Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
1.
Biomacromolecules ; 25(5): 2762-2769, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38689446

ABSTRACT

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in Escherichia coli to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further in vitro steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv. Our results demonstrated that this system could attach other proteins to the nanoparticles' exterior surfaces without adversely affecting their folding and assembly processes. Additionally, this system enabled the attachment of proteins inside encapsulins which varied shapes and sizes of the nanoparticles due to cargo overload. This research developed an alternative enzymatic ligation method for engineering encapsulin nanoparticles to facilitate the conjugation process.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Escherichia coli , Protein Processing, Post-Translational , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Nanoparticles/chemistry , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism
2.
Angew Chem Int Ed Engl ; 63(14): e202316777, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38366985

ABSTRACT

Topological transformations and permutations of proteins have attracted significant interest as strategies to generate new protein functionalities or stability. These efforts have mainly been inspired by naturally occurring post-translational modifications, such as head-to-tail cyclization, circular permutation, or lasso-like entanglement. Such approaches can be realized experimentally via genetic encoding, in the case of circular permutation, or via enzymatic processing, in the case of cyclization. Notably, these previously described strategies leave the polypeptide backbone orientation unaltered. Here we describe an unnatural protein permutation, the protein domain inversion, whereby a C-terminal portion of a protein is enzymatically inverted from the canonical N-to-C to a C-to-C configuration with respect to the N-terminal part of the protein. The closest conceptually analogous biological process is perhaps the inversion of DNA segments as catalyzed by recombinases. We achieve these inversions using an engineered sortase A, a widely used transpeptidase. Our reactions proceed efficiently under mild conditions at 4-25 °C and are compatible with entirely heterologously-produced protein substrates.


Subject(s)
Aminoacyltransferases , Peptidyl Transferases , Protein Domains , Peptides/chemistry , Bacterial Proteins/metabolism , Aminoacyltransferases/chemistry , Peptidyl Transferases/metabolism , DNA , Catalysis
3.
Angew Chem Int Ed Engl ; 63(12): e202310910, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38081121

ABSTRACT

Sortase-mediated ligation (SML) has emerged as a powerful and versatile methodology for site-specific protein conjugation, functionalization/labeling, immobilization, and design of biohybrid molecules and systems. However, the broader application of SML faces several challenges, such as limited activity and stability, dependence on calcium ions, and reversible reactions caused by nucleophilic side-products. Over the past decade, protein engineering campaigns and particularly directed evolution, have been extensively employed to overcome sortase limitations, thereby expanding the potential application of SML in multiple directions, including therapeutics, biorthogonal chemistry, biomaterials, and biosensors. This review provides an overview of achieved advancements in sortase engineering and highlights recent progress in utilizing SML in combination with other state-of-the-art chemical and biological methodologies. The aim is to encourage scientists to employ sortases in their conjugation experiments.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Bacterial Proteins/metabolism , Aminoacyltransferases/chemistry , Protein Engineering/methods , Power, Psychological
4.
J Biomol Struct Dyn ; 42(3): 1157-1169, 2024.
Article in English | MEDLINE | ID: mdl-37184111

ABSTRACT

Staphylococcus aureus is a prevalent Gram-positive bacteria leading cause of a wide range of human pathologies. Moreover, antibiotic résistance of pathogenesis bacteria is one of the worldwide health problems. In Gram-positive bacteria, the enzyme of SrtA, is responsible for the anchoring of surface-exposed proteins to the cell wall peptidoglycan. Because of its critical role in Gram-positive bacterial pathogenesis, SrtA is an attractive target for anti-virulence during drug development. To date, some SrtA inhibitors have been discovered most of them being derived from flavonoid compounds, like Myricetin. In order to provide potential hit molecules against SrtA for clinical use, we obtained a total of 293 compounds by performing in silico shape-based screening of compound libraries against Myristin as a reference structure. Employing molecular docking and scoring functions, the top 3 compounds Apigenin, Efloxate, and Compound 8261032 were screened by comparing their docking scores with Myricetin. Furthermore, MD simulations and MM-PBSA binding energy calculation studies revealed that only Compound 8261032 strongly binds to the catalytic core of the SrtA enzyme than Myricetin, and stable behavior was consistently observed in the docking complex. Compound 8261032 showed a good number of hydrogen bonds with SrtA and higher MM-PBSA binding energy when compared to all three molecules. Also, it makes strength interactions with Arg139 and His62, which are critical for SrtA biological activity. This study showed that the development of this inhibitor could be a fundamental strategy against resistant bacteria, but further studies in vitro are needed to confirm this claim.Communicated by Ramaswamy H. Sarma.


Subject(s)
Aminoacyltransferases , Cysteine Endopeptidases , Staphylococcus aureus , Humans , Molecular Dynamics Simulation , Molecular Docking Simulation , Bacterial Proteins/chemistry , Aminoacyltransferases/chemistry
5.
Bioorg Med Chem ; 97: 117542, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38104495

ABSTRACT

Glutaminyl cyclase (QC) plays a crucial role in the early stages of Alzheimer's disease (AD), thus inhibition of QC may be a promising strategy for the treatment of early AD. Therefore, QC inhibitors with novel chemical scaffolds may contribute to the development of additional anti-AD agents. We conducted a virtual screening of 3 million compounds from the Chemdiv and Enamine databases, to discover potential scaffolds for QC inhibitors. Three scaffolds, 120974, 147706, and 141449, were selected from this structure-based virtual screening through a combination of pharmacophore modeling, a receptor-ligand pharmacophore model, and the GALAHAD model, and furtherly filtered by chelation with zinc ion and docking properties. Consequently, three compounds, 1, 2, and 3, were designed and synthesized based on these three scaffolds, respectively. The IC50 of compounds 1 and 3 against QC were 14.19 ± 4.21 and 4.34 ± 0.35 µM, respectively. Our results indicate that the new scaffolds selected using a virtual screening process exhibit potential as novel QC inhibitors.


Subject(s)
Alzheimer Disease , Aminoacyltransferases , Humans , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Docking Simulation
6.
Int J Biol Macromol ; 243: 125183, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37276901

ABSTRACT

Dental plaque is a complex microbial biofilm community of many species and a major cause of oral infections and infectious endocarditis. Plaque development begins when primary colonizers attach to oral tissues and undergo coaggregation. Primary colonizers facilitate cellular attachment and inter-bacterial interactions through sortase-dependent pili (or fimbriae) extending out from their cell surface. Consequently, the sortase enzyme is viewed as a potential drug target for controlling biofilm formation and avoiding infection. Streptococcus sanguinis is a primary colonizing bacterium whose pili consist of three different pilin subunits that are assembled together by the pilus-specific (C-type) SsaSrtC sortase. Here, we report on the crystal structure determination of the recombinant wild-type and active-site mutant forms of SsaSrtC. Interestingly, the SsaSrtC structure exhibits an open-lid conformation, although a conserved DPX motif is lacking in the lid. Based on molecular docking and structural analysis, we identified the substrate-binding residues essential for pilin recognition and pilus assembly. We also demonstrated that while recombinant SsaSrtC is enzymatically active toward the five-residue LPNTG sorting motif peptide of the pilins, this activity is significantly reduced by the presence of zinc. We further showed that rutin and α-crocin are potential candidate inhibitors of the SsaSrtC sortase via structure-based virtual screening and inhibition assays. The structural knowledge gained from our study will provide the means to develop new approaches that target pilus-mediated attachment, thereby preventing oral biofilm growth and infection.


Subject(s)
Aminoacyltransferases , Fimbriae Proteins , Fimbriae Proteins/genetics , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Bacterial Proteins/chemistry , Streptococcus sanguis/metabolism , Molecular Docking Simulation , Aminoacyltransferases/chemistry
7.
Methods Mol Biol ; 2620: 21-25, 2023.
Article in English | MEDLINE | ID: mdl-37010744

ABSTRACT

In the late 1960s and early 1970s, characterization of arginylation has been spearheaded via biochemical studies that enabled the first characterization of ATE1 and its substrate specificity. This chapter summarized the recollections and insights from the era of research that followed from the original discovery of arginylation and led up to the identification of the arginylation enzyme.


Subject(s)
Aminoacyltransferases , Protein Processing, Post-Translational , Aminoacyltransferases/chemistry , Arginine/metabolism
8.
Methods Mol Biol ; 2620: 63-70, 2023.
Article in English | MEDLINE | ID: mdl-37010749

ABSTRACT

In the 1980s, it was found that addition of N-terminal Arg to proteins induces their ubiquitination and degradation by the N-end rule pathway. While this mechanism applies only to the proteins which also have other features of the N-degron (including a closely adjacent Lys that is accessible for ubiquitination), several test substrates have been found to follow this mechanism very efficiently after ATE1-dependent arginylation. Such property enabled researchers to test ATE1 activity in cells indirectly by assaying for the degradation of such arginylation-dependent substrates. The most commonly used substrate for this assay is E. coli beta-galactosidase (beta-Gal) because its level can be easily measured using standardized colorimetric assays. Here, we describe this method, which has served as a quick and easy way to characterize ATE1 activity during identification of arginyltransferases in different species.


Subject(s)
Aminoacyltransferases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , beta-Galactosidase/metabolism , Ubiquitination , Aminoacyltransferases/chemistry , Arginine/metabolism
9.
Methods Mol Biol ; 2620: 71-80, 2023.
Article in English | MEDLINE | ID: mdl-37010750

ABSTRACT

Here, we describe an antibody-based method to evaluate the enzymatic activity of arginyltransferase1 (Ate1). The assay is based on the arginylation of a reporter protein, which contains the N-terminal peptide of beta-actin, a known endogenous substrate of Ate1, and a C-terminal GFP. The arginylation level of the reporter protein is determined  on an immunoblot with an antibody specific for the arginylated N-terminus, while the total amount of substrate is evaluated with anti-GFP antibody. This method can be used to conveniently and accurately examine the Ate1 activity in yeast and mammalian cell lysates. Moreover, the effect of mutation on Ate1 critical residues and effect of stress and other factors on Ate1 activity can also be successfully determined with this method.


Subject(s)
Aminoacyltransferases , Protein Processing, Post-Translational , Animals , Aminoacyltransferases/chemistry , Actins/metabolism , Peptides/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Arginine/metabolism , Mammals/metabolism
10.
Methods Mol Biol ; 2620: 119-122, 2023.
Article in English | MEDLINE | ID: mdl-37010757

ABSTRACT

Here, we describe the biochemical assay for ATE1-mediated arginylation in microplate format, which can be applied to high-throughput screens for the identification of small molecule inhibitors and activators of ATE1, high-volume analysis of AE1 substrates, and other similar applications. Originally, we have applied this screen to a library of 3280 compounds and identified 2 compounds which specifically affect ATE1-regulated processes in vitro and in vivo. The assay is based on in vitro ATE1-mediated arginylation of beta-actin's N-terminal peptide, but it can also be applied using other ATE1 substrates.


Subject(s)
Aminoacyltransferases , Protein Processing, Post-Translational , High-Throughput Screening Assays , Aminoacyltransferases/chemistry , Arginine/metabolism
11.
Methods Mol Biol ; 2620: 123-127, 2023.
Article in English | MEDLINE | ID: mdl-37010758

ABSTRACT

Here, we describe arginylation assays performed on peptide arrays immobilized on cellulose membranes via chemical synthesis. In this assay, it is possible to simultaneously compare arginylation activity on hundreds of peptide substrates to analyze the specificity of arginyltransferase ATE1 toward its target site(s) and the amino acid sequence context. This assay was successfully employed in prior studies to dissect the arginylation consensus site and enable predictions of arginylated proteins encoded in eukaryotic genomes.


Subject(s)
Aminoacyltransferases , Protein Processing, Post-Translational , Proteolysis , Aminoacyltransferases/chemistry , Peptides/metabolism , Arginine/metabolism
12.
Methods Mol Biol ; 2620: 209-217, 2023.
Article in English | MEDLINE | ID: mdl-37010764

ABSTRACT

As global regulators of eukaryotic homeostasis, arginyltransferases (ATE1s) have essential functions within the cell. Thus, the regulation of ATE1 is paramount. It was previously postulated that ATE1 was a hemoprotein and that heme was an operative cofactor responsible for enzymatic regulation and inactivation. However, we have recently shown that ATE1 instead binds an iron-sulfur ([Fe-S]) cluster that appears to function as an oxygen sensor to regulate ATE1 activity. As this cofactor is oxygen-sensitive, purification of ATE1 in the presence of O2 results in cluster decomposition and loss. Here, we describe an anoxic chemical reconstitution protocol to assemble the [Fe-S] cluster cofactor in Saccharomyces cerevisiae ATE1 (ScATE1) and Mus musculus ATE1 isoform 1 (MmATE1-1).


Subject(s)
Aminoacyltransferases , Iron-Sulfur Proteins , Mice , Animals , Proteolysis , Protein Isoforms/metabolism , Aminoacyltransferases/chemistry , Saccharomyces cerevisiae/metabolism , Iron-Sulfur Proteins/metabolism
13.
Methods Mol Biol ; 2620: 219-228, 2023.
Article in English | MEDLINE | ID: mdl-37010765

ABSTRACT

Protein arginylation is a unique and under-explored posttranslational modification, which governs many biological functions and the fate of affected proteins. Since ATE1 was discovered in 1963, a central tenet of protein arginylation is that arginylated proteins are destined for proteolysis. However, recent studies have shown that protein arginylation controls not only the half-life of a protein but also various signaling pathways. Here, we introduce a novel molecular tool to elucidate protein arginylation. This new tool, termed R-catcher, is derived from the ZZ domain of p62/sequestosome-1, an N-recognin of the N-degron pathway. The ZZ domain, which has been shown to strongly bind N-terminal arginine, has been modified at specific residues to increase specificity and affinity for N-terminal arginine. R-catcher is a powerful analysis tool allowing researchers to capture the cellular arginylation patterns under various stimuli and conditions, thereby identifying potential therapeutic targets in numerous diseases.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/chemistry , Protein Processing, Post-Translational , Proteolysis , Proteins/metabolism , Arginine/metabolism
14.
J Biotechnol ; 367: 11-19, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36972749

ABSTRACT

Sortase, a bacterial transpeptidase enzyme, is an attractive tool for protein engineering due to its ability to break a peptide bond at a specific site and then reform a new bond with an incoming nucleophile. Here, we present the immobilization of two recombinant proteins, enhanced green fluorescent protein (eGFP) and xylose dehydrogenase (XylB) over triglycine functionalized PEGylated gold nanoparticles (AuNPs) using C. glutamicum sortase E. For the first time, we used a new class of sortase from a non-pathogenic organism for sortagging. The site-specific conjugation of proteins with LAHTG-tagged sequences on AuNPs via covalent cross-linking was successfully detected by surface-enhanced Raman scattering (SERS) and UV-vis spectral analysis. The sortagging was initially validated by an eGFP model protein and later with the xylose dehydrogenase enzyme. The catalytic activity, stability, and reusability of the immobilized XylB were studied with the bioconversion of xylose to xylonic acid. When compared to the free enzyme, the immobilized XylB was able to retain 80% of its initial activity after four sequential cycles and exhibited no significant variations in instability after each cycle for about 72 h. These findings suggest that C. glutamicum sortase could be useful for immobilizing site-specific proteins/enzymes in biotransformation applications for value-added chemical production.


Subject(s)
Aminoacyltransferases , Metal Nanoparticles , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Gold , Xylose/metabolism , Bacterial Proteins/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Aldehyde Reductase
15.
Biotechnol Adv ; 64: 108108, 2023.
Article in English | MEDLINE | ID: mdl-36740026

ABSTRACT

The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.


Subject(s)
Aminoacyltransferases , Vaccines , Bacterial Proteins/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism
16.
Molecules ; 27(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36500275

ABSTRACT

Sortase A (SrtA) of Staphylococcus aureus is a well-defined molecular target to combat the virulence of these clinically important bacteria. However up to now no efficient drugs or even clinical candidates are known, hence the search for such drugs is still relevant and necessary. SrtA is a complex target, so many straight-forward techniques for modeling using the structure-based drug design (SBDD) fail to produce the results they used to bring for other, simpler, targets. In this work we conduct theoretical studies of the binding/activity of Leu-Pro-Arg-Asp-Ala (LPRDA) polypeptide, which was recently shown to possess antivirulence activity against S. aureus. Our investigation was aimed at establishing a framework for the estimation of the key interactions and subsequent modification of LPRDA, targeted at non-peptide molecules, with better drug-like properties than the original polypeptide. Firstly, the available PDB structures are critically analyzed and the criteria to evaluate the quality of the ligand-SrtA complex geometry are proposed. Secondly, the docking protocol was investigated to establish its applicability to the LPRDA-SrtA complex prediction. Thirdly, the molecular dynamics studies were carried out to refine the geometries and estimate the stability of the complexes, predicted by docking. The main finding is that the previously reported partially chaotic movement of the ß6/ß7 and ß7/ß8 loops of SrtA (being the intrinsically disordered parts related to the SrtA binding site) is exaggerated when SrtA is complexed with LPRDA, which in turn reveals all the signs of the flexible and structurally disordered molecule. As a result, a wealth of plausible LPRDA-SrtA complex conformations are hard to distinguish using simple modeling means, such as docking. The use of more elaborate modeling approaches may help to model the system reliably but at the cost of computational efficiency.


Subject(s)
Aminoacyltransferases , Staphylococcal Infections , Humans , Staphylococcus aureus/metabolism , Aminoacyltransferases/chemistry , Bacterial Proteins/metabolism , Binding Sites , Molecular Dynamics Simulation
17.
Bioconjug Chem ; 33(12): 2341-2347, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36356167

ABSTRACT

Staphylococcus aureus sortase A is a transpeptidase that has been extensively exploited for site-specific modification of proteins and was originally used to attach a labeling reagent containing an LPXTG recognition sequence to a protein or peptide with an N-terminal glycine. Sortase mutants with other recognition sequences have also been reported, but in all cases, the reversibility of the transpeptidation reaction limits the efficiency of sortase-mediated labeling reactions. For the wildtype sortase, depsipeptide substrates, in which the scissile peptide bond is replaced with an ester, allow effectively irreversible sortase-mediated labeling as the alcohol byproduct is a poor competing nucleophile. In this paper, the use of depsipeptide substrates for evolved sortase variants is reported. Substrate specificities of three sortases have been investigated allowing identification of an orthogonal pair of enzymes accepting LPEToG and LPESoG depsipeptides, which have been applied to dual N-terminal labeling of a model protein mutant containing a second, latent N-terminal glycine residue. The method provides an efficient orthogonal site-specific labeling technique that further expands the biochemical protein labeling toolkit.


Subject(s)
Aminoacyltransferases , Depsipeptides , Staphylococcus aureus , Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Glycine , Indicators and Reagents
18.
Eur J Med Chem ; 244: 114837, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36265279

ABSTRACT

The toxic pyroglutamate form of amyloid-ß (pE-Aß) is important for the pathogenesis of early Alzheimer's disease (AD); therefore, reducing pE-Aß by inhibiting glutaminyl cyclase (QC) provides a promising strategy for developing disease-modifying AD drugs. In this study, potent and selective QC inhibitors with desirable drug-like properties were discovered by replacing the 3,4-dimethoxyphenyl group in a QC inhibitor with a bioisosteric indazole surrogate. Among them, 3-methylindazole-6-yl and 3-methylindazole-5-yl derivatives with an N-cyclohexylurea were identified as highly potent inhibitors with IC50 values of 3.2 nM and 2.3 nM, respectively, both of which were approximately 10-fold more potent than varoglutamstat. In addition, the three inhibitors significantly reduced pE-Aß3-40 levels in an acute animal model after intracerebroventricular (icv) injection and were selective for hQC. Further in vitro pharmacokinetic and toxicity studies, including those investigating cytotoxicity, hERG inhibition, blood-brain barrier (BBB) permeability and metabolic stability, indicated that N-(3-methylindazole-6-yl)-N'-(cyclohexyl)urea derivative exhibited the most promising efficacy, selectivity and drug-like profile; thus, it was evaluated for its in vivo efficacy in an AD model.


Subject(s)
Alzheimer Disease , Aminoacyltransferases , Drug Discovery , Indazoles , Animals , Humans , Alzheimer Disease/enzymology , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/chemistry , Amyloid beta-Peptides/metabolism , Indazoles/chemistry , Indazoles/pharmacology
19.
J Mol Biol ; 434(21): 167816, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36087779

ABSTRACT

Eukaryotic post-translational arginylation, mediated by the family of enzymes known as the arginyltransferases (ATE1s), is an important post-translational modification that can alter protein function and even dictate cellular protein half-life. Multiple major biological pathways are linked to the fidelity of this process, including neural and cardiovascular developments, cell division, and even the stress response. Despite this significance, the structural, mechanistic, and regulatory mechanisms that govern ATE1 function remain enigmatic. To that end, we have used X-ray crystallography to solve the crystal structure of ATE1 from the model organism Saccharomyces cerevisiae ATE1 (ScATE1) in the apo form. The three-dimensional structure of ScATE1 reveals a bilobed protein containing a GCN5-related N-acetyltransferase (GNAT) fold, and this crystalline behavior is faithfully recapitulated in solution based on size-exclusion chromatography-coupled small angle X-ray scattering (SEC-SAXS) analyses and cryo-EM 2D class averaging. Structural superpositions and electrostatic analyses point to this domain and its domain-domain interface as the location of catalytic activity and tRNA binding, and these comparisons strongly suggest a mechanism for post-translational arginylation. Additionally, our structure reveals that the N-terminal domain, which we have previously shown to bind a regulatory [Fe-S] cluster, is dynamic and disordered in the absence of metal bound in this location, hinting at the regulatory influence of this region. When taken together, these insights bring us closer to answering pressing questions regarding the molecular-level mechanism of eukaryotic post-translational arginylation.


Subject(s)
Aminoacyltransferases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Arginine/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae/enzymology , Scattering, Small Angle , X-Ray Diffraction , Aminoacyltransferases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Protein Domains
20.
J Biol Chem ; 298(10): 102446, 2022 10.
Article in English | MEDLINE | ID: mdl-36055407

ABSTRACT

The cell wall is a critical extracellular barrier for bacteria and many other organisms. In bacteria, this structural layer consists of peptidoglycan, which maintains cell shape and structural integrity and provides a scaffold for displaying various protein factors. To attach proteins to the cell wall, Gram-positive bacteria utilize sortase enzymes, which are cysteine transpeptidases that recognize and cleave a specific sorting signal, followed by ligation of the sorting signal-containing protein to the peptidoglycan precursor lipid II (LII). This mechanism is the subject of considerable interest as a target for therapeutic intervention and as a tool for protein engineering, where sortases have enabled sortase-mediated ligation or sortagging strategies. Despite these uses, there remains an incomplete understanding of the stereochemistry of substrate recognition and ligation product formation. Here, we solved the first structures of sortase A from Streptococcus pyogenes bound to two substrate sequences, LPATA and LPATS. In addition, we synthesized a mimetic of the product of sortase-mediated ligation involving LII (LPAT-LII) and solved the complex structure in two ligand conformations. These structures were further used as the basis for molecular dynamics simulations to probe sortase A-ligand dynamics and to construct a model of the acyl-enzyme intermediate, thus providing a structural view of multiple key states in the catalytic mechanism. Overall, this structural information provides new insights into the recognition of the sortase substrate motif and LII ligation partner and will support the continued development of sortases for protein engineering applications.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ligands , Peptidoglycan , Streptococcus pyogenes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...