Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 75(2): 189-94, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20028391

ABSTRACT

Neural stem cells have the self-renewal capacity and the ability to differentiate into all types of nerve cells. We previously reported that the tumor necrosis factor receptor-1-derived peptide promotes neural differentiation of fetal rat hippocampal neural stem cells. The tumor necrosis factor receptor-1-derived peptide contains six aromatic amino acid residues among its 14 amino acid residues. To clarify the role of these aromatic amino acid residues in the action of tumor necrosis factor receptor-1-derived peptide on neural stem cells, we synthesized mutant peptides, in which aromatic residues were substituted with alanine, and we assessed their effects. Substitution of the tyrosine residue at position 103 (Y(103)) or 106 (Y(106)), the tryptophan residue at position 107 (W(107)), or the phenylalanine residue at position 112 (F(112)) or 115 (F(115)), decreased the ability of the peptide to promote neurite outgrowth of neural stem cells depending on their concentration. These data suggest that although all five aromatic amino acid residues mediate the action of the tumor necrosis factor receptor-1-derived peptide, their order of importance in this activity is F(115) > Y(103) > W(107) > Y(106) and F(112).


Subject(s)
Amino Acids, Aromatic/physiology , Hippocampus/cytology , Receptors, Tumor Necrosis Factor, Type I/chemistry , Stem Cells/cytology , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Differentiation , Female , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism , Rats , Rats, Wistar , Receptors, Tumor Necrosis Factor, Type I/chemical synthesis , Receptors, Tumor Necrosis Factor, Type I/metabolism
2.
J Virol ; 82(6): 2883-94, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18199653

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S Delta19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S Delta19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S Delta19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.


Subject(s)
Amino Acids, Aromatic/physiology , Cell Fusion , Membrane Glycoproteins/physiology , Membrane Proteins/physiology , Receptors, Virus/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Envelope Proteins/physiology , Amino Acid Sequence , Amino Acids, Aromatic/chemistry , Base Sequence , Cell Line , DNA Primers , Humans , Membrane Glycoproteins/chemistry , Membrane Proteins/chemistry , Molecular Sequence Data , Receptors, Virus/chemistry , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemistry
3.
J Neurochem ; 102(4): 1139-50, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17663752

ABSTRACT

The localization of ATP binding site(s) at P2X receptors and the molecular rearrangements associated with opening and closing of channels are still not well understood. At P2X(4) receptor, substitution of the K67, F185, K190, F230, R278, D280, R295, and K313 ectodomain residues with alanine generated low or non-responsive mutants, whereas the F294A mutant was functional. The loss of receptor function was also observed in K67R, R295K, and K313R mutants, but not in F185W, K190R, F230W, R278K, and D280E mutants. To examine whether the loss of function reflects decreased sensitivity of mutants for ATP, we treated cells with ivermectin, an antiparasitic agent that enhances responsiveness of P2X(4)R. In the presence of ivermectin, all low or non-responsive mutants responded to ATP in a dose-dependent manner, with the EC(50) values for ATP of about 1, 2, 4, 20, 60, 125, 270, 420, 1000 and 2300 micromol/L at D280A, R278A, F185A, K190A, R295K, K313R, R295A, K313A, K67A and K67R mutants, respectively. These results indicate that lysines 67 and 313 and arginine 295 play a critical role in forming the proper three-dimensional structure of P2X(4)R for agonist binding and/or channel gating.


Subject(s)
Amino Acids, Aromatic/physiology , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/pharmacology , Animals , Binding Sites/drug effects , Cell Line, Transformed , Dose-Response Relationship, Drug , Gonadotropin-Releasing Hormone/metabolism , Humans , Hypothalamus/cytology , Ivermectin/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/radiation effects , Mice , Mutagenesis, Site-Directed/methods , Neurons/metabolism , Patch-Clamp Techniques , Protein Binding/drug effects , Receptors, Purinergic P2X4 , Structure-Activity Relationship , Transfection
4.
Hear Res ; 220(1-2): 87-94, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16945493

ABSTRACT

Gap-junctional channels are large intercellular aqueous pores formed by head-to-head association of two gap-junctional hemichannels (connexin hexamers), one from each of the adjacent cells. The mechano-transduction of sound waves into electrical impulses occurs in the cochlea, which houses the organ of Corti. Hereditary deafness is frequent and mutations of connexin 26, the predominant connexin of the cochlea, are its most frequent cause. Mutations of R75 cause deafness and disrupt gap-junctional communication. Here, we determined the effects of substitutions of R75 with different residues (alanine, asparagine, aspartic acid, lysine, phenylalanine, tyrosine or tryptophan) on formation of gap-junctional channels and hemichannels. We show that connexin 26 R75 is essential for the formation of gap-junctional channels. Substitution of R75 with aromatic residues yields functional hemichannels that display altered voltage dependence, whereas substitution with other residues yields non-functional hemichannels. The expression of R75 mutants has a dominant negative effect on gap-junctional communication mediated by wild-type connexin 26, independently of the ability of the mutants to form functional gap-junctional hemichannels. Our results show that the arginine located at position 75 of connexin 26 is essential for function, and cannot be replaced by other residues.


Subject(s)
Arginine/physiology , Connexins/genetics , Deafness/genetics , Gap Junctions/physiology , Mutation , Amino Acids, Aromatic/physiology , Analysis of Variance , Animals , Arginine/genetics , Connexins/chemistry , Ion Channel Gating , Mutagenesis, Site-Directed , Oocytes/metabolism , Xenopus laevis
5.
Biochemistry ; 45(15): 4775-84, 2006 Apr 18.
Article in English | MEDLINE | ID: mdl-16605246

ABSTRACT

Current structural results of several flavin-dependent amine oxidizing enzymes including human monoamine oxidases A and B (MAO A and MAO B) show aromatic amino acid residues oriented approximately perpendicular to the flavin ring, suggesting a functional role in catalysis. In the case of human MAO B, two tyrosyl residues (Y398 and Y435) are found in the substrate binding site on the re face of the covalent flavin ring [Binda et al. (2002) J. Biol. Chem. 277, 23973-23976]. To probe the functional significance of this structure, Tyr435 in MAO B was mutated with the amino acids Phe, His, Leu, or Trp, the mutant proteins expressed in Pichia pastoris, and purified to homogeneity. Each mutant protein contains covalent FAD and exhibits a high level of catalytic functionality. No major alterations in active site structures are detected on comparison of their respective crystal structures with that of WT enzyme. The relative k(cat)/K(m) values for each mutant enzyme show Y435 > Y435F = Y435L = Y435H > Y435W. A similar behavior is also observed with the membrane-bound forms of MAO A and MAO B (MAO A Y444 mutant enzymes are found to be unstable on membrane extraction). p-Nitrobenzylamine is found to be a poor substrate while p-nitrophenethylamine is found to be a good substrate for all WT and mutant forms of MAO B. Analysis of these kinetic and structural data suggests the function of the "aromatic cage" in MAO to include a steric role in substrate binding and access to the flavin coenzyme and to increase the nucleophilicity of the substrate amine moiety. These results are consistent with a proposed polar nucleophilic mechanism for catalytic amine oxidation.


Subject(s)
Amino Acids, Aromatic/chemistry , Monoamine Oxidase/chemistry , Protein Conformation , Tyrosine/genetics , Amines/chemistry , Amines/metabolism , Amino Acid Substitution , Amino Acids, Aromatic/physiology , Catalysis , Crystallography, X-Ray , Humans , Models, Molecular , Monoamine Oxidase/genetics , Monoamine Oxidase/physiology , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction , Pichia/genetics , Pichia/metabolism , Thermodynamics , Tyrosine/metabolism
6.
Mol Pharmacol ; 67(2): 424-34, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15659774

ABSTRACT

Voltage-gated Na(+) (Na(v)) channels are responsible for initiating action potentials in excitable cells and are the targets of local anesthetics (LA). The LA receptor is localized to the cytoplasmic pore mouth formed by the S6 segments from all four domains (DI-DIV) but several outer pore-lining residues have also been shown to influence LA block (albeit somewhat modestly). Many of the reported amino acid substitutions, however, also disrupt the inactivated conformations that favor LA binding, complicating the interpretation of their specific effects on drug block. In this article, we report that an externally accessible aromatic residue in the Na(v) channel pore, DIV-Trp1531, when substituted with cysteine, completely abolished LA block (e.g., 300 microM mexiletine induced a use-dependent block with 65.0 +/- 2.9% remaining current and -11.0 +/- 0.6 mV of steady-state inactivation shift of wild-type (WT) channels versus 97.4 +/- 0.7% and -2.4 +/- 2.1 mV of W1531C, respectively; p < 0.05) without destabilizing fast inactivation (complete inactivation at 20 ms at -20 mV; V(1/2) = -70.0 +/- 1.6 mV versus -48.6 +/- 0.5 mV of WT). W1531C also abolished internal QX-222 block (200 microM; 98.4 +/- 3.4% versus 54.0 +/- 3.2% of WT) without altering drug access. It is interesting that W1531Y restored WT blocking behavior, whereas W1531A channels exhibited an intermediate phenotype. Together, our results provide novel insights into the mechanism of drug action, and the structural relationship between the LA receptor and the outer pore vestibule.


Subject(s)
Amino Acids, Aromatic/physiology , Anesthetics, Local/metabolism , Receptors, Drug/physiology , Sodium Channels/chemistry , Sodium Channels/physiology , Amino Acid Substitution/drug effects , Amino Acids, Aromatic/antagonists & inhibitors , Animals , Cysteine/chemistry , Female , Lidocaine/metabolism , Mexiletine/metabolism , Mexiletine/pharmacology , Mutagenesis, Site-Directed , Sodium Channel Blockers/metabolism , Sodium Channel Blockers/pharmacology , Sodium Channels/genetics , Tryptophan/antagonists & inhibitors , Xenopus laevis
7.
FEMS Microbiol Lett ; 232(1): 61-6, 2004 Mar 12.
Article in English | MEDLINE | ID: mdl-15019735

ABSTRACT

Chitinase 92 from Aeromonas hydrophila JP101 contains C-terminal repeated chitin-binding domains (ChBDs) which were named ChBD(CI) and ChBD(CII) and classified into family 5 carbohydrate-binding modules on the basis of sequence. In this work, we constructed single and double ChBD by use of the pET system, which expressed as isolated ChBD(CII) or ChBD(CICII). Polysaccharide-binding studies revealed that ChBD(CICII) not only bound to chitin, but also to other insoluble polysaccharides such as cellulose (Avicel) and xylan. In comparison with ChBD(CII), the binding affinities of ChBD(CICII) are about 10- and 12-fold greater toward colloidal and powdered chitin, indicating that a cooperative interaction exists between ChBD(CI) and ChBD(CII). In order to investigate the roles of the highly conserved aromatic amino acids in the interaction of ChBD(CICII) and chitin, we have performed site-directed mutagenesis. The data showed that W773A, W792A, Y796A and W797A mutant proteins exhibited a much weaker affinity for chitin than wild-type protein, suggesting that these residues play important roles in chitin binding.


Subject(s)
Aeromonas hydrophila/enzymology , Chitin/metabolism , Chitinases/chemistry , Chitinases/metabolism , Polysaccharides/metabolism , Adsorption , Amino Acids, Aromatic/physiology , Binding Sites , Cellulose/metabolism , Chitinases/genetics , Colloids/metabolism , DNA Mutational Analysis , Mutagenesis, Site-Directed , Mutation, Missense , Protein Structure, Tertiary , Substrate Specificity , Xylans/metabolism
8.
Biochem J ; 376(Pt 1): 237-44, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-12930197

ABSTRACT

Bacillus circulans chitinase A1 (ChiA1) has a deep substrate-binding cleft on top of its (beta/alpha)8-barrel catalytic domain and an interaction between the aromatic residues in this cleft and bound oligosaccharide has been suggested. To study the roles of these aromatic residues, especially in crystalline-chitin hydrolysis, site-directed mutagenesis of these residues was carried out. Y56A and W53A mutations at subsites -5 and -3, respectively, selectively decreased the hydrolysing activity against highly crystalline beta-chitin. W164A and W285A mutations at subsites +1 and +2, respectively, decreased the hydrolysing activity against crystalline beta-chitin and colloidal chitin, but enhanced the activities against soluble substrates. These mutations increased the K(m)-value when reduced (GlcNAc)5 (where GlcNAc is N -acetylglucosamine) was used as the substrate, but decreased substrate inhibition observed with wild-type ChiA1 at higher concentrations of this substrate. In contrast with the selective effect of the other mutations, mutations of W433 and Y279 at subsite -1 decreased the hydrolysing activity drastically against all substrates and reduced the kcat-value, measured with 4-methylumbelliferyl chitotrioside to 0.022% and 0.59% respectively. From these observations, it was concluded that residues Y56 and W53 are only essential for crystalline-chitin hydrolysis. W164 and W285 are very important for crystalline-chitin hydrolysis and also participate in hydrolysis of other substrates. W433 and Y279 are both essential for catalytic reaction as predicted from the structure.


Subject(s)
Amino Acids, Aromatic/physiology , Bacillus/enzymology , Chitin/metabolism , Chitinases/chemistry , Chitinases/metabolism , Amino Acids, Aromatic/genetics , Binding Sites , Catalytic Domain , Chitin/chemistry , Chitinases/genetics , Crystallization , Hydrolysis , Mutagenesis, Site-Directed , Tryptophan/genetics , Tyrosine/genetics
9.
J Biol Chem ; 278(26): 24125-31, 2003 Jun 27.
Article in English | MEDLINE | ID: mdl-12692120

ABSTRACT

About one-third of the amino acid residues conserved in all scorpion long chain Na+ channel toxins are aromatic residues, some of which constitute the so-called "conserved hydrophobic surface." At present, in-depth structure-function studies of these aromatic residues using site-directed mutagenesis are still rare. In this study, an effective yeast expression system was used to study the role of seven conserved aromatic residues (Tyr5, Tyr14, Tyr21, Tyr35, Trp38, Tyr42, and Trp47) from the scorpion toxin BmK M1. Using site-directed mutagenesis, all of these aromatic residues were individually substituted with Gly in association with a more conservative substitution of Phe for Tyr5, Tyr14, Tyr35, or Trp47. The mutants, which were expressed in Saccharomyces cerevisiae S-78 cells, were then subjected to a bioassay in mice, electrophysiological characterization on cloned Na+ channels (Nav1.5), and CD analysis. Our results show an eye-catching correlation between the LD50 values in mice and the EC50 values on Nav1.5 channels in oocytes, indicating large mutant-dependent differences that emphasize important specific roles for the conserved aromatic residues in BmK M1. The aromatic side chains of the Tyr5, Tyr35, and Trp47 cluster protruding from the three-stranded beta-sheet seem to be essential for the structure and function of the toxin. Trp38 and Tyr42 (located in the beta2-sheet and in the loop between the beta2- and beta3-sheets, respectively) are most likely involved in the pharmacological function of the toxin.


Subject(s)
Amino Acids, Aromatic/physiology , Conserved Sequence/physiology , Neurotoxins/chemistry , Scorpion Venoms/chemistry , Scorpions/chemistry , Amino Acid Sequence , Animals , Circular Dichroism , Cloning, Molecular , Electrophysiology , Insect Proteins , Mice , Neurotoxins/genetics , Neurotoxins/pharmacology , Oocytes , Point Mutation , Scorpion Venoms/genetics , Scorpion Venoms/pharmacology , Sodium Channels/drug effects , Structure-Activity Relationship , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...