line , Gene Expression Regulation/genetics , Humans , Mass Screening , Protein Transport/genetics
14.
Nucleic Acids Res ; 50(D1): D1273-D1281, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34747487

ABSTRACT

Nanobodies, a subclass of antibodies found in camelids, are versatile molecular binding scaffolds composed of a single polypeptide chain. The small size of nanobodies bestows multiple therapeutic advantages (stability, tumor penetration) with the first therapeutic approval in 2018 cementing the clinical viability of this format. Structured data and sequence information of nanobodies will enable the accelerated clinical development of nanobody-based therapeutics. Though the nanobody sequence and structure data are deposited in the public domain at an accelerating pace, the heterogeneity of sources and lack of standardization hampers reliable harvesting of nanobody information. We address this issue by creating the Integrated Database of Nanobodies for Immunoinformatics (INDI, http://naturalantibody.com/nanobodies). INDI collates nanobodies from all the major public outlets of biological sequences: patents, GenBank, next-generation sequencing repositories, structures and scientific publications. We equip INDI with powerful nanobody-specific sequence and text search facilitating access to >11 million nanobody sequences. INDI should facilitate development of novel nanobody-specific computational protocols helping to deliver on the therapeutic promise of this drug format.


Subject(s)
Camelidae/immunology , Databases, Genetic , Neoplasms/therapy , Single-Domain Antibodies/immunology , Amino Acid Sequence/genetics , Animals , Antibodies/classification , Antibodies/immunology , Camelidae/classification , Humans , Immunotherapy/classification , Neoplasms/immunology , Single-Domain Antibodies/classification
15.
FEBS J ; 289(3): 748-765, 2022 02.
Article in English | MEDLINE | ID: mdl-34499807

ABSTRACT

Nucleoli are well defined for their function in ribosome biogenesis, but only a small fraction of the nucleolar proteome has been characterized. Here, we report that the proto-oncogene, c-Jun, is targeted to the nucleolus. Using live cell imaging in myogenic cells, we document that the c-Jun basic domain contains a unique, evolutionarily conserved motif that determines nucleolar targeting. Fos family Jun dimer partners, such as Fra2, while nuclear, do not co-localize with c-Jun in the nucleolus. A point mutation in c-Jun that mimics Fra2 (M260E) in its Nucleolar Localization sequence (NoLS) results in loss of c-Jun nucleolar targeting while still preserving nuclear localization. Fra2 can sequester c-Jun in the nucleoplasm, indicating that the stoichiometric ratio of heterodimeric partners regulates c-Jun nucleolar targeting. Finally, nucleolar localization of c-Jun modulates nucleolar architecture and ribosomal RNA accumulation. These studies highlight a novel role for Jun family proteins in the nucleolus, having potential implications for a diverse array of AP-1-regulated cellular processes.


Subject(s)
Cell Nucleolus/genetics , Fos-Related Antigen-2/genetics , Genes, jun/genetics , Ribosomes/genetics , Amino Acid Sequence/genetics , Cell Line , Gene Expression Regulation/genetics , Humans , Nuclear Localization Signals/genetics , Nuclear Proteins/genetics , Protein Transport/genetics , Proteome/genetics
16.
J Med Virol ; 94(1): 310-317, 2022 01.
Article in English | MEDLINE | ID: mdl-34506640

ABSTRACT

SARS-CoV-2 is a newly discovered beta coronavirus at the end of 2019, which is highly pathogenic and poses a serious threat to human health. In this paper, 1875 SARS-CoV-2 whole genome sequences and the sequence coding spike protein (S gene) sampled from the United States were used for bioinformatics analysis to study the molecular evolutionary characteristics of its genome and spike protein. The MCMC method was used to calculate the evolution rate of the whole genome sequence and the nucleotide mutation rate of the S gene. The results showed that the nucleotide mutation rate of the whole genome was 6.677 × 10-4 substitution per site per year, and the nucleotide mutation rate of the S gene was 8.066 × 10-4 substitution per site per year, which was at a medium level compared with other RNA viruses. Our findings confirmed the scientific hypothesis that the rate of evolution of the virus gradually decreases over time. We also found 13 statistically significant positive selection sites in the SARS-CoV-2 genome. In addition, the results showed that there were 101 nonsynonymous mutation sites in the amino acid sequence of S protein, including seven putative harmful mutation sites. This paper has preliminarily clarified the evolutionary characteristics of SARS-CoV-2 in the United States, providing a scientific basis for future surveillance and prevention of virus variants.


Subject(s)
COVID-19/epidemiology , Evolution, Molecular , Genome, Viral/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence/genetics , COVID-19/pathology , Computational Biology , Humans , Mutation Rate , United States/epidemiology , Whole Genome Sequencing
17.
FEBS J ; 289(1): 231-245, 2022 01.
Article in English | MEDLINE | ID: mdl-34270849

ABSTRACT

The post-translational acetylation of lysine residues is found in many nonhistone proteins and is involved in a wide range of biological processes. Recently, we showed that the nucleoprotein of the influenza A virus is acetylated by histone acetyltransferases (HATs), a phenomenon that affects viral transcription. Here, we report that the PA subunit of influenza A virus RNA-dependent RNA polymerase is acetylated by the HATs, P300/CREB-binding protein-associated factor (PCAF), and general control nonderepressible 5 (GCN5), resulting in accelerated endonuclease activity. Specifically, the full-length PA subunit expressed in cultured 293T cells was found to be strongly acetylated. Moreover, the partial recombinant protein of the PA N-terminal region containing the endonuclease domain was also acetylated by PCAF and GCN5 in vitro, which facilitated its endonuclease activity. Mass spectrometry analyses identified K19 as a candidate acetylation target in the PA N-terminal region. Notably, the substitution of the lysine residue at position 19 with glutamine, a mimic of the acetyl-lysine residue, enhanced its endonuclease activity in vitro; this point mutation also accelerated influenza A virus RNA-dependent RNA polymerase activity in the cell. Our findings suggest that PA acetylation is important for the regulation of the endonuclease and RNA polymerase activities of the influenza A virus.


Subject(s)
Histone Acetyltransferases/genetics , Influenza A virus/genetics , Influenza, Human/genetics , RNA-Dependent RNA Polymerase/genetics , p300-CBP Transcription Factors/genetics , Acetylation , Amino Acid Sequence/genetics , Humans , Influenza, Human/virology , Nucleoproteins/genetics , Protein Binding/genetics , Protein Processing, Post-Translational/genetics , RNA, Viral/genetics , Viral Proteins/genetics , Viral Transcription/genetics
18.
Nucleic Acids Res ; 50(D1): D1221-D1230, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34755868

ABSTRACT

A knowledgebase of the systematic functional annotation of fusion genes is critical for understanding genomic breakage context and developing therapeutic strategies. FusionGDB is a unique functional annotation database of human fusion genes and has been widely used for studies with diverse aims. In this study, we report fusion gene annotation updates aided by deep learning (FusionGDB 2.0) available at https://compbio.uth.edu/FusionGDB2/. FusionGDB 2.0 has substantial updates of contents such as up-to-date human fusion genes, fusion gene breakage tendency score with FusionAI deep learning model based on 20 kb DNA sequence around BP, investigation of overlapping between fusion breakpoints with 44 human genomic features across five cellular role's categories, transcribed chimeric sequence and following open reading frame analysis with coding potential based on deep learning approach with Ribo-seq read features, and rigorous investigation of the protein feature retention of individual fusion partner genes in the protein level. Among ∼102k fusion genes, about 15k kept their ORF as In-frames, which is two times compared to the previous version, FusionGDB. FusionGDB 2.0 will be used as the reference knowledgebase of fusion gene annotations. FusionGDB 2.0 provides eight categories of annotations and it will be helpful for diverse human genomic studies.


Subject(s)
Databases, Genetic , Gene Fusion/genetics , Genome, Human/genetics , Genomics , Amino Acid Sequence/genetics , Deep Learning , Humans , Knowledge Bases , Molecular Sequence Annotation
19.
Mol Biol Rep ; 49(2): 951-969, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34773550

ABSTRACT

BACKGROUND: Using in silico sequence analyses, the present study aims to clone and express the gene-encoding sequence of a GH19 chitinase from Enterobacter sp. in Escherichia coli. METHODS AND RESULTS: The putative open reading frame of a GH19 chitinase from Enterobacter sp. strain EGY1 was cloned and expressed into pGEM®-T and pET-28a (+) vectors, respectively using a degenerate primer. The isolated nucleotide sequence (1821 bp, GenBank accession no.: MK533791.2) was translated to a chiRAM protein (606 amino acids, UniProt accession no.: A0A4D6J2L9). The in silico protein sequence analysis of chiRAM revealed a class I GH19 chitinase: an N-terminus signal peptide (Met1-Ala23), a catalytic domain (Val83-Glu347 and the catalytic triad Glu149, Glu171, and Ser218), a proline-rich hinge region (Pro414 -Pro450), a polycystic kidney disease protein motif (Gly 465-Ser 533), a C-terminus chitin-binding domain (Ala553- Glu593), and conserved class I motifs (NYNY and AQETGG). A three-dimensional model was constructed by LOMETS MODELLER of PDB template: 2dkvA (class I chitinase of Oryza sativa L. japonica). Recombinant chiRAM was overexpressed as inclusion bodies (IBs) (~ 72 kDa; SDS-PAGE) in 1.0 mM IPTG induced E. coli BL21 (DE3) Rosetta strain at room temperature 18 h after induction. Optimized expression yielded active chiRAM with 1.974 ± 0.0002 U/mL, on shrimp colloidal chitin (SCC), in induced E. coli BL21 (DE3) Rosetta cells growing in SB medium. LC-MS/MS identified a band of 72 kDa in the soluble fraction with a 52.3% coverage sequence exclusive to the GH19 chitinase of Enterobacter cloacae (WP_063869339.1). CONCLUSIONS: Although chiRAM of Enterobacter sp. was successfully cloned and expressed in E. coli with appreciable chitinase activity, future studies should focus on minimizing IBs to facilitate chiRAM purification and characterization.


Subject(s)
Chitinases/genetics , Enterobacter/genetics , Amino Acid Sequence/genetics , Catalytic Domain/genetics , Chitin/chemistry , Chitin/genetics , Chitin/metabolism , Chitinases/metabolism , Chromatography, Liquid/methods , Cloning, Molecular/methods , Computer Simulation , Escherichia coli/genetics , Open Reading Frames/genetics , Plant Proteins , Sequence Analysis/methods , Tandem Mass Spectrometry/methods
20.
Mol Biol Rep ; 49(2): 1303-1320, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34807377

ABSTRACT

BACKGROUND: Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS: In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS: Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.


Subject(s)
Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Amino Acid Sequence/genetics , Humans , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , RNA Polymerase II/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Sequence Homology , Transcription Factors/genetics , Transcription, Genetic/genetics , Transcription, Genetic/physiology , Transcriptional Elongation Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...