Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.561
Filter
1.
Nutrients ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931228

ABSTRACT

Branched-chain amino acids (BCAAs), as essential amino acids, engage in various physiological processes, such as protein synthesis, energy supply, and cellular signaling. The liver is a crucial site for BCAA metabolism, linking the changes in BCAA homeostasis with the pathogenesis of a variety of liver diseases and their complications. Peripheral circulating BCAA levels show complex trends in different liver diseases. This review delineates the alterations of BCAAs in conditions including non-alcoholic fatty liver disease, hepatocellular carcinoma, cirrhosis, hepatic encephalopathy, hepatitis C virus infection, and acute liver failure, as well as the potential mechanisms underlying these changes. A significant amount of clinical research has utilized BCAA supplements in the treatment of patients with cirrhosis and liver cancer. However, the efficacy of BCAA supplementation in clinical practice remains uncertain and controversial due to the heterogeneity of studies. This review delves into the complicated relationship between BCAAs and liver diseases and tries to untangle what role BCAAs play in the occurrence, development, and outcomes of liver diseases.


Subject(s)
Amino Acids, Branched-Chain , Liver Diseases , Humans , Amino Acids, Branched-Chain/metabolism , Liver Diseases/metabolism , Dietary Supplements , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/drug therapy
2.
Nutrients ; 16(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931325

ABSTRACT

Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.


Subject(s)
Amino Acids, Branched-Chain , Biomarkers , Cardiovascular Diseases , Humans , Amino Acids, Branched-Chain/metabolism , Cardiovascular Diseases/metabolism , Biomarkers/metabolism , Biomarkers/blood , Gastrointestinal Microbiome , Insulin Resistance , Signal Transduction , Diabetes Mellitus, Type 2/metabolism , Chronic Disease , Inflammation/metabolism , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , Methylamines
4.
Nutr Diabetes ; 14(1): 40, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844453

ABSTRACT

BACKGROUND: High-protein diets are often enriched with branched-chain amino acids (BCAAs) known to enhance protein synthesis and provide numerous physiological benefits, but recent studies reveal their association with obesity and diabetes. In support of this, protein or BCAA supplementation is shown to disrupt glucose metabolism while restriction improves it. However, it is not clear if these are primary, direct effects of BCAAs or secondary to other physiological changes during chronic manipulation of dietary BCAAs. METHODS: Three-month-old C57Bl/6 mice were acutely treated with either vehicle/BCAAs or BT2, a BCAA-lowering compound, and detailed in vivo metabolic phenotyping, including frequent sampling and pancreatic clamps, were conducted. RESULTS: Using a catheter-guided frequent sampling method in mice, here we show that a single infusion of BCAAs was sufficient to acutely elevate blood glucose and plasma insulin. While pre-treatment with BCAAs did not affect glucose tolerance, a constant infusion of BCAAs during hyperinsulinemic-euglycemic clamps impaired whole-body insulin sensitivity. Similarly, a single injection of BT2 was sufficient to prevent BCAA rise during fasting and markedly improve glucose tolerance in high-fat-fed mice, suggesting that abnormal glycemic control in obesity may be causally linked to high circulating BCAAs. We further show that chemogenetic over-activation of AgRP neurons in the hypothalamus, as present in obesity, significantly impairs glucose tolerance that is completely normalized by acute BCAA reduction. Interestingly, most of these effects were demonstrated only in male, but not in female mice. CONCLUSION: These findings suggest that BCAAs per se can acutely impair glucose homeostasis and insulin sensitivity, thus offering an explanation for how they may disrupt glucose metabolism in the long-term as observed in obesity and diabetes. Our findings also reveal that AgRP neuronal regulation of blood glucose is mediated through BCAAs, further elucidating a novel mechanism by which brain controls glucose homeostasis.


Subject(s)
Agouti-Related Protein , Amino Acids, Branched-Chain , Blood Glucose , Insulin Resistance , Mice, Inbred C57BL , Neurons , Animals , Insulin Resistance/physiology , Agouti-Related Protein/metabolism , Neurons/metabolism , Neurons/drug effects , Male , Mice , Blood Glucose/metabolism , Female , Amino Acids, Branched-Chain/metabolism , Insulin/blood , Insulin/metabolism , Glucose Clamp Technique , Diet, High-Fat , Obesity/metabolism
5.
Yi Chuan ; 46(6): 438-451, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38886148

ABSTRACT

Branched-chain amino acids (BCAAs), including leucine, valine, and isoleucine, play crucial roles in regulating metabolic balance and maintaining physiological functions in the body. Extensive studies have been focused on their implications in obesity, diabetes, and cardiovascular diseases. Nevertheless, accumulating evidence suggests that BCAAs metabolism also plays significant roles in tumorigenesis and progression. In this review, we overview recent progress of the study on BCAAs metabolism including its relationship with epigenetic regulation. Particularly, we discuss the metabolic reprogramming and metabolic sensing of BCAAs and its intermediate metabolites in tumor cells and microenvironment to decipher their functions. An enhanced understanding of the roles and mechanism of BCAAs metabolism in tumorigenesis and progression will contribute to development of novel therapeutic strategies against tumor.


Subject(s)
Amino Acids, Branched-Chain , Carcinogenesis , Neoplasms , Amino Acids, Branched-Chain/metabolism , Humans , Carcinogenesis/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Animals , Disease Progression , Epigenesis, Genetic , Tumor Microenvironment
6.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892515

ABSTRACT

Fructose is a commonly consumed monosaccharide implicated in developing several metabolic diseases. Previously, elevated branched-chain amino acids (BCAA) have been correlated with the severity of insulin resistance. Most recently, the effect of fructose consumption on the downregulation of BCAA catabolic enzymes was observed. Thus, this mechanistic study investigated the effects of physiologically attainable levels of fructose, both with and without concurrent insulin resistance, in a myotube model of skeletal muscle. METHODS: C2C12 mouse myoblasts were treated with fructose at a concentration of 100 µM (which approximates physiologically attainable concentrations in peripheral circulation) both with and without hyperinsulinemic-mediated insulin resistance. Gene expression was assessed by qRT-PCR, and protein expression was assessed by Western blot. Oxygen consumption rate and extracellular acidification rate were used to assess mitochondrial oxidative and glycolytic metabolism, respectively. Liquid chromatography-mass spectrometry was utilized to analyze leucine, isoleucine and valine concentration values. RESULTS: Fructose significantly reduced peak glycolytic and peak mitochondrial metabolism without altering related gene or protein expression. Similarly, no effect of fructose on BCAA catabolic enzymes was observed; however, fructose treatment resulted in elevated total extracellular BCAA in insulin-resistant cells. DISCUSSION: Collectively, these observations demonstrate that fructose at physiologically attainable levels does not appear to alter insulin sensitivity or BCAA catabolic potential in cultured myotubes. However, fructose may depress peak cell metabolism and BCAA utilization during insulin resistance.


Subject(s)
Amino Acids, Branched-Chain , Fructose , Insulin Resistance , Muscle Fibers, Skeletal , Animals , Fructose/pharmacology , Amino Acids, Branched-Chain/metabolism , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Cell Line , Mitochondria/metabolism , Mitochondria/drug effects , Glycolysis/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Oxygen Consumption/drug effects
7.
Genomics ; 116(4): 110873, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823464

ABSTRACT

Goat milk exhibits a robust and distinctive "goaty" flavor. However, the underlying genetic basis of goaty flavor remains elusive and requires further elucidation at the genomic level. Through comparative genomics analysis, we identified divergent signatures of certain proteins in goat, sheep, and cow. MMUT has undergone a goat-specific mutation in the B12 binding domain. We observed the goat FASN exhibits nonsynonymous mutations in the acyltransferase domain. Structural variations in these key proteins may enhance the capacity for synthesizing goaty flavor compounds in goat. Integrated omics analysis revealed the catabolism of branched-chain amino acids contributed to the goat milk flavor. Furthermore, we uncovered a regulatory mechanism in which the transcription factor ZNF281 suppresses the expression of the ECHDC1 gene may play a pivotal role in the accumulation of flavor substances in goat milk. These findings provide insights into the genetic basis underlying the formation of goaty flavor in goat milk. STATEMENT OF SIGNIFICANCE: Branched-chain fatty acids (BCFAs) play a crucial role in generating the distinctive "goaty" flavor of goat milk. Whether there is an underlying genetic basis associated with goaty flavor is unknown. To begin deciphering mechanisms of goat milk flavor development, we collected transcriptomic data from mammary tissue of goat, sheep, cow, and buffalo at peak lactation for cross-species transcriptome analysis and downloaded nine publicly available genomes for comparative genomic analysis. Our data indicate that the catabolic pathway of branched-chain amino acids (BCAAs) is under positive selection in the goat genome, and most genes involved in this pathway exhibit significantly higher expression levels in goat mammary tissue compared to other species, which contributes to the development of flavor in goat milk. Furthermore, we have elucidated the regulatory mechanism by which the transcription factor ZNF281 suppresses ECHDC1 gene expression, thereby exerting an important influence on the accumulation of flavor compounds in goat milk. These findings provide insights into the genetic mechanisms underlying flavor formation in goat milk and suggest further research to manipulate the flavor of animal products.


Subject(s)
Goats , Milk , Animals , Goats/genetics , Goats/metabolism , Milk/metabolism , Milk/chemistry , Taste , Genomics , Transcriptome , Female , Sheep/genetics , Sheep/metabolism , Cattle/genetics , Cattle/metabolism , Amino Acids, Branched-Chain/metabolism
8.
Cancer Lett ; 595: 217006, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38823763

ABSTRACT

Driver genomic mutations in tumors define specific molecular subtypes that display distinct malignancy competence, therapeutic resistance and clinical outcome. Although TP53 mutation has been identified as the most common mutation in hepatocellular carcinoma (HCC), current understanding on the biological traits and therapeutic strategies of this subtype has been largely unknown. Here, we reveal that fatty acid ß oxidation (FAO) is remarkable repressed in TP53 mutant HCC and which links to poor prognosis in HCC patients. We further demonstrate that carnitine palmitoyltransferase 1 (CPT1A), the rate-limiting enzyme of FAO, is universally downregulated in liver tumor tissues, and which correlates with poor prognosis in HCC and promotes HCC progression in the de novo liver tumor and xenograft tumor models. Mechanically, hepatic Cpt1a loss disrupts lipid metabolism and acetyl-CoA production. Such reduction in acetyl-CoA reduced histone acetylation and epigenetically reprograms branched-chain amino acids (BCAA) catabolism, and leads to the accumulation of cellular BCAAs and hyperactivation of mTOR signaling. Importantly, we reveal that genetic ablation of CPT1A renders TP53 mutant liver cancer mTOR-addicted and sensitivity to mTOR inhibitor AZD-8055 treatment. Consistently, Cpt1a loss in HCC directs tumor cell therapeutic response to AZD-8055. CONCLUSION: Our results show genetic evidence for CPT1A as a metabolic tumor suppressor in HCC and provide a therapeutic approach for TP53 mutant HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Carnitine O-Palmitoyltransferase , Liver Neoplasms , Mutation , Tumor Suppressor Protein p53 , Humans , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Amino Acids, Branched-Chain/metabolism , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Xenograft Model Antitumor Assays , Lipid Metabolism/genetics , Signal Transduction , Acetyl Coenzyme A/metabolism , Gene Expression Regulation, Neoplastic , Male
9.
Obstet Gynecol Surv ; 79(6): 343-347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896430

ABSTRACT

Importance: Polycystic ovary syndrome (PCOS) is a common endocrine syndrome with multiple causes and polymorphic clinical manifestations, which is one of the important causes of menstrual disorders in women of childbearing age. It has been found that branched-chain amino acids (BCAAs), a class of essential amino acids that cannot be synthesized by the human body, play a significant role in the metabolic changes of PCOS, which may be involved in the pathogenesis of PCOS. Objective: The purpose of this review is to summarize the relevance between BCAAs and metabolic abnormalities in PCOS and to explore their possible mechanisms. Evidence Acquisition: The evidence is mainly obtained by reviewing the literature on PubMed related to PCOS, BCAAs, and related metabolic abnormalities and conducting summary analysis. Results: The metabolism of BCAAs can affect the homeostasis of glucose metabolism, possibly by disrupting the balance of gut microbiota, activating mTORC1 targets, producing mitochondrial toxic metabolites, and increasing the expression of proinflammatory genes. The correlation between obesity and BCAAs in PCOS patients may be related to the gene expression of BCAA metabolism-related enzymes in adipose tissue. The association between BCAA metabolic changes and nonalcoholic fatty liver disease in PCOS patients has not been fully clarified, which may be related to the lipid accumulation caused by BCAAs. At present, it is believed that hyperandrogenism in patients with PCOS is not related to BCAAs. However, through the study of changes in BCAA metabolism in prostate cancer caused by hyperandrogenism, we speculate that the relationship between BCAAs and hyperandrogenism may be mediated by mTORC1 and amino acid transporters. Conclusions and Relevance: Review of prior articles reveals that BCAAs may be related to insulin resistance, obesity, nonalcoholic fatty liver, and hyperandrogenism in PCOS patients, and its mechanisms are complex, diverse, and interrelated. This review also discussed the mechanism of BCAAs and these metabolic disorders in non-PCOS patients, which may provide some help for future research.


Subject(s)
Amino Acids, Branched-Chain , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/complications , Amino Acids, Branched-Chain/metabolism , Female , Hyperandrogenism/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Obesity/complications , Insulin Resistance
10.
Food Res Int ; 187: 114311, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763626

ABSTRACT

The efficacy of amino acids as popular sports supplements has triggered debates, with their impact on athletic performance varying across sports disciplines due to diversity and heterogeneity in clinical trials. This review evaluates the ergogenic potential of amino acids, by critical appraisal of results of clinical trials of Branched chain amino acids (BCAAs), arginine, glutamine, citrulline, ß-alanine, and taurine, performed on elite sportsmen from various land and water sports. Clinical trials reviewed here confirm notable physiological benefits thereby supporting the claim that BCAA, citrulline and arginine in various doses can have positive effects on endurance and overall performance in sportsperson. Furthermore, results of clinical trials and metabolomic studies indicate that in future it would be more beneficial to design precise formulations to target the requirement of specific sports. For instance, some combinations of amino acids may be more suitable for long term endurance and some others may be suitable for short burst of excessive energy. The most important insights from this review are the identification of three key areas where research is urgently needed: a) Biomarkers that can identify the physiological end points and to distinguish the specific role of amino acid as anti-fatigue or reducing muscle soreness or enhancing energy b) In-depth sports-wise clinical trials on elite sportsperson to understand the ergogenic needs for the particular sports c) Design of precision formula for similar types of sports instead of common supplements.


Subject(s)
Amino Acids , Athletic Performance , Dietary Supplements , Sports Nutritional Physiological Phenomena , Humans , Athletic Performance/physiology , Physical Endurance/drug effects , Amino Acids, Branched-Chain/metabolism , beta-Alanine , Arginine/metabolism
11.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731876

ABSTRACT

This study explores the impact of defecation frequency on the gut microbiome structure by analyzing fecal samples from individuals categorized by defecation frequency: infrequent (1-3 times/week, n = 4), mid-frequent (4-6 times/week, n = 7), and frequent (daily, n = 9). Utilizing 16S rRNA gene-based sequencing and LC-MS/MS metabolome profiling, significant differences in microbial diversity and community structures among the groups were observed. The infrequent group showed higher microbial diversity, with community structures significantly varying with defecation frequency, a pattern consistent across all sampling time points. The Ruminococcus genus was predominant in the infrequent group, but decreased with more frequent defecation, while the Bacteroides genus was more common in the frequent group, decreasing as defecation frequency lessened. The infrequent group demonstrated enriched biosynthesis genes for aromatic amino acids and branched-chain amino acids (BCAAs), in contrast to the frequent group, which had a higher prevalence of genes for BCAA catabolism. Metabolome analysis revealed higher levels of metabolites derived from aromatic amino acids and BCAA metabolism in the infrequent group, and lower levels of BCAA-derived metabolites in the frequent group, consistent with their predicted metagenomic functions. These findings underscore the importance of considering stool consistency/frequency in understanding the factors influencing the gut microbiome.


Subject(s)
Defecation , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Male , Adult , Female , Metabolome , Biodiversity , Amino Acids, Branched-Chain/metabolism , Metabolomics/methods , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteroides/genetics , Metagenome
12.
Nature ; 629(8010): 98-104, 2024 May.
Article in English | MEDLINE | ID: mdl-38693411

ABSTRACT

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Subject(s)
Amino Acids , Biocatalysis , Oxidative Coupling , Photochemical Processes , Amino Acids/biosynthesis , Amino Acids/chemistry , Amino Acids/metabolism , Biocatalysis/radiation effects , Directed Molecular Evolution , Free Radicals/chemistry , Free Radicals/metabolism , Glycine/chemistry , Glycine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/chemistry , Indicators and Reagents , Light , Oxidative Coupling/radiation effects , Pyridoxal Phosphate/metabolism , Stereoisomerism , Amino Acids, Branched-Chain/chemistry , Amino Acids, Branched-Chain/metabolism
13.
J Pharm Biomed Anal ; 245: 116197, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723558

ABSTRACT

The dysregulated levels of branched chain amino acids (BCAA) contribute to renal fibrosis in chronic kidney disease (CKD), yet specific analysis of BCAA contents and how they are regulated still remain unclear. It is therefore of great scientific interest to understand BCAA catabolism in CKD and develop a sensitive method for simultaneous determination of individual BCAA and their metabolites branched chain α-ketoacids (BCKA). In this work, the important role of BCAA metabolism that drives renal fibrosis in the process of CKD was first revealed by using transcriptomics. The key target genes controlling BCAA metabolism were then validated, that is, mRNA levels of BCKDHA and BCKDHB, the regulating rate-limiting enzymes during BCAA metabolism were abnormally reduced by quantitative PCR (qPCR), and a similar drop-off trend of protein expression of BCKDH, HIBCH and MCCC2 that are closely related to BCAA metabolism was also confirmed by western blotting. Furthermore, we established a novel strategy that simultaneously determines 6 individual BCAA and BCKA in serum and tissue. The method based on dansylhydrazine derivatization and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QQQ-MS) achieved to simultaneously determine the contents of BCAA and BCKA, which is efficient and stable. Compared with normal rats, levels of BCAA including leucine, isoleucine and valine in serum and kidney of CKD rats was decreased, while BCKA including α-ketoisocaproic acid, α-ketomethylvaleric acid and α-ketoisovaleric acid was increased. Together, these findings revealed the abnormality of BCAA metabolism in driving the course of kidney fibrosis and CKD. Our current study sheds new light on changes in BCAA metabolism during CKD, and may facilitate development of drugs to treat CKD and renal fibrosis.


Subject(s)
Amino Acids, Branched-Chain , Fibrosis , Kidney , Rats, Sprague-Dawley , Renal Insufficiency, Chronic , Animals , Amino Acids, Branched-Chain/metabolism , Rats , Male , Chromatography, High Pressure Liquid/methods , Fibrosis/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Kidney/metabolism , Kidney/pathology , Keto Acids/metabolism , Transcriptome , Tandem Mass Spectrometry/methods , Gene Expression Profiling/methods
14.
Clin Transl Gastroenterol ; 15(6): e1, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38696431

ABSTRACT

INTRODUCTION: Diet can affect ammoniagenesis in cirrhosis and hepatic encephalopathy (HE), but the impact of dietary preferences on metabolomics in cirrhosis is unclear. As most Western populations follow meat-based diets, we aimed to determine the impact of substituting a single meat-based meal with an equal protein-containing vegan/vegetarian alternative on ammonia and metabolomics in outpatients with cirrhosis on a meat-based diet. METHODS: Outpatients with cirrhosis with and without prior HE on a stable Western meat-based diet were randomized 1:1:1 into 3 groups. Patients were given a burger with 20 g protein of meat, vegan, or vegetarian. Blood for metabolomics via liquid chromatography-mass spectrometry and ammonia was drawn at baseline and hourly for 3 hours after meal while patients under observation. Stool microbiome characteristics, changes in ammonia, and metabolomics were compared between/within groups. RESULTS: Stool microbiome composition was similar at baseline. Serum ammonia increased from baseline in the meat group but not the vegetarian or vegan group. Metabolites of branched chain and acylcarnitines decreased in the meat group compared with the non-meat groups. Alterations in lipid profile (higher sphingomyelins and lower lysophospholipids) were noted in the meat group when compared with the vegan and vegetarian groups. DISCUSSION: Substitution of a single meat-based meal with a non-meat alternatives results in lower ammoniagenesis and altered serum metabolomics centered on branched-chain amino acids, acylcarnitines, lysophospholipids, and sphingomyelins in patients with cirrhosis regardless of HE or stool microbiome. Intermittent meat substitution with vegan or vegetarian alternatives could be helpful in reducing ammonia generation in cirrhosis.


Subject(s)
Ammonia , Diet, Vegan , Diet, Vegetarian , Feces , Gastrointestinal Microbiome , Hepatic Encephalopathy , Liver Cirrhosis , Metabolomics , Humans , Ammonia/blood , Ammonia/metabolism , Liver Cirrhosis/diet therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/blood , Male , Female , Middle Aged , Hepatic Encephalopathy/diet therapy , Hepatic Encephalopathy/blood , Hepatic Encephalopathy/etiology , Feces/chemistry , Feces/microbiology , Aged , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/metabolism , Meat , Amino Acids, Branched-Chain/blood , Amino Acids, Branched-Chain/metabolism , Adult
15.
Front Immunol ; 15: 1385896, 2024.
Article in English | MEDLINE | ID: mdl-38715606

ABSTRACT

Introduction: Peripartal cows are susceptible to a negative energy balance due to inadequate nutrient intake and high energy requirements for lactation. Improving the energy metabolism of perinatal dairy cows is crucial in increasing production in dairy cows. Methods: In this study, we investigated the impact of rumen-protected branched-chain amino acid (RPBCAA) on the production performance, energy and lipid metabolism, oxidative stress, and immune function of primiparous dairy cows using metabolomics through a single-factor experiment. Twenty healthy primiparous Holstein cows were selected based on body condition scores and expected calving date, and were randomly divided into RPBCAA (n = 10) and control (n = 10) groups. The control group received a basal diet from calving until 21 d in milk, and the RPBCAA group received the basal diet and 44.6 g/d RPLeu, 25.14 g/d RPIle, and 25.43 g/d RPVal. Results: In comparison to the control group, the supplementation of RPBCAA had no significant effect on milk yield and milk composition of the dairy cows. Supplementation with RPBCAA significantly increased the concentrations of insulin, insulin growth factor 1, glucagon, and growth hormones, which are indicators of energy metabolism in postpartum cows. The very low density lipoprotein, fatty acid synthase, acetyl coenzyme A carboxylase, and hormone-sensitive lipase contents of the RPBCAA group were significantly greater than that of the control group; these metrics are related to lipid metabolism. In addition, RPBCAA supplementation significantly increased serum glutathione peroxidase and immunoglobulin G concentrations and decreased malondialdehyde concentrations. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed 414 serum and 430 milk metabolic features. Supplementation with RPBCAA primarily increased concentrations of amino acid and lipid metabolism pathways and upregulated the abundance of serotonin, glutamine, and phosphatidylcholines. Discussion: In summary, adding RPBCAA to the daily ration can influence endocrine function and improve energy metabolism, regulate amino acid and lipid metabolism, mitigate oxidative stress and maintain immune function on primiparous cows in early lactation.


Subject(s)
Amino Acids, Branched-Chain , Lactation , Metabolomics , Milk , Rumen , Animals , Cattle , Female , Amino Acids, Branched-Chain/metabolism , Rumen/metabolism , Metabolomics/methods , Milk/chemistry , Milk/metabolism , Energy Metabolism , Pregnancy , Dietary Supplements , Animal Feed/analysis , Parity , Oxidative Stress , Lipid Metabolism , Metabolome
16.
Cell Metab ; 36(5): 891-892, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718756

ABSTRACT

Brown adipose tissue has long been functionally characterized as an organ that regulates thermogenesis, body weight set point, and glucose homeostasis. In the May 9, 2024, issue of Cell, Verkerke et al. discover a novel function for brown adipose tissue in processing branched-chain amino acids into antioxidant metabolites that enter the circulation and regulate insulin signaling in the liver.


Subject(s)
Adipocytes, Brown , Adipocytes, Brown/metabolism , Animals , Humans , Adipose Tissue, Brown/metabolism , Thermogenesis , Amino Acids, Branched-Chain/metabolism , Insulin/metabolism , Signal Transduction , Liver/metabolism
17.
Mol Biol Rep ; 51(1): 682, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796647

ABSTRACT

BACKGROUND: Control of blackleg disease of canola caused by the fungus Leptosphaeria maculans relies on strategies such as the inhibition of growth with fungicides. However, other chemicals are used during canola cultivation, including fertilizers and herbicides. There is widespread use of herbicides that target the acetolactate synthase (ALS) enzyme involved in branched chain amino acid synthesis and low levels of these amino acids within leaves of Brassica species. In L. maculans the ilv2 gene encodes ALS and thus ALS-inhibiting herbicides may inadvertently impact the fungus. METHODS AND RESULTS: Here, the impact of a commercial herbicide targeting ALS and mutation of the homologous ilv2 gene in L. maculans was explored. Exposure to herbicide had limited impact on growth in vitro but reduced lesion sizes in plant disease experiments. Furthermore, the mutation of the ilv2 gene via CRISPR-Cas9 gene editing rendered the fungus non-pathogenic. CONCLUSION: Herbicide applications can influence disease outcome, but likely to a minor extent.


Subject(s)
Acetolactate Synthase , Amino Acids, Branched-Chain , Herbicides , Leptosphaeria , Plant Diseases , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Plant Diseases/microbiology , Herbicides/pharmacology , Amino Acids, Branched-Chain/biosynthesis , Amino Acids, Branched-Chain/metabolism , Leptosphaeria/genetics , Leptosphaeria/pathogenicity , Mutation/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Editing/methods , Plant Leaves/microbiology , CRISPR-Cas Systems/genetics , Brassica/microbiology , Ascomycota/pathogenicity , Ascomycota/genetics
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718847

ABSTRACT

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Subject(s)
Amino Acids, Branched-Chain , Apoptosis , GTP Phosphohydrolases , Glioblastoma , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , GTP Phosphohydrolases/metabolism , Animals , Amino Acids, Branched-Chain/metabolism , Cell Line, Tumor , Mice , Mitochondrial Proteins/metabolism , Ubiquitin/metabolism , Signal Transduction/drug effects , Male , Ubiquitination/drug effects , Reactive Oxygen Species/metabolism
19.
Biochem Biophys Res Commun ; 718: 150087, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735139

ABSTRACT

Flooding deprives plants of oxygen and thereby causes severe stress by interfering with energy production, leading to growth retardation. Enzymes and metabolites may help protect plants from waterlogging and hypoxic environmental conditions. Acetolactate synthase (ALS) is a key enzyme in the biosynthesis of branched-chain amino acids (BCAAs), providing the building blocks for proteins and various secondary metabolites. Additionally, under energy-poor conditions, free BCAAs can be used as an alternative energy source by mitochondria through a catabolic enzyme chain reaction. In this study, we characterized ALS-INTERACTING PROTEIN 1 (OsAIP1), which encodes the regulatory subunit of ALS in rice (Oryza sativa). This gene was expressed in all parts of the rice plant, and its expression level was significantly higher in submerged and low-oxygen environments. Rice transformants overexpressing OsAIP1 showed a higher survival rate under hypoxic stress than did non-transgenic control plants under the same conditions. The OsAIP1-overexpressing plants accumulated increased levels of BCAAs, demonstrating that OsAIP1 is an important factor in the hypoxia resistance mechanism. These results suggest that ALS proteins are part of a defense mechanism that improves the tolerance of plants to low-oxygen environments.


Subject(s)
Acetolactate Synthase , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Stress, Physiological/genetics , Amino Acids, Branched-Chain/metabolism , Oxygen/metabolism , Protein Subunits/metabolism , Protein Subunits/genetics
20.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653240

ABSTRACT

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Subject(s)
Adipose Tissue, Brown , Amino Acids, Branched-Chain , Insulin Resistance , Mitochondria , Nitrogen , Thermogenesis , Adipose Tissue, Brown/metabolism , Animals , Amino Acids, Branched-Chain/metabolism , Mice , Nitrogen/metabolism , Mitochondria/metabolism , Male , Humans , Energy Metabolism , Mice, Inbred C57BL , Oxidative Stress , Insulin/metabolism , Diet, High-Fat , Adipocytes, Brown/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...