Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
J Cyst Fibros ; 23(2): 234-241, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218661

ABSTRACT

INTRODUCTION: Previous studies using magnetic resonance imaging (MRI) demonstrated early onset and progression of chronic rhinosinusitis (CRS) from infancy to school age, and response to lumacaftor/ivacaftor (LUM/IVA) therapy in children with cystic fibrosis (CF). However, the effect of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) on CRS detected by MRI in children with CF and at least one F508del mutation, and potential incremental effects of ELX/TEZ/IVA compared to LUM/IVA in F508del homozygous children have not been studied. METHODS: 30 children with CF with at least one F508del mutation underwent three longitudinal paranasal sinus MRI before (MRI1), without (n = 16) or with LUM/IVA therapy (n = 14, MRI2), and with ELX/TEZ/IVA therapy (MRI3, mean age at therapy initiation 11.1 ± 3.4y, range 6-16y). MRI were evaluated using the CRS-MRI score. RESULTS: After therapy initiation with ELX/TEZ/IVA, the prevalence and in maxillary and sphenoid sinuses the dominance of mucopyoceles decreased (35% vs. 0 %, p<0.001 and 26% vs. 8 %, p < 0.05, respectively). This leads to a reduction in mucopyocele subscore (-3.4 ± 1.9, p < 0.001), and sinus subscores in MRI3 (maxillary sinus: -5.3 ± 3.1, p < 0.001, frontal sinus: -1.0 ± 1.9, p < 0.01, sphenoid subscore: -2.8 ± 3.5, p < 0.001, ethmoid sinus: -1.7 ± 1.9, p < 0.001). The CRS-MRI sum score decreased after therapy initiation with ELX/TEZ/IVA by -9.6 ± 5.5 score points (p < 0.001). The strength in reduction of mucopyoceles subscore and CRS-MRI sum score was independent of a pretreatment with LUM/IVA from MRI1-MRI2 (p = 0.275-0.999). CONCLUSIONS: ELX/TEZ/IVA therapy leads to improvement of CRS in eligible children with CF. Our data support the role of MRI for comprehensive monitoring of CRS disease severity and response to therapy in children with CF.


Subject(s)
Aminophenols , Aminopyridines , Benzodioxoles , Cystic Fibrosis , Drug Combinations , Indoles , Magnetic Resonance Imaging , Pyrazoles , Quinolones , Rhinitis , Sinusitis , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Aminophenols/therapeutic use , Aminophenols/administration & dosage , Male , Female , Child , Magnetic Resonance Imaging/methods , Quinolones/therapeutic use , Quinolones/administration & dosage , Benzodioxoles/therapeutic use , Benzodioxoles/administration & dosage , Sinusitis/drug therapy , Rhinitis/drug therapy , Chronic Disease , Aminopyridines/administration & dosage , Aminopyridines/therapeutic use , Pyrazoles/administration & dosage , Pyrazoles/therapeutic use , Indoles/therapeutic use , Indoles/administration & dosage , Chloride Channel Agonists/therapeutic use , Chloride Channel Agonists/administration & dosage , Adolescent , Pyridines/administration & dosage , Pyridines/therapeutic use , Treatment Outcome , Rhinosinusitis , Pyrrolidines
2.
Cell Mol Life Sci ; 79(4): 192, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35292885

ABSTRACT

The advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations. Using CFBE41o- cells expressing F508del-CFTR, we provide mechanistic evidence that targeting the E1 ubiquitin-activating enzyme (UBA1) by TAK-243, a small molecule in clinical trials for other diseases, boosts the rescue of F508del-CFTR induced by CFTR correctors. Moreover, TAK-243 significantly increases the F508del-CFTR short-circuit current induced by elexacaftor/tezacaftor/ivacaftor in differentiated human primary airway epithelial cells, a gold standard for the pre-clinical evaluation of patients' responsiveness to pharmacological treatments. This new combinatory approach also leads to an improvement in CFTR conductance on cells expressing other rare CF-causing mutations, including N1303K, for which Trikafta is not approved. These findings show that Trikafta therapy can be improved by the addition of a drug targeting the misfolding detection machinery at the beginning of the ubiquitination cascade and may pave the way for an extension of Trikafta to low/non-responding rare misfolded CFTR mutants.


Subject(s)
Aminophenols/administration & dosage , Benzodioxoles/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Indoles/administration & dosage , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Pyrimidines/administration & dosage , Pyrrolidines/administration & dosage , Quinolones/administration & dosage , Sulfides/administration & dosage , Sulfonamides/administration & dosage , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Synergism , Drug Therapy, Combination , Enzyme Inhibitors/administration & dosage , Humans , Mutation , Protein Folding/drug effects , Sequence Deletion
3.
mBio ; 12(6): e0314821, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34903059

ABSTRACT

Drugs called CFTR modulators improve the physiologic defect underlying cystic fibrosis (CF) and alleviate many disease manifestations. However, studies to date indicate that chronic lung infections that are responsible for most disease-related mortality generally persist. Here, we investigated whether combining the CFTR modulator ivacaftor with an intensive 3.5-month antibiotic course could clear chronic Pseudomonas aeruginosa or Staphylococcus aureus lung infections in subjects with R117H-CFTR, who are highly ivacaftor-responsive. Ivacaftor alone improved CFTR activity, and lung function and inflammation within 48 h, and reduced P. aeruginosa and S. aureus pathogen density by ∼10-fold within a week. Antibiotics produced an additional ∼10-fold reduction in pathogen density, but this reduction was transient in subjects who remained infected. Only 1/5 P. aeruginosa-infected and 1/7 S. aureus-infected subjects became persistently culture-negative after the combined treatment. Subjects appearing to clear infection did not have particularly favorable baseline lung function or inflammation, pathogen density or antibiotic susceptibility, or bronchiectasis scores on CT scans, but they did have remarkably low sweat chloride values before and after ivacaftor. All persistently P. aeruginosa-positive subjects remained infected by their pretreatment strain, whereas subjects persistently S. aureus-positive frequently lost and gained strains. This work suggests chronic CF infections may resist eradication despite marked and rapid modulator-induced improvements in lung infection and inflammation parameters and aggressive antibiotic treatment. IMPORTANCE Recent work shows that people with CF and chronic lung infections generally remain persistently infected after treatment with drugs that target the CF physiological defect (called CFTR modulators). However, changes produced by modulators could increase antibiotic efficacy. We tested the approach of combining modulators and intensive antibiotics in rapid succession and found that while few subjects cleared their infections, combined treatment appeared most effective in subjects with the highest CFTR activity. These findings highlight challenges that remain to improve the health of people with CF.


Subject(s)
Aminophenols/administration & dosage , Anti-Bacterial Agents/administration & dosage , Cystic Fibrosis/drug therapy , Drug Therapy, Combination , Quinolones/administration & dosage , Adult , Cohort Studies , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Female , Humans , Lung/microbiology , Male , Mutation , Pseudomonas Infections/drug therapy , Pseudomonas Infections/genetics , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcal Infections/drug therapy , Staphylococcal Infections/genetics , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
4.
Int J Pharm ; 610: 121160, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34624446

ABSTRACT

The multi-drug resistance of Pseudomonas aeruginosa is an overwhelming cause of terminal and persistent lung infections in cystic fibrosis (CF) patients. Antimicrobial synergy has been shown for colistin and ivacaftor, and our study designed a relatively high drug-loading dry powder inhaler formulation containing nanoparticles of ivacaftor and colistin. The ivacaftor-colistin nanosuspensions (Iva-Col-NPs) were prepared by the anti-solvent method with different stabilizers. Based on the aggregation data, the formulation 7 (F7) with DSPG-PEG-OMe as the stabilizer was selected for further studies. The F7 consisted of ivacaftor, colistin and DSPG-PEG-OMe with a mass ratio of 1:1:1. The F7 powder formulation was developed using the ultrasonic spray-freeze-drying method and exhibited a rough surface with relatively high fine particle fraction values of 61.4 ± 3.4% for ivacaftor and 63.3 ± 3.3% for colistin, as well as superior emitted dose of 97.8 ± 0.3% for ivacaftor and 97.6 ± 0.5% for colistin. The F7 showed very significant dissolution improvement for poorly water soluble ivacaftor than the physical mixture. Incorporating two drugs in a single microparticle with synchronized dissolution and superior aerosol performance will maximize the synergy and bioactivity of those two drugs. Minimal cytotoxicity in Calu-3 human lung epithelial cells and enhanced antimicrobial activity against colistin-resistant P. aeruginosa suggested that our formulation has potential to improve the treatment of CF patients with lung infections.


Subject(s)
Aminophenols/administration & dosage , Colistin/administration & dosage , Nanoparticle Drug Delivery System , Pseudomonas Infections , Quinolones/administration & dosage , Administration, Inhalation , Aerosols/administration & dosage , Anti-Bacterial Agents/administration & dosage , Cell Line , Drug Combinations , Dry Powder Inhalers , Humans , Lung , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa
5.
Genes (Basel) ; 12(8)2021 07 29.
Article in English | MEDLINE | ID: mdl-34440351

ABSTRACT

We evaluated the effectiveness and safety of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) in three subjects carrying the Phe508del/unknown CFTR genotype. An ex vivo analysis on nasal epithelial cells (NEC) indicated a significant improvement of CFTR gating activity after the treatment. Three patients were enrolled in an ELX/TEZ/IVA managed-access program, including subjects with the highest percent predicted Forced Expiratory Volume in the 1st second (ppFEV1) < 40 in the preceding 3 months. Data were collected at baseline and after 8, 12 and 24 weeks of follow-up during treatment. All patients showed a considerable decrease of sweat chloride (i.e., meanly about 60 mmol/L as compared to baseline), relevant improvement of ppFEV1 (i.e., >8) and six-minute walk test, and an increase in body mass index after the first 8 weeks of treatment. No pulmonary exacerbations occurred during the 24 weeks of treatment and all domains of the CF Questionnaire-Revised improved. No safety concerns related to the treatment occurred. This study demonstrates the benefit from the ELX/TEZ/IVA treatment in patients with CF with the Phe508del and one unidentified CFTR variant. The preliminary ex vivo analysis of the drug response on NEC helps to predict the in vivo therapeutic endpoints.


Subject(s)
Aminophenols/administration & dosage , Benzodioxoles/administration & dosage , Chloride Channel Agonists/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Genotype , Indoles/administration & dosage , Phenylalanine/chemistry , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Pyrrolidines/administration & dosage , Quinolones/administration & dosage , Adult , Aminophenols/therapeutic use , Benzodioxoles/therapeutic use , Chloride Channel Agonists/therapeutic use , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Drug Therapy, Combination , Female , Humans , Indoles/therapeutic use , Middle Aged , Pyrazoles/therapeutic use , Pyridines/therapeutic use , Pyrrolidines/therapeutic use , Quinolones/therapeutic use , Retrospective Studies
6.
J Cyst Fibros ; 20(5): e63-e66, 2021 09.
Article in English | MEDLINE | ID: mdl-34175243

ABSTRACT

Substantial progress has been made in the treatment of Cystic fibrosis due to introduction of CFTR modulators. However, little is known about the long term side effects of treatment with these drugs. We here present a 7 year old girl with CF who presented with breast development as a rare dose dependent side effect of treatment with ivacaftor and we report data on the correlation between drug plasma concentration and clinical effect, bodyweight, and BSA in 16 patients. Higher plasma concentrations did not correlate with clinical effect, as change in FEV1 and sweat chloride concentration. Patients with low bodyweight or BSA tended to have higher plasma concentrations. This might indicate that the current recommended dose of ivacaftor is at the top of the dose-response curve and that some patients can be treated with lower doses of ivacaftor with similar clinical effect.


Subject(s)
Aminophenols/administration & dosage , Breast/growth & development , Chloride Channel Agonists/administration & dosage , Cystic Fibrosis/drug therapy , Puberty, Precocious/chemically induced , Quinolones/administration & dosage , Child , Female , Humans
7.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34166230

ABSTRACT

Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl-/HCO3- exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. As predicted by these results, in vivo data revealed a positive correlation between airway inflammation and CFTR modulator-induced improvement in lung function. These findings suggest that inflammation is a key regulator of HCO3- secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Interleukin-17/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Aminophenols/administration & dosage , Benzodioxoles/administration & dosage , Bicarbonates/metabolism , Cells, Cultured , Cystic Fibrosis/drug therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Humans , Hydrogen-Ion Concentration , Indoles/administration & dosage , Infant , Infant, Newborn , Interleukin-17/administration & dosage , Ion Transport , Mutation , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Quinolines/administration & dosage , Respiratory Mucosa/drug effects , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Tumor Necrosis Factor-alpha/administration & dosage
8.
J Cyst Fibros ; 20(5): e72-e76, 2021 09.
Article in English | MEDLINE | ID: mdl-34006500

ABSTRACT

BACKGROUND: Ivacaftor is currently the only CFTR potentiator approved and is increasingly used since the development of CFTR correctors. Ivacaftor is metabolized by CYP3A4 and therefore dose reduction is required when treating patients on ivacaftor with CYP3A4 inhibiting drugs. As this advice is based on studies in healthy volunteers and not in cystic fibrosis (CF) patients, we need to investigate this in both groups to be able to extrapolate these data to CF. METHODS: A cohort of CF patients and healthy subjects were exposed to a single dose of ivacaftor in combination with a strong (ritonavir), moderate (clarithromycin) and mild (azithromycin) CYP3A4 inhibitor. Ivacaftor concentrations were measured in all blood samples in order to calculate the pharmacokinetic parameters for ivacaftor. RESULTS: We found that exposure to ivacaftor was higher in healthy volunteers than in subjects with CF. However this difference was not statistically significant. No differences were observed in the interaction potential of CYP3A4 inhibitors between both study groups. The strong CYP3A4 inhibitor ritonavir, increased exposure to ivacaftor 7 times. CONCLUSION: Our data support current recommendations for dose adjustment of ivacaftor in case of co-treatment with CYP3A4 inhibitors in people with CF. However, exposure to ivacaftor was higher in healthy subjects than in CF patients. Further study is needed to investigate the cause and implication of this difference.


Subject(s)
Aminophenols/administration & dosage , Aminophenols/pharmacokinetics , Chloride Channel Agonists/administration & dosage , Chloride Channel Agonists/pharmacokinetics , Cystic Fibrosis/drug therapy , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Adult , Azithromycin/administration & dosage , Case-Control Studies , Drug Interactions , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Ritonavir/administration & dosage
9.
Neurotherapeutics ; 18(3): 1995-2007, 2021 07.
Article in English | MEDLINE | ID: mdl-33829413

ABSTRACT

Genetic knockout or knockdown of fat-mass and obesity-associated protein (FTO), a demethylase that participates in RNA N6-methyladenosine modification in injured dorsal root ganglion (DRG), has been demonstrated to alleviate nerve trauma-induced nociceptive hypersensitivities. However, these genetic strategies are still impractical in clinical neuropathic pain management. The present study sought to examine the effect of intrathecal administration of two specific FTO inhibitors, meclofenamic acid (MA) and N-CDPCB, on the development and maintenance of nociceptive hypersensitivities caused by unilateral L5 spinal nerve ligation (SNL) in rats. Intrathecal injection of either MA or N-CDPCB diminished dose-dependently the SNL-induced mechanical allodynia, heat hyperalgesia, cold hyperalgesia, and spontaneous ongoing nociceptive responses in both development and maintenance periods, without altering acute/basal pain and locomotor function. Intrathecal MA also reduced the SNL-induced neuronal and astrocyte hyperactivities in the ipsilateral L5 dorsal horn. Mechanistically, intrathecal injection of these two inhibitors blocked the SNL-induced increase in the histone methyltransferase G9a expression and rescued the G9a-controlled downregulation of mu opioid receptor and Kv1.2 proteins in the ipsilateral L5 DRG. These findings further indicate the role of DRG FTO in neuropathic pain and suggest potential clinical application of the FTO inhibitors for management of this disorder.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors , Aminophenols/administration & dosage , Anilides/administration & dosage , Hyperalgesia/drug therapy , Meclofenamic Acid/administration & dosage , Neuralgia/drug therapy , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Hyperalgesia/metabolism , Injections, Spinal , Male , Neuralgia/metabolism , Rats , Rats, Sprague-Dawley
10.
Mol Genet Genomic Med ; 9(4): e1656, 2021 04.
Article in English | MEDLINE | ID: mdl-33713579

ABSTRACT

BACKGROUND: New drugs that target the basic defect in cystic fibrosis (CF) patients may now be used in a large number of patients carrying responsive mutations. Nevertheless, further research is needed to extend the benefit of these treatments to patients with rare mutations that are still uncharacterized in vitro and that are not included in clinical trials. For this purpose, ex vivo models are necessary to preliminary assessing the effect of CFTR modulators in these cases. METHOD: We report the clinical effectiveness of lumacaftor/ivacaftor therapy prescribed to a CF child with a rare genetic profile (p.Phe508del/p.Gly970Asp) after testing the drug on nasal epithelial cells. We observed a significant drop of the sweat chloride value, as of the lung clearance index. A longer follow-up period is needed to define the effects of therapy on pancreatic status, although an increase of the fecal elastase values was found. CONCLUSION: Drug response obtained on nasal epithelial cells correlates with changes in vivo therapeutic endpoints and can be a predictor of clinical efficacy of novel drugs especially in pediatric patients.


Subject(s)
Aminophenols/therapeutic use , Aminopyridines/therapeutic use , Benzodioxoles/therapeutic use , Chloride Channel Agonists/therapeutic use , Cystic Fibrosis/drug therapy , Genotype , Quinolones/therapeutic use , Aminophenols/administration & dosage , Aminophenols/pharmacology , Aminopyridines/administration & dosage , Aminopyridines/pharmacology , Benzodioxoles/administration & dosage , Benzodioxoles/pharmacology , Cells, Cultured , Child, Preschool , Chloride Channel Agonists/administration & dosage , Chloride Channel Agonists/pharmacology , Chlorides/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Humans , Mutation, Missense , Nasal Mucosa/cytology , Pancreatic Elastase/metabolism , Quinolones/administration & dosage , Quinolones/pharmacology
11.
Pediatr Pulmonol ; 56 Suppl 1: S79-S89, 2021 02.
Article in English | MEDLINE | ID: mdl-33434412

ABSTRACT

Since the discovery of the gene responsible for cystic fibrosis (CF) in 1989, hopes have been pinned on a future with novel therapies tackling the basis of the disease rather than its symptoms. These have become a reality over the last decade with the development through to the clinic of CF transmembrane conductance regulator (CFTR) modulators. These are oral drugs which improve CFTR protein function through either increasing the time the channel pore is open (potentiators) or facilitating its trafficking through the cell to its location on the cell membrane (correctors). The first potentiator, ivacaftor, is now licensed and available clinically in many parts of the world. It is highly effective with impressive clinical impact in the lungs and gastrointestinal tract; longer-term data from patient registries show fewer exacerbations, a slower rate of lung function loss and reduced need for transplantation in patients receiving ivacaftor. However, as a single drug, it is suitable for only a small minority of patients. The commonest CFTR mutation, F508del, requires both correction and potentiation for clinical efficacy. Two dual-agent drugs (lumacaftor/ivacaftor and tezacaftor/ivacaftor) have progressed through to licensing, although their short term impact is more modest than that of ivacaftor; this is likely due to only partial correction of protein misfolding and trafficking. Most recently, triple compounds have been developed: two different corrector molecules (elexacaftor and tezacaftor) which, by addressing different regions in the misfolded F508del protein, more effectively improve trafficking. In addition to large improvements in clinical outcomes in people with two copies of F508del, the combination is sufficiently effective that it works in patients with only one copy of F508del and a second, nonmodulator responsive mutation. For the first time, we thus have a drug suitable for around 85% of people with CF. Even more gains are likely to be possible when these drugs can be used in younger children, although more sensitive outcome measures are needed for this age group. Special consideration is needed for people with very rare mutations; those with nonmodulatable mutation combinations will likely require gene or messenger RNA-based therapeutic approaches, many of which are being explored. Although this progress is hugely to be celebrated, we still have more work to do. The international collaboration between trials networks, pharma, patient organizations, registries, and people with CF is something we are all rightly proud of, but innovative trial design and implementation will be needed if we are to continue to build on this progress and further develop drugs for people with CF.


Subject(s)
Aminophenols/therapeutic use , Chloride Channel Agonists/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis/drug therapy , Quinolones/therapeutic use , Aminophenols/administration & dosage , Aminophenols/pharmacology , Aminopyridines/administration & dosage , Benzodioxoles/administration & dosage , Child , Chloride Channel Agonists/administration & dosage , Chloride Channel Agonists/pharmacology , Clinical Trials as Topic , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Drug Therapy, Combination , Humans , Indoles/administration & dosage , Mutation , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Pyrrolidines/administration & dosage , Quinolones/administration & dosage , Quinolones/pharmacology
12.
Clin Transl Sci ; 14(2): 656-663, 2021 03.
Article in English | MEDLINE | ID: mdl-33278322

ABSTRACT

In previous work, participants with a G970R mutation in cystic fibrosis transmembrane conductance regulator (CFTR) (c.2908G>C) had numerically lower sweat chloride responses during ivacaftor treatment than participants with other CFTR gating mutations. The objective of this substudy was to characterize the molecular defect of the G970R mutation in vitro and assess the benefit of ivacaftor in participants with this mutation. This substudy assessed sweat chloride, spirometry findings, and nasal potential difference on and off ivacaftor treatment in three participants with a G970R/F508del genotype. Intestinal organoids derived from rectal biopsy specimens were used to assess ivacaftor response ex vivo and conduct messenger RNA splice and protein analyses. No consistent or meaningful trends were observed between on-treatment and off-treatment clinical assessments. Organoids did not respond to ivacaftor in forskolin-induced swelling assays; no mature CFTR protein was detected in Western blots. Organoid RNA analysis demonstrated that 3 novel splice variants were created by G970R-CFTR: exon 17 truncation, exons 13-15 and 17 skipping, and intron 17 retention. Functional and molecular analyses indicated that the c.2908G>C mutation caused a cryptic splicing defect. Organoids lacked an ex vivo response with ivacaftor and supported identification of the mechanism underlying the CFTR defect caused by c.2908G>C. Analysis of CFTR mutations indicated that cryptic splicing was a rare cause of mutation misclassification in engineered cell lines. This substudy used organoids as an alternative in vitro model for mutations, such as cryptic splice mutations that cannot be fully assessed using cDNA expressed in recombinant cell systems.


Subject(s)
Aminophenols/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Quinolones/administration & dosage , Adolescent , Adult , Aminophenols/adverse effects , Biopsy , Cell Line , Cells, Cultured , Child , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Exons/genetics , Female , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/pathology , Male , Mutation , Organoids , Precision Medicine/methods , Primary Cell Culture , Quinolones/adverse effects , RNA Splicing , Rectum/cytology , Rectum/pathology , Treatment Outcome , Young Adult
13.
J Mater Chem B ; 9(1): 125-130, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33225328

ABSTRACT

Gram-positive bacteria are one of the most common pathogens causing severe and acute infection, and hospital infection caused by Gram-positive bacteria have increased significantly. Also, as antibiotics have been widely used, abusing of antibiotics is becoming an increasingly serious problem which is followed by dangerous drug resistance. Here, we developed a series of cationic carbon dots (CDs) with high-performance as antibacterial agents by using tartaric acid and m-aminophenol as precursors. The surface charge of these CDs can be regulated from +4.5 ± 0.42 mV to +33.2 ± 0.99 mV by increasing the contents of pyridine N and pyrrolic N in CDs. Further antibacterial experiments show that 250 µg mL-1 of CDs with +33.2 ± 0.99 mV can selectively kill Gram-positive bacteria and the antibacterial efficiency can reach approximately >99%. These CDs with positive surface charge can be selectively absorbed on the cell walls of Staphylococcus aureus (S. aureus) via electrostatic interaction and then disturb their physiological metabolism, eventually leading to bacterial death. The present work provides a novel method to adjust the surface charge of CDs and apply these CDs as alternative antibacterial agents.


Subject(s)
Aminophenols/administration & dosage , Anti-Bacterial Agents/administration & dosage , Carbon/administration & dosage , Gram-Positive Bacteria/drug effects , Quantum Dots/administration & dosage , Tartrates/administration & dosage , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Gram-Positive Bacteria/physiology , HeLa Cells , Humans , Surface Properties
14.
J Cyst Fibros ; 20(1): 68-77, 2021 01.
Article in English | MEDLINE | ID: mdl-32967799

ABSTRACT

BACKGROUND: The CFTR modulator tezacaftor/ivacaftor was efficacious and generally safe and well tolerated in Phase 3 studies in participants ≥12 years of age with cystic fibrosis (CF) homozygous for the F508del-CFTR mutation or heterozygous with a residual function-CFTR mutation (F/F or F/RF respectively). We evaluated tezacaftor/ivacaftor's efficacy and safety over 8 weeks in participants 6 through 11 years of age with these mutations. METHODS: Participants were randomized 4:1 to tezacaftor/ivacaftor or a blinding group (placebo for F/F, ivacaftor for F/RF). The primary endpoint was within-group change from baseline in the lung clearance index 2·5 (LCI2·5) through Week 8. Secondary endpoints were change from baseline in sweat chloride (SwCl), cystic fibrosis questionnaire-revised (CFQ-R) respiratory domain score, and safety. RESULTS: Sixty-seven participants received at least one study drug dose. Of those, 54 received tezacaftor/ivacaftor (F/F, 42; F/RF, 12), 10 placebo, and 3 ivacaftor; 66 completed the study. The within-group change in LCI2·5 was significantly reduced (improved) by -0·51 (95% CI: -0·74, -0·29). SwCl concentration decreased (improved) by -12·3 mmol/L and CFQ-R respiratory domain score increased (improved, nonsignificantly) by 2·3 points. There were no serious adverse events (AEs) or AEs leading to tezacaftor/ivacaftor discontinuation or interruption. The most common AEs (≥10%) in participants receiving tezacaftor/ivacaftor were cough, headache, and productive cough. CONCLUSIONS: Tezacaftor/ivacaftor improved lung function (assessed using LCI) and CFTR function (measured by SwCl concentration) in participants 6 through 11 years of age with F/F or F/RF genotypes. Tezacaftor/ivacaftor was safe and well tolerated; no new safety concerns were identified.


Subject(s)
Aminophenols/administration & dosage , Benzodioxoles/administration & dosage , Chloride Channel Agonists/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Indoles/administration & dosage , Mutation , Quinolones/administration & dosage , Aminophenols/adverse effects , Benzodioxoles/adverse effects , Child , Chloride Channel Agonists/adverse effects , Cystic Fibrosis/physiopathology , Drug Combinations , Female , Heterozygote , Homozygote , Humans , Indoles/adverse effects , Male , Quinolones/adverse effects , Treatment Outcome
15.
Chest ; 158(5): e245-e249, 2020 11.
Article in English | MEDLINE | ID: mdl-33160546

ABSTRACT

CASE PRESENTATION: A 48-year-old woman sought a second opinion for dyspnea and chronic productive cough; she was a never smoker. Mild respiratory symptoms persisted since childhood and had progressively worsened over the previous decade. In addition, an unintentional 30-pound weight loss had occurred over several years. Six years previously, a diagnosis of hypersensitivity pneumonitis was made following right upper lobe wedge resection that revealed chronic bronchiolitis with interstitial pneumonia and non-necrotizing granulomatous inflammation. Subsequent use of prednisone elicited mild intermittent improvement. She had used feather pillows in the past without any other significant exposures. There were no reports of sinus or GI symptoms.


Subject(s)
Alveolitis, Extrinsic Allergic/diagnosis , Aminophenols/administration & dosage , Bronchoscopy/methods , Cefazolin/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis , Quinolones/administration & dosage , Staphylococcal Infections , Anti-Bacterial Agents/administration & dosage , Bronchiectasis/diagnosis , Bronchiectasis/etiology , Chloride Channel Agonists/administration & dosage , Cystic Fibrosis/diagnosis , Cystic Fibrosis/physiopathology , Cystic Fibrosis/therapy , Diagnosis, Differential , Female , Genetic Testing , Humans , Late Onset Disorders/diagnosis , Late Onset Disorders/physiopathology , Late Onset Disorders/therapy , Middle Aged , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcus aureus/isolation & purification , Tomography, X-Ray Computed/methods , Treatment Outcome
16.
Int J Mol Sci ; 21(16)2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32824306

ABSTRACT

Over the last years CFTR (cystic fibrosis transmembrane conductance regulator) modulators have shown the ability to improve relevant clinical outcomes in patients with cystic fibrosis (CF). This review aims at a systematic research of the current evidence on efficacy and tolerability of CFTR modulators for different genetic subsets of patients with CF. Two investigators independently performed the search on PubMed and included phase 2 and 3 clinical trials published in the study period 1 January 2005-31 January 2020. A final pool of 23 papers was included in the systematic review for a total of 4219 patients. For each paper data of interest were extracted and reported in table. In terms of lung function, patients who had the most beneficial effects from CFTR modulation were those patients with one gating mutation receiving IVA (ivacaftor) and patients with p.Phe508del mutation, both homozygous and heterozygous, receiving ELX/TEZ/IVA (elexacaftor/tezacaftor/ivacaftor) had the most relevant beneficial effects in term of lung function, pulmonary exacerbation decrease, and symptom improvement. CFTR modulators showed an overall favorable safety profile. Next steps should aim to systematize our comprehension of scientific data of efficacy and safety coming from real life observational studies.


Subject(s)
Aminophenols/therapeutic use , Chloride Channel Agonists/therapeutic use , Clinical Trials as Topic , Cystic Fibrosis Transmembrane Conductance Regulator/agonists , Cystic Fibrosis/drug therapy , Quinolones/therapeutic use , Aminophenols/administration & dosage , Aminophenols/adverse effects , Child , Chloride Channel Agonists/administration & dosage , Chloride Channel Agonists/adverse effects , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Humans , Quinolones/administration & dosage , Quinolones/adverse effects
18.
Respir Res ; 21(1): 135, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32487229

ABSTRACT

RATIONALE: Lumacaftor/ivacaftor (LUM/IVA) modestly improves lung function following 1 month of treatment but it is unknown if this translates into improvements in exercise endurance and exertional symptoms. METHODS: Adult CF participants completed a symptom-limited constant load cycling test with simultaneous assessments of dyspnea and leg discomfort ratings pre- and 1 month post-initiation of LUM/IVA. RESULTS: Endurance time, exertional dyspnea and leg discomfort ratings at submaximal exercise did not change significantly. There was a significant inverse correlation between changes in leg discomfort and endurance time (r = - 0.88; p = 0.009) following 1-month of LUM/IVA. CONCLUSIONS: Overall, 1-month of LUM/IVA did not increase endurance time or modify exertional dyspnea or leg discomfort ratings. However, individuals who experienced a reduction in leg discomfort following LUM/IVA had an improvement in endurance time. Future studies with a larger sample size are needed to verify these findings and to assess the long-term effects of LUM/IVA on exercise outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02821130. Registered July 1, 2016.


Subject(s)
Aminophenols/administration & dosage , Aminopyridines/administration & dosage , Benzodioxoles/administration & dosage , Cystic Fibrosis/drug therapy , Exercise Test/drug effects , Forced Expiratory Volume/drug effects , Physical Exertion/drug effects , Pulmonary Ventilation/drug effects , Quinolones/administration & dosage , Adult , Cystic Fibrosis/diagnosis , Cystic Fibrosis/physiopathology , Drug Combinations , Exercise Test/methods , Female , Forced Expiratory Volume/physiology , Humans , Male , Physical Exertion/physiology , Pulmonary Ventilation/physiology , Treatment Outcome , Young Adult
19.
Expert Opin Drug Discov ; 15(8): 873-891, 2020 08.
Article in English | MEDLINE | ID: mdl-32290721

ABSTRACT

INTRODUCTION: Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The most common mutation, F508del, induces protein misprocessing and loss of CFTR function. The discovery through in vitro studies of the CFTR correctors (i.e. lumacaftor, tezacaftor) that partially rescue the misprocessing of F508del-CFTR with the potentiator ivacaftor is promising in giving an unprecedented clinical benefit in affected patients. AREAS COVERED: Online databases were searched using key phrases for CF and CFTR modulators. Tezacaftor-ivacaftor treatment has proved to be safer than lumacaftor-ivacaftor, although clinical efficacy is similar. Further clinical efficacy has ensued with the introduction of triple therapy, i.e. applying second-generation correctors, such as VX-569 and VX-445 (elexacaftor) to tezacaftor-ivacaftor. The triple combinations will herald the availability of etiologic therapies for patients for whom no CFTR modulators are currently applied (i.e. F508del/minimal function mutations) and enhance CFTR modulator therapy for patients homozygous for F508del. EXPERT OPINION: CF patient-derived tissue models are being explored to determine donor-specific response to current approved and future novel CFTR modulators for F508del and other rare mutations. The discovery and validation of biomarkers of CFTR modulation will complement these studies in the long term and in real-life world.


Subject(s)
Aminophenols/administration & dosage , Benzodioxoles/administration & dosage , Cystic Fibrosis/drug therapy , Indoles/administration & dosage , Quinolones/administration & dosage , Aminophenols/adverse effects , Aminophenols/pharmacology , Benzodioxoles/adverse effects , Benzodioxoles/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Development , Drug Discovery , Drug Therapy, Combination , Humans , Indoles/adverse effects , Indoles/pharmacology , Mutation , Quinolones/adverse effects , Quinolones/pharmacology
20.
Pediatr Pulmonol ; 55(7): 1838-1842, 2020 07.
Article in English | MEDLINE | ID: mdl-32281737

ABSTRACT

Premature termination codons (PTCs) in cystic fibrosis transmembrane conductance regulator (CFTR) produce nonfunctional protein. No approved therapies exist for PTC mutations, including W1282X. We hypothesized that ivacaftor, combined with readthrough therapy, may benefit W1282X patients. Two N-of-1 clinical trials were conducted with ataluren and ivacaftor in various combinations. No meaningful clinical benefit was observed in either patient with ivacaftor alone or ataluren/ivacaftor combination. However, isolated improvements of uncertain significance were noted by a nasal potential difference (NPD) and FEV1 % with ivacaftor in Patient-1 and with ataluren/ivacaftor combination by NPD and body mass index in Patient-2. Drug regimen composed of readthrough agents and potentiators warrant further development for W1282X and other CFTR nonsense mutations.


Subject(s)
Aminophenols/administration & dosage , Cystic Fibrosis/drug therapy , Oxadiazoles/administration & dosage , Quinolones/administration & dosage , Adult , Codon, Nonsense , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Female , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...