Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 17(3): 317-325, 2021 03.
Article in English | MEDLINE | ID: mdl-33432237

ABSTRACT

Epitope-specific enzymes are powerful tools for site-specific protein modification but generally require genetic manipulation of the target protein. Here, we describe the laboratory evolution of the bacterial transpeptidase sortase A to recognize the LMVGG sequence in endogenous amyloid-ß (Aß) protein. Using a yeast display selection for covalent bond formation, we evolved a sortase variant that prefers LMVGG substrates from a starting enzyme that prefers LPESG substrates, resulting in a >1,400-fold change in substrate preference. We used this evolved sortase to label endogenous Aß in human cerebrospinal fluid, enabling the detection of Aß with sensitivities rivaling those of commercial assays. The evolved sortase can conjugate a hydrophilic peptide to Aß42, greatly impeding the ability of the resulting protein to aggregate into higher-order structures. These results demonstrate laboratory evolution of epitope-specific enzymes toward endogenous targets as a strategy for site-specific protein modification without target gene manipulation and enable potential future applications of sortase-mediated labeling of Aß peptides.


Subject(s)
Aminoacyltransferases/pharmacology , Amyloid beta-Peptides/chemistry , Bacterial Proteins/pharmacology , Cysteine Endopeptidases/pharmacology , Peptide Fragments/chemistry , Protein Aggregates/drug effects , Amino Acid Sequence , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Directed Molecular Evolution , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Two-Hybrid System Techniques
2.
Nat Protoc ; 9(2): 253-62, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24407354

ABSTRACT

Technologies that allow the efficient chemical modification of proteins under mild conditions are widely sought after. Sortase-mediated peptide ligation provides a strategy for modifying the N or C terminus of proteins. This protocol describes the use of depsipeptide substrates (containing an ester linkage) with sortase A (SrtA) to completely modify proteins carrying a single N-terminal glycine residue under mild conditions in 4-6 h. The SrtA-mediated ligation reaction is reversible, so most labeling protocols that use this enzyme require a large excess of both substrate and sortase to produce high yields of ligation product. In contrast, switching to depsipeptide substrates effectively renders the reaction irreversible, allowing complete labeling of proteins with a small excess of substrate and catalytic quantities of sortase. Herein we describe the synthesis of depsipeptide substrates that contain an ester linkage between a threonine and glycolic acid residue and an N-terminal FITC fluorophore appended via a thiourea linkage. The synthesis of the depsipeptide substrate typically takes 2-3 d.


Subject(s)
Aminoacyltransferases/pharmacology , Bacterial Proteins/pharmacology , Cysteine Endopeptidases/pharmacology , Depsipeptides/biosynthesis , Depsipeptides/chemistry , Protein Engineering/methods , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Glycine/metabolism , Models, Chemical , Molecular Structure , Thiourea
3.
J Biochem ; 131(2): 233-9, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11820937

ABSTRACT

The apoptotic cell death of Jurkat cells due to Cd(2+) toxicity was studied by fluorescence microscopic observation and DNA fragmentation assaying. It was suggested that the apoptotic response to Cd(2+) was less clear than that to a typical apoptosis inducer, ultraviolet light (254 nm). Examination of MAP kinase phosphorylation (p38, JNKs, and c-Jun) due to Cd(2+) toxicity indicated that the phosphorylation was very slowly activated (4 h after stimulation), while UV light could activate the phosphorylation immediately. Therefore, it was suggested that Cd(2+) may not be a typical apoptosis inducer. Antioxidants [glutathione (GSH) and N-acetylcysteine (NAC)] could detoxify Cd(2+), indicating that the toxicity is a kind of oxidative stress. The detoxification effect of antioxidants showed cooperation with Bcl-2, suggesting that Cd(2+)-treatment causes diversified toxic signals including oxidative stress. On the addition of a plant-specific peptide, phytochelatin [PC(7), (gammaGlu-Cys)(7)-Gly], to the medium, the detoxification of Cd(2+) and cooperation with Bcl-2 were more intense than in the cases of GSH and NAC. Using an appropriate vector, a PC synthase gene was transferred from Arabidopsis thaliana to the Jurkat cell. The transfectant exhibited resistance to Cd(2+) and production of plant-specific PC (PC(2-6)).


Subject(s)
Apoptosis/drug effects , Cadmium/toxicity , Chelating Agents/pharmacology , Jurkat Cells/drug effects , Metalloproteins/pharmacology , Acetylcysteine/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/pharmacology , Blotting, Western , Cell Nucleus/metabolism , Cells, Cultured/drug effects , Cells, Cultured/metabolism , Chelating Agents/metabolism , DNA Primers/chemistry , Drug Resistance , Free Radical Scavengers/metabolism , Glutathione/metabolism , Humans , Inactivation, Metabolic , JNK Mitogen-Activated Protein Kinases , MAP Kinase Kinase 4 , Metalloproteins/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress , Phytochelatins , Plants/chemistry , Plasmids , Polymerase Chain Reaction , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Time Factors , Transfection , p38 Mitogen-Activated Protein Kinases
4.
J Biochem ; 131(2): 247-54, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11820939

ABSTRACT

A unique enzyme with some properties favorable for the synthesis of D-amino acid-containing peptides has been purified from the culture broth of Saccharothrix sp. AS-2. The purification steps included ammonium sulfate fractionation, chromatographies on CM-Toyopearl 650M and ProtEx Butyl, and sucrose density-gradient isoelectric focusing. The enzyme, consisting of four subunits of 56 kDa, showed its maximum transfer activity at around pH 8.2 and 35 degrees C, and had an isoelectric point of 5.8. The enzyme yielded homooligomers from methyl esters of D-Asp(OMe), D-Met, D-Phe, D-Trp, D-Tyr, and L-Glu(OMe), but showed no hydrolytic activity toward any of the D- or L-amino acid methyl esters tested. The homooligomers were not formed from the corresponding free amino acids. The reaction of Ac-D-Phe-OMe with DL-Ala-NH(2), DL-Leu-NH(2), DL-Phe-NH(2), or DL-Trp-NH(2) was effectively catalyzed by the enzyme, both the DD- and DL-stereoisomers of the expected N-acetyldipeptide being yielded. The resulting dipeptides remained unhydrolyzed even after 48 h incubation. Also, it showed no detectable hydrolytic activity toward casein, diastereomers of diAla, diMet, and diPhe, D-/L-amino acid amides, or D-/L-amino acid p-nitroanilides, indicating that the enzyme had no peptidase activity leading to secondary hydrolysis of the growing peptide. The enzyme activity was strongly depressed by phenylmethanesulfonyl fluoride, but not by penicillin G or ampicillin, suggesting that the protein is a serine enzyme lacking penicillin-binding ability. These observations lead us to the conclusion that the enzyme from Saccharothrix sp. AS-2 characterized in this study is a new type of aminoacyltransferase with an amino acid ester as the acyl donor, and has potential utility as a catalyst for the synthesis of D-amino acid-containing peptides.


Subject(s)
Actinomycetales/enzymology , Amino Acids/chemistry , Aminoacyltransferases/isolation & purification , Aminoacyltransferases/pharmacology , Peptides/chemical synthesis , Actinomycetales/growth & development , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Crystallography , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Isoelectric Focusing , Mass Spectrometry , Molecular Weight , Peptones/chemistry , Peptones/metabolism , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...