Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 992
Filter
1.
Reprod Domest Anim ; 59(6): e14628, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828525

ABSTRACT

This study aimed to investigate the impact of the epidermal growth factor receptor ligands amphiregulin (AREG) and epiregulin (EREG) on the fundamental functions of feline ovarian granulosa cells. Granulosa cells isolated from feline ovaries were incubated with AREG and EREG (0, 0.1, 1 or 10 ng/mL). The effects of these growth factors on cell viability, proliferation (assessed through BrdU incorporation), nuclear apoptosis (evaluated through nuclear DNA fragmentation) and the release of progesterone and estradiol were determined using Cell Counting Kit-8 assays, BrdU analysis, TUNEL assays and ELISAs, respectively. Both AREG and EREG increased cell viability, proliferation and steroid hormone release and reduced apoptosis. The present findings suggest that these epidermal growth factor receptor ligands may serve as physiological stimulators of feline ovarian cell functions.


Subject(s)
Amphiregulin , Apoptosis , Cell Proliferation , Cell Survival , Epiregulin , Granulosa Cells , Animals , Cats , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Amphiregulin/metabolism , Amphiregulin/genetics , Epiregulin/metabolism , Epiregulin/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Progesterone/metabolism , Progesterone/pharmacology , Estradiol/metabolism , Estradiol/pharmacology , Cells, Cultured
2.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727313

ABSTRACT

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.


Subject(s)
AC133 Antigen , Amphiregulin , Cell Proliferation , Melanoma , Up-Regulation , Amphiregulin/metabolism , Amphiregulin/genetics , Humans , AC133 Antigen/metabolism , AC133 Antigen/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , Cell Proliferation/drug effects , Cell Line, Tumor , Up-Regulation/genetics , Up-Regulation/drug effects , Gene Expression Regulation, Neoplastic , ErbB Receptors/metabolism
3.
J Ovarian Res ; 17(1): 97, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720330

ABSTRACT

The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.


Subject(s)
Amphiregulin , Betacellulin , C-Reactive Protein , Epiregulin , Luteal Cells , Serum Amyloid P-Component , Up-Regulation , Female , Humans , Amphiregulin/metabolism , Amphiregulin/genetics , Betacellulin/metabolism , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Epiregulin/metabolism , Epiregulin/genetics , ErbB Receptors/metabolism , Luteal Cells/metabolism , MAP Kinase Signaling System , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/genetics
4.
Blood Adv ; 8(12): 3284-3292, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38640195

ABSTRACT

ABSTRACT: Graft-versus-host disease (GVHD) is a major cause of nonrelapse mortality (NRM) after allogeneic hematopoietic cell transplantation. Algorithms containing either the gastrointestinal (GI) GVHD biomarker amphiregulin (AREG) or a combination of 2 GI GVHD biomarkers (suppressor of tumorigenicity-2 [ST2] + regenerating family member 3 alpha [REG3α]) when measured at GVHD diagnosis are validated predictors of NRM risk but have never been assessed in the same patients using identical statistical methods. We measured the serum concentrations of ST2, REG3α, and AREG by enzyme-linked immunosorbent assay at the time of GVHD diagnosis in 715 patients divided by the date of transplantation into training (2004-2015) and validation (2015-2017) cohorts. The training cohort (n = 341) was used to develop algorithms for predicting the probability of 12-month NRM that contained all possible combinations of 1 to 3 biomarkers and a threshold corresponding to the concordance probability was used to stratify patients for the risk of NRM. Algorithms were compared with each other based on several metrics, including the area under the receiver operating characteristics curve, proportion of patients correctly classified, sensitivity, and specificity using only the validation cohort (n = 374). All algorithms were strong discriminators of 12-month NRM, whether or not patients were systemically treated (n = 321). An algorithm containing only ST2 + REG3α had the highest area under the receiver operating characteristics curve (0.757), correctly classified the most patients (75%), and more accurately risk-stratified those who developed Minnesota standard-risk GVHD and for patients who received posttransplant cyclophosphamide-based prophylaxis. An algorithm containing only AREG more accurately risk-stratified patients with Minnesota high-risk GVHD. Combining ST2, REG3α, and AREG into a single algorithm did not improve performance.


Subject(s)
Algorithms , Amphiregulin , Biomarkers , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Interleukin-1 Receptor-Like 1 Protein , Pancreatitis-Associated Proteins , Humans , Graft vs Host Disease/blood , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Interleukin-1 Receptor-Like 1 Protein/blood , Biomarkers/blood , Pancreatitis-Associated Proteins/blood , Male , Female , Middle Aged , Adult , Amphiregulin/blood , Hematopoietic Stem Cell Transplantation/adverse effects , Aged , Prognosis , Antigens, Neoplasm/blood , Acute Disease , Adolescent , Young Adult
5.
Front Immunol ; 15: 1351405, 2024.
Article in English | MEDLINE | ID: mdl-38571949

ABSTRACT

Introduction: The alarmin IL-33 has been implicated in the pathology of immune-mediated liver diseases. IL-33 activates regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) expressing the IL-33 receptor ST2. We have previously shown that endogenous IL-33/ST2 signaling activates ILC2s that aggravate liver injury in murine immune-mediated hepatitis. However, treatment of mice with exogenous IL-33 before induction of hepatitis ameliorated disease severity. Since IL-33 induces expression of amphiregulin (AREG) crucial for Treg function, we investigated the immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis. Methods: C57BL/6, ST2-deficient (Il1rl1-/-) and Areg-/- mice received concanavalin A to induce immune-mediated hepatitis. Foxp3Cre+ x ST2fl/fl mice were pre-treated with IL-33 before induction of immune-mediated hepatitis. Treg function was assessed by adoptive transfer experiments and suppression assays. The effects of AREG and IL-33 on ST2+ Tregs and ILC2s were investigated in vitro. Immune cell phenotype was analyzed by flow cytometry. Results and discussion: We identified IL-33-responsive ST2+ Tregs as an effector Treg subset in the murine liver, which was highly activated in immune-mediated hepatitis. Lack of endogenous IL-33 signaling in Il1rl1-/- mice aggravated disease pathology. This was associated with reduced Treg activation. Adoptive transfer of exogenous IL-33-activated ST2+ Tregs before induction of hepatitis suppressed inflammatory T-cell responses and ameliorated disease pathology. We further showed increased expression of AREG by hepatic ST2+ Tregs and ILC2s in immune-mediated hepatitis. Areg-/- mice developed more severe liver injury, which was associated with enhanced ILC2 activation and less ST2+ Tregs in the inflamed liver. Exogenous AREG suppressed ILC2 cytokine expression and enhanced ST2+ Treg activation in vitro. In addition, Tregs from Areg-/- mice were impaired in their capacity to suppress CD4+ T-cell activation in vitro. Moreover, application of exogenous IL-33 before disease induction did not protect Foxp3Cre+ x ST2fl/fl mice lacking ST2+ Tregs from immune-mediated hepatitis. In summary, we describe an immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis, in which AREG suppresses the activation of hepatic ILC2s while maintaining ST2+ Tregs and reinforcing their immunosuppressive capacity in liver inflammation.


Subject(s)
Hepatitis , Immunity, Innate , Animals , Mice , Amphiregulin/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33 , Lymphocytes , Mice, Inbred C57BL , T-Lymphocytes, Regulatory
6.
EBioMedicine ; 103: 105138, 2024 May.
Article in English | MEDLINE | ID: mdl-38678809

ABSTRACT

BACKGROUND: Biliary atresia (BA) is a neonatal fibro-inflammatory cholangiopathy with ductular reaction as a key pathogenic feature predicting poor survival. Mucosal-associated invariant T (MAIT) cells are enriched in human liver and display multiple roles in liver diseases. We aimed to investigate the function of MAIT cells in BA. METHODS: First, we analyzed correlations between liver MAIT cell and clinical parameters (survival, alanine transaminase, bilirubin, histological inflammation and fibrosis) in two public cohorts of patients with BA (US and China). Kaplan-Meier survival analysis and spearman correlation analysis were employed for survival data and other clinical parameters, respectively. Next, we obtained liver samples or peripheral blood from BA and control patients for bulk RNA sequencing, flow cytometry analysis, immunostaning and functional experiments of MAIT cells. Finally, we established two in vitro co-culture systems, one is the rhesus rotavirus (RRV) infected co-culture system to model immune dysfunction of human BA which was validated by single cell RNA sequencing and the other is a multicellular system composed of biliary organoids, LX-2 and MAIT cells to evaluate the role of MAIT cells on ductular reaction. FINDINGS: Liver MAIT cells in BA were positively associated with low survival and ductular reaction. Moreover, liver MAIT cells were activated, exhibited a wound healing signature and highly expressed growth factor Amphiregulin (AREG) in a T cell receptor (TCR)-dependent manner. Antagonism of AREG abrogated the proliferative effect of BA MAIT cells on both cholangiocytes and biliary organoids. A RRV infected co-culture system, recapitulated immune dysfunction of human BA, disclosed that RRV-primed MAIT cells promoted cholangiocyte proliferation via AREG, and further induced inflammation and fibrosis in the multicellular system. INTERPRETATION: MAIT cells exhibit a wound healing signature depending on TCR signaling and promote ductular reaction via AREG, which is associated with advanced fibrosis and predictive of low survival in BA. FUNDING: This work was funded by National Natural Science Foundation of China grant (82001589 and 92168108), National Key R&D Program of China (2023YFA1801600) and by Basic and Applied Basic Research Foundation of Guangdong (2020A1515110921).


Subject(s)
Amphiregulin , Biliary Atresia , Mucosal-Associated Invariant T Cells , Humans , Biliary Atresia/pathology , Biliary Atresia/metabolism , Biliary Atresia/immunology , Amphiregulin/metabolism , Amphiregulin/genetics , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Male , Female , Liver/metabolism , Liver/pathology , Liver/immunology , Coculture Techniques , Bile Ducts/metabolism , Bile Ducts/pathology , Biomarkers , Infant
7.
Clin Exp Nephrol ; 28(5): 421-430, 2024 May.
Article in English | MEDLINE | ID: mdl-38402497

ABSTRACT

BACKGROUND: Amphiregulin (AREG) is a ligand of epidermal growth factor receptor (EGFR), which plays an important role in injury-induced kidney fibrosis. However, the clinical significance of serum soluble AREG in chronic kidney disease (CKD) is unclear. In this study, we elucidated the clinical significance of serum soluble AREG in CKD by analyzing the association of serum soluble AREG levels with renal function and other clinical parameters in patients with CKD. METHODS: In total, 418 Japanese patients with CKD were enrolled, and serum samples were collected for the determination of soluble AREG and creatinine (Cr) levels, and other clinical parameters. Additionally, these parameters were evaluated after 2 and 3 years. Moreover, immunohistochemical assay was performed ate AREG expression in the kidney tissues of patients with CKD. RESULTS: Soluble AREG levels were positively correlated with serum Cr (p < 0.0001). Notably, initial AREG levels were positively correlated with changes in renal function (ΔCr) after 2 (p < 0.0001) and 3 years (P = 0.048). Additionally, soluble AREG levels were significantly higher (p < 0.05) in patients with diabetic nephropathy or primary hypertension. Moreover, AREG was highly expressed in renal tubular cells in patients with advanced CKD, but only weakly expressed in patients with preserved renal function. CONCLUSION: Serum soluble AREG levels were significantly correlated with renal function, and changes in renal function after 2 and 3 years, indicating that serum soluble AREG levels might serve as a biomarker of renal function and renal prognosis in CKD.


Subject(s)
Amphiregulin , Creatinine , Renal Insufficiency, Chronic , Humans , Amphiregulin/blood , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/diagnosis , Male , Female , Middle Aged , Aged , Creatinine/blood , Biomarkers/blood , Glomerular Filtration Rate , Kidney/physiopathology , Kidney/metabolism , Kidney/pathology , Adult , Diabetic Nephropathies/blood , Diabetic Nephropathies/diagnosis , Hypertension , Clinical Relevance
8.
mBio ; 15(3): e0333823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38376154

ABSTRACT

Innate lymphoid cells (ILCs) play a critical role in maintaining intestinal health in homeostatic and diseased conditions. During Clostridium difficile infection (CDI), IL-33 activates ILC2 to protect from colonic damage and mortality. The function of IL-33 and ILC is tightly regulated by the intestinal microbiota. We set out to determine the impact of antibiotic-induced disruption of the microbiome on ILC function. Our goal was to understand antibiotic-induced changes in ILC function on susceptibility to C. difficile colitis in a mouse model. We utilized high-throughput single-cell RNAseq to investigate the phenotypic features of colonic ILC at baseline, after antibiotic administration with or without IL-33 treatment. We identified a heterogeneous landscape of colonic ILCs with gene signatures of inflammatory, anti-inflammatory, migratory, progenitor, plastic, and antigen-presenting ILCs. Antibiotic treatment decreased ILC2 while coordinately increasing ILC1 and ILC3 phenotypes. Notably, Ifng+, Ccl5+, and Il23r+ ILC increased after antibiotics. IL-33 treatment counteracted the antibiotic effect by downregulating ILC1 and ILC3 and activating ILC2. In addition, IL-33 treatment markedly induced the expression of type 2 genes, including Areg and Il5. Finally, we identified amphiregulin, produced by ILC2, as protective during C. difficile infection. Together, our data expand our understanding of how antibiotics induce susceptibility to C. difficile colitis through their impact on ILC subsets and function.IMPORTANCEClostridium difficile infection (CDI) accounts for around 500,000 symptomatic cases and over 20,000 deaths annually in the United States alone. A major risk factor of CDI is antibiotic-induced dysbiosis of the gut. Microbiota-regulated IL-33 and innate lymphoid cells (ILCs) are important in determining the outcomes of C. difficile infection. Understanding how antibiotic and IL-33 treatment alter the phenotype of colon ILCs is important to identify potential therapeutics. Here, we performed single-cell RNAseq of mouse colon ILCs collected at baseline, after antibiotic treatment, and after IL-33 treatment. We identified heterogeneous subpopulations of all three ILC subtypes in the mouse colon. Our analysis revealed several potential pathways of antibiotic-mediated increased susceptibility to intestinal infection. Our discovery that Areg is abundantly expressed by ILCs, and the protection of mice from CDI by amphiregulin treatment, suggests that the amphiregulin-epidermal growth factor receptor pathway is a potential therapeutic target for treating intestinal colitis.


Subject(s)
Clostridioides difficile , Clostridium Infections , Colitis , Enterocolitis, Pseudomembranous , Mice , Animals , Immunity, Innate , Lymphocytes , Anti-Bacterial Agents/pharmacology , Interleukin-33/metabolism , Interleukin-33/pharmacology , Amphiregulin/metabolism , Amphiregulin/pharmacology , Dysbiosis , Clostridium Infections/metabolism
9.
Medicine (Baltimore) ; 103(8): e37292, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394508

ABSTRACT

Amphiregulin is a member of the EGFR family, which is involved in many physiological and pathological processes through its binding with EGFR. Studies have found that amphiregulin plays an important role in the occurrence and development of lung diseases. This paper mainly reviews the structure and function of amphiregulin and focuses on the important role of amphiregulin in lung diseases.


Subject(s)
Lung Diseases , Signal Transduction , Humans , Amphiregulin/metabolism , Signal Transduction/physiology , ErbB Receptors/metabolism
10.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38309273

ABSTRACT

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Subject(s)
Glucose Intolerance , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , ErbB Receptors/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , T-Lymphocytes, Regulatory/metabolism
11.
FASEB J ; 38(4): e23488, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38358359

ABSTRACT

Myocardial infarction (MI) is defined as sudden ischemic death of myocardial tissue. Amphiregulin (Areg) regulates cell survival and is crucial for the healing of tissues after damage. However, the functions and mechanisms of Areg after MI remain unclear. Here, we aimed to investigate Areg's impact on myocardial remodeling. Mice model of MI was constructed and Areg-/- mice were used. Expression of Areg was analyzed using western blotting, RT-qPCR, flow cytometry, and immunofluorescence staining. Echocardiographic analysis, Masson's trichrome, and triphenyltetrazolium chloride staining were used to assess cardiac function and structure. RNA sequencing was used for unbiased analysis. Apoptosis and autophagy were determined by western blotting, TUNEL staining, electron microscopy, and mRFP-GFP-LC3 lentivirus. Lysosomal acidity was determined by Lysotracker staining. Areg was elevated in the infarct border zone after MI. It was mostly secreted by macrophages. Areg deficiency aggravated adverse ventricular remodeling, as reflected by worsening cardiac function, a lower survival rate, increased scar size, and interstitial fibrosis. RNA sequencing analyses showed that Areg related to the epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR) signaling pathways, V-ATPase and lysosome pathways. Mechanistically, Areg exerts beneficial effects via increasing lysosomal acidity to promote autophagosome clearance, and activating the EGFR/PI3K/Akt/mTOR signaling pathway, subsequently inhibiting excessive autophagosome formation and apoptosis in cardiomyocytes. This study provides a novel evidence for the role of Areg in inhibiting ventricular remodeling after MI by regulating autophagy and apoptosis and identifies Areg as a potential therapeutic target in ventricular remodeling after MI.


Subject(s)
Myocardial Infarction , Phosphatidylinositol 3-Kinases , Animals , Mice , Amphiregulin/genetics , Apoptosis , Autophagy , ErbB Receptors , Mammals , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Ventricular Remodeling
12.
Z Geburtshilfe Neonatol ; 228(2): 161-165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37625442

ABSTRACT

OBJECTIVE: We aimed to investigate serum amphiregulin (AREG) concentrations in pregnant women with isolated fetal growth restriction (FGR) in the third trimester. MATERIALS AND METHODS: This cross-sectional study was conducted with 90 pregnant women who applied to the Umraniye Training and Research Hospital Gynecology and Obstetrics Clinic between January 2022 and May 2022. The FGR group consisted of 45 pregnant women diagnosed with FGR in the third trimester, and the control group consisted of 45 healthy pregnant women matched with the FGR group in terms of age and body mass index (BMI). Demographic characteristics, ultrasound findings, and neonatal outcomes were noted. As a primary outcome, the two groups were compared for maternal serum AREG concentrations. RESULTS: Both groups were similar in terms of demographic characteristics (p>0.05). While fetal BPD, AC, and FL measurements in the group diagnosed with FGR were significantly lower than in the control group, umbilical artery Doppler PI and S/D were higher (p=0.000, for all). Gestational age at birth, newborn birth weight, birth height, and 1-minute Apgar score were significantly lower and the NICU admission rate was higher in the FGR group (p=0.000, p=0.000, p=0.000, p=0.027, p=0.011 respectively). Gestational age at blood sampling for AREG was similar in both groups (p=0.869). While maternal serum AREG concentration was 969.39 ng/L in the FGR group, it was 795.20 ng/L in the control group (p=0.018). AUC analysis of AREG for estimation of FGR in ROC analysis was 0.57 (p<0.247, 95% CI=0.44-0.69). The optimal threshold value for FGR estimation of maternal serum AREG concentration was determined as 874.03 ng/L with 55% sensitivity and 55% specificity. CONCLUSION: High maternal serum AREG concentrations appear to be associated with isolated FGR in the third trimester. The pathways through which AREG modulates fetal growth remain to be investigated.


Subject(s)
Fetal Growth Retardation , Pregnant Women , Female , Humans , Infant, Newborn , Pregnancy , Amphiregulin , Cross-Sectional Studies , Fetal Growth Retardation/diagnosis , Gestational Age , Pregnancy Trimester, Third
13.
J Invest Dermatol ; 144(1): 142-151.e5, 2024 01.
Article in English | MEDLINE | ID: mdl-37516309

ABSTRACT

Ischemia-reperfusion (I/R) injury is a key player in the pathogeneses of pressure ulcer formation. Our previous work demonstrated that inducing the transcription factor SOX2 promotes cutaneous wound healing through EGFR signaling pathway enhancement. However, its protective effect on cutaneous I/R injury was not well-characterized. We aimed to assess the role of SOX2 in cutaneous I/R injury and the tissue-protective effect of SOX2 induction in keratinocytes (KCs) in cutaneous I/R injury. SOX2 was transiently expressed in KCs after cutaneous I/R injury. Ulcer formation was significantly suppressed in KC-specific SOX2-overexpressing mice. SOX2 in skin KCs significantly suppressed the infiltrating inflammatory cells, apoptotic cells, vascular damage, and hypoxic areas in cutaneous I/R injury. Oxidative stress-induced mRNA levels of inflammatory cytokine expression were suppressed, and antioxidant stress factors and amphiregulin were elevated by SOX2 induction in skin KCs. Recombinant amphiregulin administration suppressed pressure ulcer development after cutaneous I/R injury in mice and suppressed oxidative stress-induced ROS production and apoptosis in vitro. These findings support that SOX2 in KCs might regulate cutaneous I/R injury through amphiregulin production, resulting in oxidative stress suppression. Recombinant amphiregulin can be a potential therapeutic agent for cutaneous I/R injury.


Subject(s)
Pressure Ulcer , Reperfusion Injury , Animals , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , Apoptosis , Keratinocytes/metabolism , Reperfusion Injury/complications , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Skin/metabolism
14.
Rheumatology (Oxford) ; 63(3): 837-845, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37310903

ABSTRACT

OBJECTIVE: Multiple observations indicate a role for lymphocytes in driving autoimmunity in SSc. While T and NK cells have been studied in SSc whole blood and bronchoalveolar lavage fluid, their role remains unclear, partly because no studies have analysed these cell types in SSc-interstitial lung disease (ILD) lung tissue. This research aimed to identify and analyse the lymphoid subpopulations in SSc-ILD lung explants. METHODS: Lymphoid populations from 13 SSc-ILD and 6 healthy control (HC) lung explants were analysed using Seurat following single-cell RNA sequencing. Lymphoid clusters were identified by their differential gene expression. Absolute cell numbers and cell proportions in each cluster were compared between cohorts. Additional analyses were performed using pathway analysis, pseudotime and cell ligand-receptor interactions. RESULTS: Activated CD16+ NK cells, CD8+ tissue resident memory T cells and Treg cells were proportionately higher in SSc-ILD compared with HC lungs. Activated CD16+ NK cells in SSc-ILD showed upregulated granzyme B, IFN-γ and CD226. Amphiregulin, highly upregulated by NK cells, was predicted to interact with epidermal growth factor receptor on several bronchial epithelial cell populations. Shifts in CD8+ T cell populations indicated a transition from resting to effector to tissue resident phenotypes in SSc-ILD. CONCLUSIONS: SSc-ILD lungs show activated lymphoid populations. Activated cytotoxic NK cells suggest they may kill alveolar epithelial cells, while their expression of amphiregulin suggests they may also induce bronchial epithelial cell hyperplasia. CD8+ T cells in SSc-ILD appear to transition from resting to the tissue resident memory phenotype.


Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , T-Lymphocytes, Regulatory , Humans , Amphiregulin , CD8-Positive T-Lymphocytes , Killer Cells, Natural , Lung , Lung Diseases, Interstitial/immunology , Memory T Cells , Scleroderma, Systemic/immunology
15.
J Allergy Clin Immunol ; 153(4): 1095-1112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38092138

ABSTRACT

BACKGROUND: IgG4-related disease (IgG4-RD), an example of a type I immune disease, is an immune-mediated fibrotic disorder characterized by dysregulated resolution of severe inflammation and wound healing. However, truly dominant or pathognomonic autoantibodies related to IgG4-RD are not identified. OBJECTIVE: We sought to perform single-cell RNA sequencing and T-cell receptor and B-cell receptor sequencing to obtain a comprehensive, unbiased view of tissue-infiltrating T and B cells. METHODS: We performed unbiased single-cell RNA-sequencing analysis for the transcriptome and T-cell receptor sequencing and B-cell receptor sequencing on sorted CD3+ T or CD19+ B cells from affected tissues of patients with IgG4-RD. We also conducted quantitative analyses of CD3+ T-cell and CD19+ B-cell subsets in 68 patients with IgG4-RD and 30 patients with Sjögren syndrome. RESULTS: Almost all clonally expanded T cells in these lesions were either Granzyme K (GZMK)-expressing CD4+ cytotoxic T cells or GZMK+CD8+ T cells. These GZMK-expressing cytotoxic T cells also expressed amphiregulin and TGF-ß but did not express immune checkpoints, and the tissue-infiltrating CD8+ T cells were phenotypically heterogeneous. MKI67+ B cells and IgD-CD27-CD11c-CXCR5- double-negative 3 B cells were clonally expanded and infiltrated affected tissue lesions. GZMK+CD4+ cytotoxic T cells colocalized with MKI67+ B cells in the extrafollicular area from affected tissue sites. CONCLUSIONS: The above-mentioned cells likely participate in T-B collaborative events, suggesting possible avenues for targeted therapies. Our findings were validated using orthogonal approaches, including multicolor immunofluorescence and the use of comparator disease groups, to support the central role of cytotoxic CD4+ and CD8+ T cells expressing GZMK, amphiregulin, and TGF-ß in the pathogenesis of inflammatory fibrotic disorders.


Subject(s)
Immune System Diseases , Immunoglobulin G4-Related Disease , Humans , Amphiregulin/genetics , CD8-Positive T-Lymphocytes , Granzymes , Receptors, Antigen, B-Cell , Receptors, Antigen, T-Cell , T-Lymphocytes, Cytotoxic , Transforming Growth Factor beta
16.
Eur J Pharmacol ; 963: 176219, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38040079

ABSTRACT

Sepsis-associated lung injury often coexists with intestinal dysfunction. Butyrate, an essential gut microbiota metabolite, participates in gut-lung crosstalk and has immunoregulatory effects. This study aims to investigate the effect and mechanism of sodium butyrate (NaB) on lung injury. Sepsis-associated lung injury was established in mice by cecal ligation and puncture (CLP). Mice in treatment groups received NaB gavage after surgery. The survival rate, the oxygenation index and the lung wet-to-dry weight (W/D) ratio were calculated respectively. Pulmonary and intestinal histologic changes were observed. The total protein concentration in bronchoalveolar lavage fluid (BALF) was measured, and inflammatory factors in serum and BALF were examined. Diamine oxidase (DAO), lipopolysaccharide (LPS), and surfactant-associated protein D (SP-D) levels in serum and amphiregulin in lung tissue were assessed. Intercellular junction protein expression in the lung and intestinal tissues were examined. Changes in immune cells were analyzed. NaB treatment improved the survival rate, the oxygenation index and the histologic changes. NaB decreased the W/D ratio, total protein concentration, and the levels of proinflammatory cytokines, as well as SP-D, DAO and LPS, while increased the levels of anti-inflammatory cytokines and amphiregulin. The intercellular junction protein expression were improved by NaB. Furthermore, the CD4+/CD8+ T-cell ratio and the proportion of CD4+Foxp3+ regulatory T cells (Tregs) were increased by NaB. Our data suggested that NaB gavage effectively improved the survival rate and mitigated lung injury in CLP mice. The possible mechanism was that NaB augmented CD4+Foxp3+ Tregs and enhanced the barrier function of the gut and the lung.


Subject(s)
Acute Lung Injury , Sepsis , Mice , Animals , Acute Lung Injury/etiology , Acute Lung Injury/complications , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Butyric Acid/metabolism , Amphiregulin/metabolism , T-Lymphocytes, Regulatory/metabolism , Lipopolysaccharides/metabolism , Pulmonary Surfactant-Associated Protein D/metabolism , Lung/pathology , Cytokines/metabolism , Transcription Factors/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Forkhead Transcription Factors/metabolism
17.
Microb Pathog ; 186: 106463, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036111

ABSTRACT

Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.


Subject(s)
Bacterial Infections , Influenza, Human , Animals , Humans , Mice , Amphiregulin/metabolism , ErbB Receptors/metabolism , Prospective Studies
18.
J Immunol Res ; 2023: 8883045, 2023.
Article in English | MEDLINE | ID: mdl-38046264

ABSTRACT

Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR) and has been shown to regulate the phagocytosis-induced cell death of monocytes in peripheral blood. AREG-dependent apoptotic signaling engages factors of the intrinsic and extrinsic apoptotic pathway, such as BCL-2, BCL-XL, and death ligand/receptor CD95/CD95L. Here, we tested the hypothesis that AREG influences costimulatory monocyte functions, which are crucial for T-cell responses. We found a stronger expression of AREG and EGFR in monocytes compared to lymphocytes. As a novel function of AREG, we observed reduced T-cell proliferation following polyclonal T-cell stimulation with OKT3. This reduction of proliferation occurred in the presence of monocytes as well as in their absence, monocyte signaling being replaced by crosslinking of OKT3. Increasing concentrations of AREG down-modulated the concentration of costimulatory B7 molecules (CD80/CD86) and HLA-DR on monocytes. In proliferation assays, CD28 expression on T cells was down-modulated on the application of OKT3 but unaltered by AREG. LcK activation, following OKT3-stimulation, was reduced in T cells that had been coincubated with AREG. The effects of AREG on T-cell phenotypes were also present when monocytes were depleted and OKT3 was crosslinked. The rearranged expression of immunological synapse proteins was accompanied by an alteration of T-cell polarization. Although the proportion of regulatory T cells was not shifted by AREG, IL-17-expressing T cells were significantly enhanced, with a bias toward TH1-polarization. Taken together, these results suggest that AREG acts as an immunoregulatory molecule at the interface between antigen-presenting cells and T cells.


Subject(s)
Epidermal Growth Factor , Monocytes , Amphiregulin/metabolism , Epidermal Growth Factor/metabolism , Ligands , Muromonab-CD3/metabolism , ErbB Receptors/genetics
19.
Int J Biol Sci ; 19(16): 5174-5186, 2023.
Article in English | MEDLINE | ID: mdl-37928274

ABSTRACT

Chondrosarcoma is the second most common type of bone cancer. At present, the most effective clinical course of action is surgical resection. Cisplatin is the chemotherapeutic medication most widely used for the treatment of chondrosarcoma; however, its effectiveness is severely hampered by drug resistance. In the current study, we compared cisplatin-resistant chondrosarcoma SW1353 cells with their parental cells via RNA sequencing. Our analysis revealed that glutamine metabolism is highly activated in resistant cells but glucose metabolism is not. Amphiregulin (AR), a ligand of the epidermal growth factor receptor, enhances glutamine metabolism and supports cisplatin resistance in human chondrosarcoma by promoting NADPH production and inhibiting reactive oxygen species (ROS) accumulation. The MEK, ERK, and NrF2 signaling pathways were shown to regulate AR-mediated alanine-serine-cysteine transporter 2 (ASCT2; also called SLC1A5) and glutaminase (GLS) expression as well as glutamine metabolism in cisplatin-resistant chondrosarcoma. The knockdown of AR expression in cisplatin-resistant chondrosarcoma cells was shown to reduce the expression of SLC1A5 and GLS in vivo. These results indicate that AR and glutamine metabolism are worth pursuing as therapeutic targets in dealing with cisplatin-resistant human chondrosarcoma.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Amphiregulin/genetics , Glutamine , Drug Resistance, Neoplasm/genetics , Chondrosarcoma/drug therapy , Chondrosarcoma/genetics , Cell Line, Tumor , Minor Histocompatibility Antigens , Amino Acid Transport System ASC
20.
Blood ; 142(18): 1502-1504, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37917083
SELECTION OF CITATIONS
SEARCH DETAIL
...