Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 945
Filter
1.
Sci Rep ; 14(1): 12876, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38834612

ABSTRACT

This study investigates quercetin complexes as potential synergistic agents against the important respiratory pathogen Streptococcus pneumoniae. Six quercetin complexes (QCX1-6) were synthesized by reacting quercetin with various metal salts and boronic acids and characterized using FTIR spectroscopy. Their antibacterial activity alone and in synergism with antibiotics was evaluated against S. pneumoniae ATCC 49619 using disc diffusion screening, broth microdilution MIC determination, and checkerboard assays. Complexes QCX-3 and QCX-4 demonstrated synergy when combined with levofloxacin via fractional inhibitory concentration indices ≤ 0.5 as confirmed by time-kill kinetics. Molecular docking elucidated interactions of these combinations with virulence enzymes sortase A and sialidase. A biofilm inhibition assay found the synergistic combinations more potently reduced biofilm formation versus monotherapy. Additionally, gene-gene interaction networks, biological activity predictions and in-silico toxicity profiling provided insights into potential mechanisms of action and safety.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Molecular Docking Simulation , Quercetin , Streptococcus pneumoniae , Streptococcus pneumoniae/drug effects , Quercetin/pharmacology , Quercetin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Drug Synergism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism
2.
Appl Microbiol Biotechnol ; 108(1): 360, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836914

ABSTRACT

In the fight against hospital-acquired infections, the challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) necessitates the development of novel treatment methods. This study focused on undermining the virulence of S. aureus, especially by targeting surface proteins crucial for bacterial adherence and evasion of the immune system. A primary aspect of our approach involves inhibiting sortase A (SrtA), a vital enzyme for attaching microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to the bacterial cell wall, thereby reducing the pathogenicity of S. aureus. Verbascoside, a phenylethanoid glycoside, was found to be an effective SrtA inhibitor in our research. Advanced fluorescence quenching and molecular docking studies revealed a specific interaction between verbascoside and SrtA, pinpointing the critical active sites involved in this interaction. This molecular interaction significantly impedes the SrtA-mediated attachment of MSCRAMMs, resulting in a substantial reduction in bacterial adhesion, invasion, and biofilm formation. The effectiveness of verbascoside has also been demonstrated in vivo, as shown by its considerable protective effects on pneumonia and Galleria mellonella (wax moth) infection models. These findings underscore the potential of verbascoside as a promising component in new antivirulence therapies for S. aureus infections. By targeting crucial virulence factors such as SrtA, agents such as verbascoside constitute a strategic and potent approach for tackling antibiotic resistance worldwide. KEY POINTS: • Verbascoside inhibits SrtA, reducing S. aureus adhesion and biofilm formation. • In vivo studies demonstrated the efficacy of verbascoside against S. aureus infections. • Targeting virulence factors such as SrtA offers new avenues against antibiotic resistance.


Subject(s)
Aminoacyltransferases , Anti-Bacterial Agents , Bacterial Adhesion , Bacterial Proteins , Biofilms , Cysteine Endopeptidases , Glucosides , Methicillin-Resistant Staphylococcus aureus , Molecular Docking Simulation , Phenols , Staphylococcal Infections , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Glucosides/pharmacology , Animals , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Phenols/pharmacology , Bacterial Adhesion/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Moths/microbiology , Virulence/drug effects , Disease Models, Animal , Virulence Factors/metabolism , Enzyme Inhibitors/pharmacology , Polyphenols
3.
Biomacromolecules ; 25(5): 2762-2769, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38689446

ABSTRACT

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in Escherichia coli to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further in vitro steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv. Our results demonstrated that this system could attach other proteins to the nanoparticles' exterior surfaces without adversely affecting their folding and assembly processes. Additionally, this system enabled the attachment of proteins inside encapsulins which varied shapes and sizes of the nanoparticles due to cargo overload. This research developed an alternative enzymatic ligation method for engineering encapsulin nanoparticles to facilitate the conjugation process.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Escherichia coli , Protein Processing, Post-Translational , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Nanoparticles/chemistry , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism
4.
ACS Sens ; 9(5): 2605-2613, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38718161

ABSTRACT

Several new lines of research have demonstrated that a significant number of amyloid-ß peptides found in Alzheimer's disease (AD) are truncated and undergo post-translational modification by glutaminyl cyclase (QC) at the N-terminal. Notably, QC's products of Abeta-pE3 and Abeta-pE11 have been active targets for investigational drug development. This work describes the design, synthesis, characterization, and in vivo validation of a novel PET radioligand, [18F]PB0822, for targeted imaging of QC. We report herein a simplified and robust chemistry for the synthesis of the standard compound, [19F]PB0822, and the corresponding [18F]PB0822 radioligand. The PET probe was developed with 99.9% radiochemical purity, a molar activity of 965 Ci.mmol-1, and an IC50 of 56.3 nM, comparable to those of the parent PQ912 inhibitor (62.5 nM). Noninvasive PET imaging showed that the probe is distributed in the brain 5 min after intravenous injection. Further, in vivo PET imaging with [18F]PB0822 revealed that AD 5XFAD mice harbor significantly higher QC activity than WT counterparts. The data also suggested that QC activity is found across different brain regions of the tested animals.


Subject(s)
Alzheimer Disease , Aminoacyltransferases , Positron-Emission Tomography , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Positron-Emission Tomography/methods , Aminoacyltransferases/metabolism , Aminoacyltransferases/antagonists & inhibitors , Animals , Mice , Fluorine Radioisotopes/chemistry , Brain/diagnostic imaging , Brain/metabolism , Brain/enzymology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Biomarkers/metabolism , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/analysis , Ligands
5.
Adv Sci (Weinh) ; 11(21): e2305605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581131

ABSTRACT

Wild-type sortase A is an important virulence factor displaying a diverse array of proteins on the surface of bacteria. This protein display relies on the transpeptidase activity of sortase A, which is widely engineered to allow protein ligation and protein engineering based on the interaction between sortase A and peptides. Here an unknown interaction is found between sortase A from Staphylococcus aureus and nucleic acids, in which exogenously expressed engineered sortase A binds oligonucleotides in vitro and is independent of its canonical transpeptidase activity. When incubated with mammalian cells, engineered sortase A further mediates oligonucleotide labeling to the cell surface, where sortase A attaches itself and is part of the labeled moiety. The labeling reaction can also be mediated by many classes of wild-type sortases as well. Cell surface GAG appears involved in sortase-mediated oligonucleotide cell labeling, as demonstrated by CRISPR screening. This interaction property is utilized to develop a technique called CellID to facilitate sample multiplexing for scRNA-seq and shows the potential of using sortases to label cells with diverse oligonucleotides. Together, the binding between sortase A and nucleic acids opens a new avenue to understanding the virulence of wild-type sortases and exploring the application of sortases in biotechnology.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Nucleic Acids , Staphylococcus aureus , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/enzymology , Staphylococcus aureus/metabolism , Nucleic Acids/metabolism , Humans , Animals , Staining and Labeling/methods
6.
Toxins (Basel) ; 16(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668619

ABSTRACT

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Subject(s)
Cholera Toxin , Cysteine Endopeptidases , Golgi Apparatus , Humans , Cholera Toxin/metabolism , Cysteine Endopeptidases/metabolism , Golgi Apparatus/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Endocytosis
7.
Chem Biodivers ; 21(5): e202301659, 2024 May.
Article in English | MEDLINE | ID: mdl-38407541

ABSTRACT

Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 µg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 µg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Microbial Sensitivity Tests , Streptococcus mutans , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Streptococcus mutans/drug effects , Streptococcus mutans/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Structure-Activity Relationship , Molecular Dynamics Simulation , Molecular Docking Simulation , Molecular Structure , Models, Molecular , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Dose-Response Relationship, Drug
8.
Cell Commun Signal ; 22(1): 87, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297346

ABSTRACT

BACKGROUND: Arginyltransferase (Ate1) orchestrates posttranslational protein arginylation, a pivotal regulator of cellular proteolytic processes. In eukaryotic cells, two interconnected systems-the ubiquitin proteasome system (UPS) and macroautophagy-mediate proteolysis and cooperate to maintain quality protein control and cellular homeostasis. Previous studies have shown that N-terminal arginylation facilitates protein degradation through the UPS. Dysregulation of this machinery triggers p62-mediated autophagy to ensure proper substrate processing. Nevertheless, how Ate1 operates through this intricate mechanism remains elusive. METHODS: We investigated Ate1 subcellular distribution through confocal microscopy and biochemical assays using cells transiently or stably expressing either endogenous Ate1 or a GFP-tagged Ate1 isoform transfected in CHO-K1 or MEFs, respectively. To assess Ate1 and p62-cargo clustering, we analyzed their colocalization and multimerization status by immunofluorescence and nonreducing immunoblotting, respectively. Additionally, we employed Ate1 KO cells to examine the role of Ate1 in autophagy. Ate1 KO MEFs cells stably expressing GFP-tagged Ate1-1 isoform were used as a model for phenotype rescue. Autophagy dynamics were evaluated by analyzing LC3B turnover and p62/SQSTM1 levels under both steady-state and serum-starvation conditions, through immunoblotting and immunofluorescence. We determined mTORC1/AMPk activation by assessing mTOR and AMPk phosphorylation through immunoblotting, while mTORC1 lysosomal localization was monitored by confocal microscopy. RESULTS: Here, we report a multifaceted role for Ate1 in the autophagic process, wherein it clusters with p62, facilitates autophagic clearance, and modulates its signaling. Mechanistically, we found that cell-specific inactivation of Ate1 elicits overactivation of the mTORC1/AMPk signaling hub that underlies a failure in autophagic flux and subsequent substrate accumulation, which is partially rescued by ectopic expression of Ate1. Statistical significance was assessed using a two-sided unpaired t test with a significance threshold set at P<0.05. CONCLUSIONS: Our findings uncover a critical housekeeping role of Ate1 in mTORC1/AMPk-regulated autophagy, as a potential therapeutic target related to this pathway, that is dysregulated in many neurodegenerative and cancer diseases.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Ubiquitin/metabolism , Autophagy , Proteasome Endopeptidase Complex/metabolism , Mechanistic Target of Rapamycin Complex 1 , Protein Isoforms
9.
Angew Chem Int Ed Engl ; 63(8): e202310862, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38072831

ABSTRACT

Quantitative and selective labelling of proteins is widely used in both academic and industrial laboratories, and catalytic labelling of proteins using transpeptidases, such as sortases, has proved to be a popular strategy for such selective modification. A major challenge for this class of enzymes is that the majority of procedures require an excess of the labelling reagent or, alternatively, activated substrates rather than simple commercially sourced peptides. We report the use of a coupled enzyme strategy which enables quantitative N- and C-terminal labelling of proteins using unactivated labelling peptides. The use of an aminopeptidase in conjunction with a transpeptidase allows sequence-specific degradation of the peptide by-product, shifting the equilibrium to favor product formation, which greatly enhances the reaction efficiency. Subsequent optimisation of the reaction allows N-terminal labelling of proteins using essentially equimolar ratios of peptide label to protein and C-terminal labelling with only a small excess. Minimizing the amount of substrate required for quantitative labelling has the potential to improve industrial processes and facilitate the use of transpeptidation as a method for protein labelling.


Subject(s)
Aminoacyltransferases , Peptidyl Transferases , Aminopeptidases , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism , Peptides/metabolism
10.
Biopolymers ; 115(1): e23539, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37227047

ABSTRACT

Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.


Subject(s)
Aminoacyltransferases , Corynebacterium diphtheriae , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Corynebacterium diphtheriae/metabolism , Bacterial Proteins/metabolism , Lysine , Cadmium/metabolism , Aminoacyltransferases/metabolism
12.
Mol Cell Proteomics ; 22(11): 100664, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832787

ABSTRACT

Arginylation is a post-translational modification mediated by the arginyltransferase 1 (ATE1), which transfers the amino acid arginine to a protein or peptide substrate from a tRNA molecule. Initially, arginylation was thought to occur only on N-terminally exposed acidic residues, and its function was thought to be limited to targeting proteins for degradation. However, more recent data have shown that ATE1 can arginylate side chains of internal acidic residues in a protein without necessarily affecting metabolic stability. This greatly expands the potential targets and functions of arginylation, but tools for studying this process have remained limited. Here, we report the first global screen specifically for side-chain arginylation. We generate and validate "pan-arginylation" antibodies, which are designed to detect side-chain arginylation in any amino acid sequence context. We use these antibodies for immunoaffinity enrichment of side-chain arginylated proteins from wildtype and Ate1 knockout cell lysates. In this way, we identify a limited set of proteins that likely undergo ATE1-dependent side-chain arginylation and that are enriched in specific cellular roles, including translation, splicing, and the cytoskeleton.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/metabolism , Proteins/metabolism , Peptides/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Antibodies/metabolism , Arginine/metabolism
13.
mBio ; 14(5): e0098023, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37750700

ABSTRACT

IMPORTANCE: Exclusively in the Bacteroidetes phylum, most proteins exported across the inner membrane via the Sec system and released into the periplasm by type I signal peptidase have N-terminal glutamine converted to pyroglutamate. The reaction is catalyzed by the periplasmic enzyme glutaminyl cyclase (QC), which is essential for the growth of Porphyromonas gingivalis and other periodontopathogens. Apparently, pyroglutamyl formation stabilizes extracytoplasmic proteins and/or protects them from proteolytic degradation in the periplasm. Given the role of P. gingivalis as the keystone pathogen in periodontitis, P. gingivalis QC is a promising target for the development of drugs to treat and/or prevent this highly prevalent chronic inflammatory disease leading to tooth loss and associated with severe systemic diseases.


Subject(s)
Aminoacyltransferases , Periodontitis , Humans , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Glutamine
14.
Bioorg Med Chem Lett ; 93: 129428, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37541632

ABSTRACT

Imaging or killing of a specific pathogen is of significance for precise therapy. Staphylococcus aureus (S. aureus) is an infectious gram-positive bacteria relying on Sortase A (SrtA) to anchor cell surface protein on peptidoglycan. We herein report signal-on labeling of S. aureus with self-quenched optical probes featuring vancomycin-conjugated SrtA substrate that is flanked by a dabcyl moiety paired with either fluorescein or eosine photosensizer (PS). SrtA-mediated cleavage of the substrate motif releases the dabcyl quencher, leading to covalent labeling of peptidoglycan with fluorescein or PS of restored photophysical property. The dual biomarked-enabled peptidoglycan labeling enables signal-on imaging and effective photodynamic destruction of S. aureus, suggesting a protheranostic approch activatable to SrtA-positive bacteria engaged in myriad diseases.


Subject(s)
Aminoacyltransferases , Staphylococcus aureus , Staphylococcus aureus/metabolism , Peptidoglycan/metabolism , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism , Membrane Proteins/metabolism , Fluoresceins
15.
Bioconjug Chem ; 34(9): 1667-1678, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37534819

ABSTRACT

Conferring multifunctional properties to proteins via enzymatic approaches has greatly facilitated recent progress in protein nanotechnology. In this regard, sortase (Srt) A transpeptidation has facilitated many of these developments due to its exceptional specificity, mild reaction conditions, and complementation with other bioorthogonal techniques, such as click chemistry. In most of these developments, Srt A is used to seamlessly tether oligoglycine-containing molecules to a protein of interest that is equipped with the enzyme's recognition sequence, LPXTG. However, the dependence on oligoglycine attacking nucleophiles and the associated cost of certain derivatives (e.g., cyclooctyne) limit the utility of this approach to lab-scale applications only. Thus, the quest to identify appropriate alternatives and understand their effectiveness remains an important area of research. This study identifies that steric and nucleophilicity-associated effects influence Srt A transpeptidation when two oligoglycine surrogates were examined. The approach was further used in complementation with click chemistry to synthesize bivalent and bifunctional nanobody conjugates for application in epithelial growth factor receptor targeting. The overall technique and tools developed here may facilitate the advancement of future nanotechnologies.


Subject(s)
Aminoacyltransferases , Click Chemistry , Bacterial Proteins/chemistry , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism
16.
Org Lett ; 25(26): 4857-4861, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37358473

ABSTRACT

We have described the chemical synthesis of d-Sortase A in large quantity and high purity by a hydrazide ligation strategy. The d-Sortase was fully active toward d-peptides and D/L hybrid proteins, and the ligation efficiency was unaffected by the chirality of the C-terminus substrate. This study points toward using d-sortase ligation as a modern ligation method for d-proteins and D/L hybrid proteins and expands the chemical protein synthesis toolbox in biotechnology.


Subject(s)
Aminoacyltransferases , Peptides , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism
17.
Bioconjug Chem ; 34(6): 1114-1121, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37246906

ABSTRACT

Enzymes are of central importance to many biotechnological and biomedical applications. However, for many potential applications, the required conditions impede enzyme folding and therefore function. The enzyme Sortase A is a transpeptidase that is widely used to perform bioconjugation reactions with peptides and proteins. Thermal and chemical stress impairs Sortase A activity and prevents its application under harsh conditions, thereby limiting the scope for bioconjugation reactions. Here, we report the stabilization of a previously reported, activity-enhanced Sortase A, which suffered from particularly low thermal stability, using the in situ cyclization of proteins (INCYPRO) approach. After introduction of three spatially aligned solvent-exposed cysteines, a triselectrophilic cross-linker was attached. The resulting bicyclic INCYPRO Sortase A demonstrated activity both at elevated temperature and in the presence of chemical denaturants, conditions under which both wild-type Sortase A and the activity-enhanced version are inactive.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism , Peptides , Cysteine Endopeptidases/metabolism
18.
Methods Mol Biol ; 2620: 157-175, 2023.
Article in English | MEDLINE | ID: mdl-37010762

ABSTRACT

The E. coli aminoacyl transferase (AaT) can be used to transfer a variety of unnatural amino acids, including those with azide or alkyne groups, to the α-amine of a protein with an N-terminal Lys or Arg. Subsequent functionalization through either copper-catalyzed or strain-promoted click reactions can be used to label the protein with fluorophores or biotin. This can be used to directly detect AaT substrates or in a two-step protocol to detect substrates of the mammalian ATE1 transferase.


Subject(s)
Aminoacyltransferases , Transferases , Animals , Click Chemistry/methods , Escherichia coli/metabolism , Aminoacyltransferases/metabolism , Amino Acids , Alkynes/chemistry , Azides/chemistry , Mammals/metabolism
19.
J Biotechnol ; 367: 11-19, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36972749

ABSTRACT

Sortase, a bacterial transpeptidase enzyme, is an attractive tool for protein engineering due to its ability to break a peptide bond at a specific site and then reform a new bond with an incoming nucleophile. Here, we present the immobilization of two recombinant proteins, enhanced green fluorescent protein (eGFP) and xylose dehydrogenase (XylB) over triglycine functionalized PEGylated gold nanoparticles (AuNPs) using C. glutamicum sortase E. For the first time, we used a new class of sortase from a non-pathogenic organism for sortagging. The site-specific conjugation of proteins with LAHTG-tagged sequences on AuNPs via covalent cross-linking was successfully detected by surface-enhanced Raman scattering (SERS) and UV-vis spectral analysis. The sortagging was initially validated by an eGFP model protein and later with the xylose dehydrogenase enzyme. The catalytic activity, stability, and reusability of the immobilized XylB were studied with the bioconversion of xylose to xylonic acid. When compared to the free enzyme, the immobilized XylB was able to retain 80% of its initial activity after four sequential cycles and exhibited no significant variations in instability after each cycle for about 72 h. These findings suggest that C. glutamicum sortase could be useful for immobilizing site-specific proteins/enzymes in biotransformation applications for value-added chemical production.


Subject(s)
Aminoacyltransferases , Metal Nanoparticles , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Gold , Xylose/metabolism , Bacterial Proteins/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Aldehyde Reductase
20.
Biotechnol Adv ; 64: 108108, 2023.
Article in English | MEDLINE | ID: mdl-36740026

ABSTRACT

The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.


Subject(s)
Aminoacyltransferases , Vaccines , Bacterial Proteins/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...