Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Res Ther ; 9(1): 38, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28587659

ABSTRACT

BACKGROUND: Pyroglutamylation of truncated Aß peptides, which is catalysed by enzyme glutaminyl cyclase (QC), generates pE-Aß species with enhanced aggregation propensities and resistance to most amino-peptidases and endo-peptidases. pE-Aß species have been identified as major constituents of Aß plaques and reduction of pE-Aß species is associated with improvement of cognitive tasks in animal models of Alzheimer's disease (AD). Pharmacological inhibition of QC has thus emerged as a promising therapeutic approach for AD. Here, we question whether cerebrospinal fluid (CSF) QC enzymatic activity differs between AD patients and controls and whether inflammatory or angiogenesis mediators, some of which are potential QC substrates, and/or Aß peptides may serve as pharmacodynamic read-outs for QC inhibition. METHODS: QC activity, Aß peptides and inflammatory or angiogenesis mediators were measured in CSF of a clinically well-characterized cohort of 20 mild AD patients, 20 moderate AD patients and 20 subjective memory complaints (SMC) controls. Correlation of these parameters with core diagnostic CSF AD biomarkers (Aß42, tau and p-tau) and clinical features was evaluated. RESULTS: QC activity shows a tendency to decrease with AD progression (p = 0.129). The addition of QC activity to biomarkers tau and p-tau significantly increases diagnostic power (ROC-AUCTAU = 0.878, ROC-AUCTAU&QC = 0.939 and ROC-AUCpTAU = 0.820, ROC-AUCpTAU&QC = 0.948). In AD and controls, QC activity correlates with Aß38 (r = 0.83, p < 0.0001) and Aß40 (r = 0.84, p < 0.0001), angiogenesis mediators (Flt1, Tie2, VEGFD, VCAM-1 and ICAM-1, r > 0.5, p < 0.0001) and core diagnostic biomarkers (r > 0.35, p = <0.0057). QC activity does not correlate with MMSE or ApoE genotype. CONCLUSIONS: Aß38, Aß40 and angiogenesis mediators (Flt1, Tie2, VEGFD, VCAM-1 and ICAM-1) are potential pharmacodynamic markers of QC inhibition, because their levels closely correlate with QC activity in AD patients. The addition of QC activity to core diagnostic CSF biomarkers may be of specific interest in clinical cases with discordant imaging and biochemical biomarker results.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Aminoacyltransferases/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Angiogenesis Modulating Agents/cerebrospinal fluid , Aged , Aged, 80 and over , Angiogenic Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Disease Progression , Enzyme Activation , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Statistics as Topic
2.
Clin Chim Acta ; 389(1-2): 152-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18187042

ABSTRACT

BACKGROUND: Proteins and peptides occurring in human body fluids can be useful biological markers for neurological diseases and can even contribute to the pathogenesis of such diseases. However, proteins and peptides are potential substrates of proteases and other enzymes. Proteolysis and enzymatic modification may lead to their degradation and modification. METHODS: Using mass spectrometry we investigated the degradation and modification of indicator peptides in the presence of cerebrospinal fluid (CSF). We further applied a fluorometric assay to study the activity of the presumed enzyme glutaminyl cyclase. RESULTS: In CSF we observed an aminopeptidase activity that could partially be inhibited by protease inhibitors and EDTA. In addition, the formation of pyroglutamate (pGlu) from N-terminal glutamine (Gln) was regularly observed. The reaction to pGlu was rapid and protected the indicator peptides from further N-terminal degradation. The conversion of Gln to pGlu could be attributed to the activity of the enzyme glutaminyl cyclase (QC). The QC activity was a characteristic feature of all 45 CSF samples collected from multiple sclerosis patients and controls. CONCLUSION: Glutaminyl cyclase activity is a characteristic feature of human cerebrospinal fluid. The presence of QC in CSF can stabilize peptides from degradation by aminopeptidases. This may have impact for neurological disorders that are characterized by both, the presence of QC and the occurrence of appropriate peptide substrates.


Subject(s)
Aminoacyltransferases/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry , Multiple Sclerosis/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...