Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.720
Filter
1.
Mol Med ; 30(1): 138, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232672

ABSTRACT

BACKGROUND: Premature rupture of the membranes (PROM) is a key cause of preterm birth and represents a major cause of neonatal mortality and morbidity. Natural products N-acetyl-d-galactosamine (GalNAc), which are basic building blocks of important polysaccharides in biological cells or tissues, such as chitin, glycoproteins, and glycolipids, may improve possible effects of wound healing. METHODS: An in vitro inflammation and oxidative stress model was constructed using tumor necrosis-α (TNF-α) and lipopolysaccharide (LPS) action on WISH cells. Human amniotic epithelial cells (hAECs) were primarily cultured by digestion to construct a wound model. The effects of GalNAc on anti-inflammatory and anti-oxidative stress, migration and proliferation, epithelial-mesenchymal transition (EMT), glycosaminoglycan (GAG)/hyaluronic acid (HA) production, and protein kinase B (Akt) pathway in hAECs and WISH cells were analyzed using the DCFH-DA fluorescent probe, ELISA, CCK-8, scratch, transwell migration, and western blot to determine the mechanism by which GalNAc promotes amniotic wound healing. RESULTS: GalNAc decreased IL-6 expression in TNF-α-stimulated WISH cells and ROS expression in LPS-stimulated WISH cells (P < 0.05). GalNAc promoted the expression of Gal-1 and Gal-3 with anti-inflammatory and anti-oxidative stress effects. GalNAc promoted the migration of hAECs (50% vs. 80%) and WISH cells through the Akt signaling pathway, EMT reached the point of promoting fetal membrane healing, and GalNAc did not affect the activity of hAECs and WISH cells (P > 0.05). GalNAc upregulated the expression of sGAG in WISH cells (P < 0.05) but did not affect HA levels (P > 0.05). CONCLUSIONS: GalNAc might be a potential target for the prevention and treatment of PROM through the galectin pathway, including (i) inflammation; (ii) epithelial-mesenchymal transition; (iii) proliferation and migration; and (iv) regression, remodeling, and healing.


Subject(s)
Acetylgalactosamine , Cell Movement , Epithelial-Mesenchymal Transition , Fetal Membranes, Premature Rupture , Galectins , Signal Transduction , Wound Healing , Humans , Fetal Membranes, Premature Rupture/metabolism , Acetylgalactosamine/metabolism , Acetylgalactosamine/analogs & derivatives , Galectins/metabolism , Pregnancy , Epithelial Cells/metabolism , Cell Line , Oxidative Stress , Female , Amnion/metabolism , Amnion/cytology , Cell Proliferation , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
2.
Taiwan J Obstet Gynecol ; 63(5): 755-758, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39266160

ABSTRACT

OBJECTIVE: We present low-level mosaic trisomy 14 at amniocentesis. CASE REPORT: A 37-year-old, gravida 2, para 1, woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. This pregnancy was conceived by in vitro fertilization and embryo transfer (IVF-ET). Amniocentesis revealed a karyotype of 47,XX,+14 [4]/46,XX [27], consistent with 12.9% mosaicism for trisomy 14. Simultaneous array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed the result of arr (1-22, X) × 2 with no genomic imbalance. Prenatal ultrasound findings were unremarkable. She was referred for genetic counseling at 21 weeks of gestation and was offered expanded non-invasive prenatal testing (NIPT) which was positive for trisomy 14. At 24 weeks of gestation, she underwent repeat amniocentesis which revealed a karyotype of 47,XX,+14 [2]/46,XX [26], consistent with 7% mosaicism for trisomy 14. The parental karyotypes were normal. Simultaneous aCGH analysis on the DNA extracted from uncultured amniocytes revealed no genomic imbalance. Polymorphic marker analysis excluded uniparental disomy (UPD) 14. Interphase fluorescence in situ hybridization (FISH) analysis on 104 uncultured amniocytes detected no trisomy 14 cell. At 35 weeks of gestation, a 2315-g phenotypically normal baby was delivered. The umbilical cord and placenta had the karyotype of 46, XX (40/40 cells). aCGH analysis on the DNA extracted from peripheral blood and buccal mucosal cells at the age of three months revealed no genomic imbalance. The neonate was normal in phenotype and development during postnatal follow-ups. CONCLUSIONS: Low-level mosaic trisomy 14 at amniocentesis can be associated with cytogenetic discrepancy between cultured amniocytes and uncultured amniocytes, perinatal progressive decrease of the trisomy 14 cell line and a favorable fetal outcome.


Subject(s)
Amniocentesis , Chromosomes, Human, Pair 14 , Comparative Genomic Hybridization , Mosaicism , Trisomy , Uniparental Disomy , Humans , Pregnancy , Female , Mosaicism/embryology , Trisomy/diagnosis , Trisomy/genetics , Adult , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Chromosomes, Human, Pair 14/genetics , Infant, Newborn , Noninvasive Prenatal Testing/methods , Live Birth/genetics , Amnion/cytology , Pregnancy Outcome/genetics , Karyotyping/methods
3.
J Mater Chem B ; 12(36): 8977-8992, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39140678

ABSTRACT

Stem cell-based therapy implementation relies heavily on advancements in cell tracking. The present research has been designed to develop a gold nanorod (AuNR) labeling protocol applied to amniotic epithelial cells (AECs) leveraging the pro-regenerative properties of this placental stem cell source which is widely used for both human and veterinary biomedical regenerative applications, although not yet exploited with tracking technologies. Ovine AECs, in native or induced mesenchymal (mAECs) phenotypes via epithelial-mesenchymal transition (EMT), served as the model. Initially, various uptake methods validated on other sources of mesenchymal stromal cells (MSCs) were assessed on mAECs before optimization for AECs. Furthermore, the protocol was implemented by adopting the biological strategy of MitoCeption to improve endocytosis. The results indicate that the most efficient, affordable, and easy protocol leading to internalization of AuNRs in living mAECs recognized the combination of the one-step uptake condition (cell in suspension), centrifugation-mediated internalization method (G-force) and MitoCeption (mitochondrial isolated from mAECs). This protocol produced labeled vital mAECs within minutes, suitable for preclinical and clinical trials. The optimized protocol has the potential to yield feasible labeled amniotic-derived cells for biomedical purposes: up to 10 million starting from a single amniotic membrane. Similar and even higher efficiency was found when the protocol was applied to ovine and human AECs, thereby demonstrating the transferability of the method to cells of different phenotypes and species-specificity, hence validating its great potential for the development of improved biomedical applications in cell-based therapy and diagnostic imaging.


Subject(s)
Amnion , Gold , Animals , Sheep , Gold/chemistry , Amnion/chemistry , Amnion/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Epithelial Cells/cytology , Metal Nanoparticles/chemistry , Cells, Cultured , Epithelial-Mesenchymal Transition/drug effects , Female , Particle Size
4.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201288

ABSTRACT

The functioning of the human cornea heavily relies on the maintenance of its extracellular matrix (ECM) mechanical properties. Within this context, corneal stromal fibroblasts (CSFs) are essential, as they are responsible for remodeling the corneal ECM. In this study, we used a decellularized human amniotic membrane (dHAM) and a custom fibrillar collagen film (FCF) to explore the effects of fibrillar materials on human CSFs. Our findings indicate that substrates like FCF can enhance the early development of focal adhesions (FAs), leading to the activation and propagation of mechanotransduction signals. This is primarily achieved through FAK autophosphorylation and YAP1 nuclear translocation pathways. Remarkably, inhibiting FAK autophosphorylation negated the observed changes. Proteome analysis further confirmed the central role of FAs in mechanotransduction propagation in CSFs cultured on FCF. This analysis also highlighted complex signaling pathways, including chromatin epigenetic modifications, in response to fibrillar substrates. Overall, our research highlights the potential pathways through which CSFs undergo behavioral changes when exposed to fibrillar substrates, identifying FAs as essential mechanotransducers.


Subject(s)
Corneal Stroma , Fibroblasts , Focal Adhesions , Mechanotransduction, Cellular , Humans , Focal Adhesions/metabolism , Fibroblasts/metabolism , Corneal Stroma/cytology , Corneal Stroma/metabolism , Phosphorylation , Extracellular Matrix/metabolism , Cells, Cultured , YAP-Signaling Proteins/metabolism , Fibrillar Collagens/metabolism , Amnion/cytology , Amnion/metabolism , Focal Adhesion Kinase 1/metabolism
5.
PLoS One ; 19(8): e0309063, 2024.
Article in English | MEDLINE | ID: mdl-39159152

ABSTRACT

During pregnancy, two fetomaternal interfaces, the placenta-decidua basalis and the fetal membrane-decidua parietals, allow for fetal growth and maturation and fetal-maternal crosstalk, and protect the fetus from infectious and inflammatory signaling that could lead to adverse pregnancy outcomes. While the placenta has been studied extensively, the fetal membranes have been understudied, even though they play critical roles in pregnancy maintenance and the initiation of term or preterm parturition. Fetal membrane dysfunction has been associated with spontaneous preterm birth (PTB, < 37 weeks gestation) and preterm prelabor rupture of the membranes (PPROM), which is a disease of the fetal membranes. However, it is unknown how the individual layers of the fetal membrane decidual interface (the amnion epithelium [AEC], the amnion mesenchyme [AMC], the chorion [CTC], and the decidua [DEC]) contribute to these pregnancy outcomes. In this study, we used a single-cell transcriptomics approach to unravel the transcriptomics network at spatial levels to discern the contributions of each layer of the fetal membranes and the adjoining maternal decidua during the following conditions: scheduled caesarian section (term not in labor [TNIL]; n = 4), vaginal term in labor (TIL; n = 3), preterm labor with and without rupture of membranes (PPROM; n = 3; and PTB; n = 3). The data included 18,815 genes from 13 patients (including TIL, PTB, PPROM, and TNIL) expressed across the four layers. After quality control, there were 11,921 genes and 44 samples. The data were processed by two pipelines: one by hierarchical clustering the combined cases and the other to evaluate heterogeneity within the cases. Our visual analytical approach revealed spatially recognized differentially expressed genes that aligned with four gene clusters. Cluster 1 genes were present predominantly in DECs and Cluster 3 centered around CTC genes in all labor phenotypes. Cluster 2 genes were predominantly found in AECs in PPROM and PTB, while Cluster 4 contained AMC and CTC genes identified in term labor cases. We identified the top 10 differentially expressed genes and their connected pathways (kinase activation, NF-κB, inflammation, cytoskeletal remodeling, and hormone regulation) per cluster in each tissue layer. An in-depth understanding of the involvement of each system and cell layer may help provide targeted and tailored interventions to reduce the risk of PTB.


Subject(s)
Decidua , Extraembryonic Membranes , Premature Birth , Transcriptome , Female , Humans , Pregnancy , Decidua/metabolism , Extraembryonic Membranes/metabolism , Premature Birth/genetics , Fetal Membranes, Premature Rupture/genetics , Fetal Membranes, Premature Rupture/metabolism , Term Birth/genetics , Amnion/metabolism , Amnion/cytology , Adult , Chorion/metabolism , Gene Expression Profiling
6.
FASEB J ; 38(16): e70004, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39190010

ABSTRACT

Previous studies showed that the bladder extracellular matrix (B-ECM) could increase the differentiation efficiency of mesenchymal cells into smooth muscle cells (SMC). This study investigates the potential of human amniotic membrane-derived hydrogel (HAM-hydrogel) as an alternative to xenogeneic B-ECM for the myogenic differentiation of the rabbit adipose tissue-derived MSC (AD-MSC). Decellularized human amniotic membrane (HAM) and sheep urinary bladder (SUB) were utilized to create pre-gel solutions for hydrogel formation. Rabbit AD-MSCs were cultured on SUB-hydrogel or HAM-hydrogel-coated plates supplemented with differentiation media containing myogenic growth factors (PDGF-BB and TGF-ß1). An uncoated plate served as the control. After 2 weeks, real-time qPCR, immunocytochemistry, flow cytometry, and western blot were employed to assess the expression of SMC-specific markers (MHC and α-SMA) at both protein and mRNA levels. Our decellularization protocol efficiently removed cell nuclei from the bladder and amniotic tissues, preserving key ECM components (collagen, mucopolysaccharides, and elastin) within the hydrogels. Compared to the control, the hydrogel-coated groups exhibited significantly upregulated expression of SMC markers (p ≤ .05). These findings suggest HAM-hydrogel as a promising xenogeneic-free alternative for bladder tissue engineering, potentially overcoming limitations associated with ethical concerns and contamination risks of xenogeneic materials.


Subject(s)
Amnion , Cell Differentiation , Hydrogels , Mesenchymal Stem Cells , Myocytes, Smooth Muscle , Animals , Amnion/cytology , Amnion/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Rabbits , Humans , Hydrogels/chemistry , Urinary Bladder/cytology , Urinary Bladder/metabolism , Extracellular Matrix/metabolism , Sheep , Cells, Cultured , Tissue Engineering/methods
7.
Sci Rep ; 14(1): 17407, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075142

ABSTRACT

Currently, in vitro cultured corneal epithelial transplantation is effective in treating limbal stem cell dysfunction (LSCD). Selecting carriers is crucial for constructing the corneal epithelium through tissue engineering. In this study, the traditional amniotic membrane (AM) was modified, and mesenchymal stem cells (MSCs) were inoculated into the ultra-thin amniotic membrane (UAM) stroma to construct a novel UAM-MSC tissue-engineered corneal epithelial carrier, that could effectively simulate the limbal stem cells (LSCs) microenvironment. The structure of different carriers cultured tissue-engineered corneal epithelium and the managed rabbit LSCD model corneas were observed through hematoxylin-eosin staining. Cell phenotypes were evaluated through fluorescence staining, Western blotting, and RT-qPCR. Additionally, cell junction genes and expression markers related to anti-neovascularization were evaluated using RT-qPCR. Corneal epithelium cell junctions were observed via an electron microscope. The tissue-engineered corneal epithelium culture medium was analyzed through mass spectrometry. Tissue-engineered corneal epithelial cells expanded by LSCs on UAM-MSCs had good transparency. Simultaneously, progenitor cell (K14, PNCA, p63) and corneal epithelial (PAX6) gene expression in tissue-engineered corneal epithelium constructed using UAM-MSCs was higher than that in corneal epithelial cells amplified by UAM and de-epithelialized amniotic membrane. Electron microscopy revealed that corneal epithelial cells grafted with UAM-MSCs were closely connected. In conclusion, the UAM-MSCs vector we constructed could better simulate the limbal microenvironment; the cultured tissue-engineered corneal epithelium had better transparency, anti-neovascularization properties, closer intercellular connections, and closer resemblance to the natural corneal epithelial tissue phenotype.


Subject(s)
Amnion , Epithelium, Corneal , Mesenchymal Stem Cells , Tissue Engineering , Amnion/cytology , Tissue Engineering/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Epithelium, Corneal/cytology , Epithelium, Corneal/metabolism , Animals , Rabbits , Humans , Cells, Cultured , Limbus Corneae/cytology , Limbus Corneae/metabolism , Cell Differentiation
8.
Biomed Microdevices ; 26(3): 32, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963644

ABSTRACT

Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.


Subject(s)
Amniotic Fluid , Extraembryonic Membranes , Lab-On-A-Chip Devices , Humans , Amniotic Fluid/cytology , Extraembryonic Membranes/cytology , Extraembryonic Membranes/metabolism , Amnion/cytology , Amnion/metabolism , Cell Survival , Epithelial Cells/cytology , Epithelial Cells/metabolism , Motion , Oxidative Stress , Models, Biological , Microphysiological Systems
9.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000523

ABSTRACT

The dental implant surface plays a crucial role in osseointegration. The topography and physicochemical properties will affect the cellular functions. In this research, four distinct titanium surfaces have been studied: machined acting (MACH), acid etched (AE), grit blasting (GBLAST), and a combination of grit blasting and subsequent acid etching (GBLAST + AE). Human amniotic mesenchymal (hAMSCs) and epithelial stem cells (hAECs) isolated from the amniotic membrane have attractive stem-cell properties. They were cultured on titanium surfaces to analyze their impact on biological behavior. The surface roughness, microhardness, wettability, and surface energy were analyzed using interferometric microscopy, Vickers indentation, and drop-sessile techniques. The GBLAST and GBLAST + AE surfaces showed higher roughness, reduced hydrophilicity, and lower surface energy with significant differences. Increased microhardness values for GBLAST and GBLAST + AE implants were attributed to surface compression. Cell viability was higher for hAMSCs, particularly on GBLAST and GBLAST + AE surfaces. Alkaline phosphatase activity enhanced in hAMSCs cultured on GBLAST and GBLAST + AE surfaces, while hAECs showed no mineralization signals. Osteogenic gene expression was upregulated in hAMSCs on GBLAST surfaces. Moreover, α2 and ß1 integrin expression enhanced in hAMSCs, suggesting a surface-integrin interaction. Consequently, hAMSCs would tend toward osteoblastic differentiation on grit-blasted surfaces conducive to osseointegration, a phenomenon not observed in hAECs.


Subject(s)
Amnion , Dental Implants , Surface Properties , Titanium , Humans , Titanium/chemistry , Amnion/cytology , Amnion/metabolism , Osteogenesis , Cell Differentiation , Cells, Cultured , Osseointegration , Stem Cells/cytology , Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Survival , Alkaline Phosphatase/metabolism
10.
Endocrinology ; 165(9)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39082703

ABSTRACT

Premature rupture of membranes (PROM) is defined as rupture of fetal membranes before the onset of labor. Prolactin (PRL) is secreted by decidual membranes and accumulated significantly in the amniotic fluid during pregnancy. PRL could ameliorate inflammation and collagen degradation in fetal membranes. However, the role of PRL in amniotic membrane is not well characterized. We isolated human amniotic epithelial stem cells (hAESCs) from human fetal membranes to study the effect of PRL on proliferation, migration, and antioxidative stress. Amniotic pore culture technique (APCT) model was constructed to evaluate the tissue regeneration effect in vitro. The potential targets and pathways of PRL acting in amnion via integrated bioinformatic methods. PRL had a dose-dependent effect on hAESCs in vitro. PRL (500 ng/mL) significantly improved the viability of hAESCs and inhibited cell apoptosis, related to the upregulation of CCN2 expression and downregulation of Bax, Caspase 3, and Caspase 8. PRL accelerated migration process in hAESCs via downregulation of MMP2, MMP3, and MMP9. PRL attenuated the cellular damage and mitochondrial dysfunction induced by hydrogen peroxide in hAESCs. PRL accelerated the healing process in the APCT model significantly. The top 10 specific targets (IGF1R, SIRT1, MAP2K1, CASP8, MAPK14, MCL1, NFKB1, HIF1A, MTOR, and HSP90AA1) and signaling pathways (such as HIF signaling pathway) were selected using an integrated bioinformatics approach. PRL improves the viability and antioxidative stress function of hAESCs and the regeneration of ruptured amniotic membranes in vitro. Thus, PRL has great therapeutic potential for prevention and treatment of ruptured membranes.


Subject(s)
Amnion , Apoptosis , Fetal Membranes, Premature Rupture , Prolactin , Humans , Amnion/metabolism , Amnion/cytology , Fetal Membranes, Premature Rupture/therapy , Fetal Membranes, Premature Rupture/metabolism , Prolactin/metabolism , Prolactin/pharmacology , Female , Pregnancy , Apoptosis/drug effects , Cell Movement/drug effects , Regeneration/physiology , Regeneration/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/physiology , Epithelial Cells/drug effects , Stem Cells/metabolism , Cell Survival/drug effects , Oxidative Stress/drug effects
11.
PeerJ ; 12: e17616, 2024.
Article in English | MEDLINE | ID: mdl-38952966

ABSTRACT

Background: Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods: MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results: We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions: This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.


Subject(s)
Adipose Tissue , Mesenchymal Stem Cells , Umbilical Cord , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Humans , Umbilical Cord/cytology , Female , Adipose Tissue/cytology , Cells, Cultured , Chorionic Villi/physiology , Amnion/cytology , Cell Differentiation
12.
Gynecol Endocrinol ; 40(1): 2382818, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39039858

ABSTRACT

Premature ovarian insufficiency (POI) or premature ovarian failure (POF) is a multifactorial disorder occurring in reproductive-age women, characterized by elevated levels of follicle-stimulating hormone (FSH) and irregular or absent menstrual cycles, often accompanied by perimenopausal symptoms and infertility. While assisted reproductive technology can address the reproductive aspirations of some POI-affected women, it is hindered by issues such as exorbitant expenses, substantial risks, and poor rates of conception. Encouragingly, extensive research is exploring novel approaches to enhance fertility, particularly in the realm of stem cell therapy, showcasing both feasibility and significant potential. Human amniotic epithelial cells (hAECs) from discarded placental tissues are crucial in regenerative medicine for their pluripotency, low immunogenicity, non-tumorigenicity, accessibility, and minimal ethical concerns. Preclinical studies highlight the underlying mechanisms and therapeutic effects of hAECs in POI treatment, and current research is focusing on innovative interventions to augment hAECs' efficacy. However, despite these strides, overcoming application challenges is essential for successful clinical translation. This paper conducted a comprehensive analysis of the aforementioned issues, examining the prospects and challenges of hAECs in POI, with the aim of providing some insights for future research and clinical practice.


Subject(s)
Amnion , Epithelial Cells , Primary Ovarian Insufficiency , Humans , Primary Ovarian Insufficiency/therapy , Female , Epithelial Cells/transplantation , Amnion/cytology , Amnion/transplantation
13.
Stem Cells Transl Med ; 13(8): 711-723, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38895873

ABSTRACT

Lung and brain injury that occurs during the perinatal period leads to lifelong disability and is often driven and/or exacerbated by inflammation. Human amniotic epithelial cells (hAEC), which demonstrate immunomodulatory, anti-fibrotic, and regenerative capabilities, are being explored as a therapeutic candidate for perinatal injury. However, limitations regarding scalable manufacturing, storage, transport, and dose-related toxicity have impeded clinical translation. Isolated therapeutic extracellular vesicles (EVs) from stem and stem-like cells are thought to be key paracrine mediators of therapeutic efficacy. The unique characteristics of EVs suggest that they potentially circumvent the limitations of traditional cell-based therapies. However, given the novelty of EVs as a therapeutic, recommendations around ideal methods of production, isolation, storage, and delivery have not yet been created by regulatory agencies. In this concise review, we discuss the pertinence and limitations of cell-based therapeutics in perinatal medicine. We also review the preclinical evidence supporting the use of therapeutic EVs for perinatal therapy. Further, we summarize the arising considerations regarding adequate cell source, biodistribution, isolation and storage methods, and regulatory roadblocks for the development of therapeutic EVs.


Subject(s)
Amnion , Epithelial Cells , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Amnion/cytology , Brain Injuries/therapy , Lung Injury/therapy , Animals , Female
14.
Stem Cell Rev Rep ; 20(6): 1618-1635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38831179

ABSTRACT

Autoimmune factors play an important role in premature ovarian insufficiency (POI). Human amniotic epithelial stem cells (hAESCs) have recently shown promising treatment effects on chemotherapy-induced POI. However, the therapeutic efficacy and underlying mechanisms of hAESCs in autoimmune POI remain to be investigated. In this study, we showed for the first time that intravenous transplantation of hAESCs could reside in the ovary of zona pellucida 3 peptide (pZP3) induced autoimmune POI mice model for at least 4 weeks. hAESCs could improve ovarian function and fertility, alleviate inflammation and reduce apoptosis of granulosa cells (GCs) in autoimmune POI mice. The transcriptome analysis of mice ovaries and in vitro co-cultivation experiments suggest that activation of the AKT and ERK pathways may be the key mechanism in the therapeutic effect of hAESCs. Our work provides the theoretical and experimental foundation for optimizing the administration of hAESCs, as well as the clinical application of hAESCs in autoimmune POI patients.


Subject(s)
Amnion , Epithelial Cells , Granulosa Cells , MAP Kinase Signaling System , Primary Ovarian Insufficiency , Proto-Oncogene Proteins c-akt , Stem Cells , Female , Animals , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/metabolism , Humans , Mice , Amnion/cytology , Proto-Oncogene Proteins c-akt/metabolism , Granulosa Cells/metabolism , Epithelial Cells/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Disease Models, Animal , Stem Cell Transplantation , Apoptosis , Autoimmune Diseases/therapy , Autoimmune Diseases/pathology , Zona Pellucida Glycoproteins/metabolism , Zona Pellucida Glycoproteins/genetics
15.
Life Sci ; 351: 122812, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38862063

ABSTRACT

AIMS: Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice. MAIN METHODS: We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells. Flow cytometry, whole-body fluorescent imaging, immunofluorescence, Calcein-AM/PI staining, ELISA, and qPCR were used to assess the potential and mechanism of shielding hAMSCs to improve the efficiency of islet transplantation. KEY FINDINGS: Transplant of hAMSC-islet organoids results in remarkably better glycemic control, an enhanced glucose tolerance, and a higher ß cell mass in vivo compared with control islets. Our results show that hAMSCs shielding provides an immune privileged microenvironment for islets and promotes graft revascularization in vivo. In addition, hAMSC-islet organoids show higher viability and reduced dysfunction after exposure to hypoxia and inflammatory cytokines in vitro. Finally, our results show that shielding with hAMSCs leads to the activation of PKA-CREB-IRS2-PI3K and PKA-PDX1 signaling pathways, up-regulation of SIL1 mRNA levels, and down-regulation of MT1 mRNA levels in ß cells, which ultimately promotes the synthesis, folding and secretion of insulin, respectively. SIGNIFICANCE: hAMSC-islet organoids can evidently increase the efficiency of islet engraftment and might develop into a promising alternative for the clinical treatment of T1DM.


Subject(s)
Amnion , Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Organoids , Animals , Mesenchymal Stem Cells/cytology , Mice , Humans , Islets of Langerhans Transplantation/methods , Diabetes Mellitus, Experimental/therapy , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Amnion/cytology , Mesenchymal Stem Cell Transplantation/methods , Diabetes Mellitus, Type 1/therapy , Mice, Inbred C57BL , Male
16.
Life Sci ; 351: 122816, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38862064

ABSTRACT

AIMS: Parkinson's disease (PD) remains a substantial clinical challenge due to the progressive loss of midbrain dopaminergic (DA) neurons in nigrostriatal pathway. In this study, human amniotic epithelial stem cells (hAESCs)-derived dopaminergic neuron-like cells (hAESCs-DNLCs) were generated, with the aim of providing new therapeutic approach to PD. MATERIALS AND METHODS: hAESCs, which were isolated from discarded placentas, were induced to differentiate into hAESCs-DNLCs by following a "two stages" induction protocol. The differentiation efficiency was assessed by quantitative real-time PCR (qRT-PCR), immunocytochemistry (ICC), and ELISA. Immunogenicity, cell viability and tumorigenicity of hAESCs-DNLC were analyzed before in vivo experiments. Subsequently, hAESCs-DNLCs were transplanted into PD rats, behavioral tests were monitored after graft, and the regeneration of DA neurons was detected by immunohistochemistry (IHC). Furthermore, to trace hAESCs-DNLCs in vivo, cells were pre-labeled with PKH67 green fluorescence. KEY FINDINGS: hAESCs were positive for pluripotent markers and highly expressed neural stem cells (NSCs) markers. Based on this, we established an induction method reliably generates hAESCs-DNLCs, which was evidenced by epithelium-to-neuron morphological changes, elevated expressions of neuronal and DA neuronal markers, and increased secretion of dopamine. Moreover, hAESCs-DNLCs maintained high cell viability, no tumorigenicity and low immunogenicity, suggesting hAESCs-DNLCs an attractive implant for PD therapy. Transplantation of hAESCs-DNLCs into PD rats significantly ameliorated motor disorders, as well as enhanced the reinnervation of TH+ DA neurons in nigrostriatal pathway. SIGNIFICANCE: Our study has demonstrated evident therapeutic effects of hAESCs-DNLCs, and provides a safe and promising solution for PD.


Subject(s)
Amnion , Cell Differentiation , Dopaminergic Neurons , Parkinson Disease , Rats, Sprague-Dawley , Animals , Dopaminergic Neurons/metabolism , Rats , Humans , Amnion/cytology , Parkinson Disease/therapy , Female , Epithelial Cells/metabolism , Disease Models, Animal , Male , Neural Stem Cells/transplantation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Pregnancy , Stem Cell Transplantation/methods , Cells, Cultured
17.
Mol Biol Rep ; 51(1): 746, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874663

ABSTRACT

BACKGROUND: Human Amniotic Membrane (hAM) is endowed with several biological activities and might be considered an optimal tool in surgical treatment for different ophthalmic pathologies. We pioneered the surgical use of hAM to treat retinal pathologies such as macular holes, tears, and retinal detachments, and to overcome photoreceptor damage in age-related macular degeneration. Although hAM contributed to improved outcomes, the mechanisms of its effects are not yet fully understood. The characterization and explanation of the effects of hAM would allow the adoption of this new natural product in different retinal pathologies, operative contexts, and hAM formulations. At this end, we studied the properties of a hAM extract (hAME) on the ARPE-19 cells. METHODS AND RESULTS: A non-denaturing sonication-based technique was developed to obtain a suitable hAME. Viability, proliferation, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) were studied in hAME-treated ARPE-19 cells. The hAME was able to increase ARPE-19 cell viability even in the presence of oxidative stress (H2O2, TBHP). Moreover, hAME prevented the expression of EMT features, such as EMT-related proteins, fibrotic foci formation, and migration induced by different cytokines. CONCLUSIONS: Our results demonstrate that the hAME retains most of the properties observed in the whole tissue by others. The hAME, other than providing a manageable research tool, could represent a cost-effective and abundant drug to treat retinal pathologies in the future.


Subject(s)
Amnion , Apoptosis , Cell Proliferation , Cell Survival , Oxidative Stress , Retinal Pigment Epithelium , Humans , Amnion/cytology , Amnion/drug effects , Cell Line , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Cell Survival/drug effects , Apoptosis/drug effects , Oxidative Stress/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Tissue Extracts/pharmacology
18.
Cell Commun Signal ; 22(1): 301, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822356

ABSTRACT

BACKGROUND: Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS: Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-ß1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS: qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS: Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.


IUA is the crucial cause of infertility in women of childbearing age, and no satisfactory treatment measures have been found in the clinic. hAMSCs can effectively treat intrauterine adhesions through paracrine and transdifferentiation mechanisms. This study confirmed in vitro and in vivo that amniotic mesenchymal stem cells preferentially inhibited endometrial fibrosis and promoted epithelial repair through paracrine, thus effectively treating intrauterine adhesions. The level of fibrosis marker proteins in IUA-THESCs decreased significantly after co-culturing with hAMSCs for 2 days in vitro. However, the level of epithelial marker proteins in hAMSCs increased significantly, requiring at least 6 days of co-culture. hAMSCs-CM had the same efficacy as hAMSCs in inhibiting fibrosis and promoting endometrial repair in IUA rats, supporting the idea that hAMSCs promoted endometrial remodeling through paracrine in vivo. In addition, GFP-labeled hAMSCs continuously colonized the endometrial stroma instead of the epithelium and gradually underwent apoptosis. These findings prove that hAMSCs ameliorate endometrial fibrosis of IUA via paracrine, preferentially than transdifferentiation, providing the latest insights into the precision treatment of IUA with hAMSCs and a theoretical basis for promoting the "cell-free therapy" of MSCs.


Subject(s)
Amnion , Cell Transdifferentiation , Endometrium , Mesenchymal Stem Cells , Paracrine Communication , Rats, Sprague-Dawley , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Endometrium/cytology , Endometrium/metabolism , Animals , Amnion/cytology , Amnion/metabolism , Rats , Mesenchymal Stem Cell Transplantation/methods , Coculture Techniques , Tissue Adhesions/pathology , Tissue Adhesions/metabolism
19.
Sci Rep ; 14(1): 12670, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830883

ABSTRACT

Gelatin-methacryloyl (GelMA) is a highly adaptable biomaterial extensively utilized in skin regeneration applications. However, it is frequently imperative to enhance its physical and biological qualities by including supplementary substances in its composition. The purpose of this study was to fabricate and characterize a bi-layered GelMA-gelatin scaffold using 3D bioprinting. The upper section of the scaffold was encompassed with keratinocytes to simulate the epidermis, while the lower section included fibroblasts and HUVEC cells to mimic the dermis. A further step involved the addition of amniotic membrane extract (AME) to the scaffold in order to promote angiogenesis. The incorporation of gelatin into GelMA was found to enhance its stability and mechanical qualities. While the Alamar blue test demonstrated that a high concentration of GelMA (20%) resulted in a decrease in cell viability, the live/dead cell staining revealed that incorporation of AME increased the quantity of viable HUVECs. Further, gelatin upregulated the expression of KRT10 in keratinocytes and VIM in fibroblasts. Additionally, the histological staining results demonstrated the formation of well-defined skin layers and the creation of extracellular matrix (ECM) in GelMA/gelatin hydrogels during a 14-day culture period. Our study showed that a 3D-bioprinted composite scaffold comprising GelMA, gelatin, and AME can be used to regenerate skin tissues.


Subject(s)
Amnion , Bioprinting , Fibroblasts , Gelatin , Human Umbilical Vein Endothelial Cells , Keratinocytes , Tissue Engineering , Tissue Scaffolds , Keratinocytes/drug effects , Keratinocytes/cytology , Keratinocytes/metabolism , Gelatin/chemistry , Humans , Tissue Engineering/methods , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/cytology , Tissue Scaffolds/chemistry , Amnion/cytology , Amnion/metabolism , Amnion/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Skin/metabolism , Skin/cytology , Methacrylates/chemistry , Cell Survival/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/cytology
20.
Nature ; 631(8019): 170-178, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768632

ABSTRACT

Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.


Subject(s)
Cellular Reprogramming , Epigenesis, Genetic , Germ Cells , In Vitro Techniques , Female , Humans , Male , Amnion/cytology , Bone Morphogenetic Proteins/metabolism , Cellular Reprogramming/genetics , DNA Methylation/genetics , Germ Cells/metabolism , Germ Cells/cytology , MAP Kinase Signaling System , Mitosis/genetics , Mixed Function Oxygenases/deficiency , Oogenesis/genetics , Oogonia/cytology , Oogonia/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Promoter Regions, Genetic/genetics , Spermatogenesis/genetics , Spermatogonia/cytology , Spermatogonia/metabolism , Gene Expression Regulation, Developmental
SELECTION OF CITATIONS
SEARCH DETAIL